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Abstract. In this paper, we consider the coronavirus (COVID-19) pandemic model. The fractional ordinary

differential equations were defined in the sense of the Caputo derivative. Adams-type predictor-corrector method

with α ∈ [0,1] is employed to compute an approximation to the solution of the model of fractional order. The

obtained results are compared with the results by Atangana Baleanu derivative method. Basic reproduction number,

R0, affects the model behaviour. We used R0 to establish the stability and existence conditions at the equilibrium

points. The results obtained show that the method is highly applicable and also an efficient approach for solving

fractional ordinary differential equations of such order.
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1. INTRODUCTION

The study of epidemiology, which involves the transmission of diseases within a population

has recently gained more attention among researchers in various fields. The outbreak of coro-

navirus (also known as COVID-19) in 2019, which is still spreading globally, Ebola outbreak

in 2014 and the SARS outbreak in 2003 had even led to more advanced research in this area.

Many models for various infectious diseases have been mathematically developed in order to

study the dynamical process of pandemic. The models are able to integrate realistic features

of disease spreading. Historically, a simple deterministic model was studied by Kermack and

McKendrick in 1927, which is referred to as susceptible-infected-recovered (SIR) model. This

model divides the populations into three states, which are susceptible, S, infected, I, and recov-

ered (removed), R, respectively. The susceptible individuals are assumed to become infected

with a rate of transmission which is proportional to the fraction of infected individuals in the

overall population (fully mixed approximation) and infected individuals recover at a constant

rate.

Just of recent, intensive research on mathematical epidemiology is being carried out to de-

velop more realistic pandemic models. Example of such are [1, 2, 3, 4] , which are concern on

modeling the dynamic of novel corona virus. The corona virus was first detected in Wuhan, the

capital city of Hubei province in the People’s Republic of China on December, 2019. However,

there are yet to be effective vaccines for the treatment of this novel virus. It is sad to not that

the virus has more than one hundred and eighty-two thousand death toll, over two million con-

firmed cases and more than seven hundred thousand recovered rate, globally as at 22th April,

2020. The Covid−19 has continued to spread to other parts of the world, including the African

continent with over twenty-four thousand confirmed cases, over six thousand recoveries and

over one thousand death. It is noted that the appearance of the virus is between 2 days to 2

weeks, which has given the world a body shake-up. United States of America, Spain, Italy,

German, China. France, Iran and United Kingdom are among the countries reporting with high

cases of the virus outbreak in the world.
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However, advises have been given to all and sundry to frequently sanitize their hands and

avoid contact with face and high-contact surface to prevent the spread of COVID−19 while

emphasizing that COVID−19 is not a death sentence if timely and adequate measures are taken.

In this research direction, physicists and mathematicians are among the academic players

that contributes to the knowledge of mathematical epidemiology. These group of scholars have

continuously worked on modeling various pandemic outbreak. A major part of these epidemi-

ological research is focus on the rate-based differential-equation models, i.e. compartmental

models on completely mixing population.

In recent years, the research in infectious modeling had been shifted to fractional differen-

tial equations (FDEs) model from ordinary differential equations (ODEs). Various fractional

epidemic models have been studied [6, 7, 8, 23, 11, 10].

Fractional calculus, which is an important branch of mathematics was born in 1695. It was

investigated that when describing some unconventional phenomena in engineering applications

and physical science, including biological system [13, 21, 21], finance system [14], just to

mention a few, fractional calculus has the superiority accuracy than the integer-order . On

the other hand, the well-known Caputo fractional derivative (defined by Michele Caputo in

1967) and famous Riemann-Liouville fractional integral are the main subjects of many studies

in fractional calculus [15, 16, 17]. The research work in this area is under a huge development

which includes; the study of theory of fractional calculus [18], [19], efficient numerical schemes

[20, 8, 9]and application on physical problem [12]. In addition to that, the fractional derivative

is commonly applied to increase the stability region of various systems, which is more suitable

than integer order [21, 25].

[2] introduced a conceptual model for Covid-19 in Wuhan with the consideration of govern-

mental actions and reactions of various individual. The structure of the model is concise, and

effectively captures the course of the virus outbreak. The authors further gave brief explanations

on sympathetic trends of the outbreak.

More so, [28] presented a fractional derivative epidemic modelling, by deriving an infectiv-

ity SIR model of fractional-order from a stochastic process incorporating a time-since-infection

dependence on the infectivity of the individuals. They incorporated a fractional derivative into
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the SIR model recovery rate in order to incorporate the effects of chronic infection, by con-

cluding that based on the system parameters, the fractional model allows both endemic, long

time equilibrium state, and disease-free, but are unable to identify any disease process using the

required power law properties of the infectivity which gives rise to the fractional order in the

epidemic model.

2. MODEL DESCRIPTION

More recently, [22] published a paper describing the modeling and dynamics of the novel

Covid-19 (2019-nCoV). The model gave a short explanation among categories of interactions.

First interaction is between the bats and the unknown hosts, which may be the wild animal.

Then, the second interaction is between the people and their interaction with the market’s

seafood, which is the infections reservoir. The major source of infection as described in the

model is the seafood when these agents (bats and the unknown hosts) releases the infection on

the items (seafood, such as crayfish, fish just to mentioned a few). Thus, when the people buy

the infected items from the market, there is tendency for the people to be infected by the virus

either as symptomatically or asymptomatically. The model was reduced with the idea that the

market’s seafood has the large ability source to infect individual that come to transact in the

market. The author reduced the model with ignoring the interaction between the bats and the

hosts as follows; The model is given in the system (1)

(1)

dSp

dt
= Πp−µpSp−

ηpSp (ψAp + Ip)

Np
−ηwSpM,

dEp

dt
=

ηpSp (ψAp + Ip)

Np
+ηwSpM− (1−θp)wpEp−θpρpEp−µpEp,

dIp

dt
= (1−θp)wpEp− (τp +µp) Ip,

dAp

dt
= θpρpEp− (τap +µp)Ap,

dRp

dt
= τapAp + τpIp−µpRp,

dM
dt

=−πM+ϖpAp +QpIp.

With S (0) = S0, E (0) = E0, I (0) = I0, A(0) = A0, R(0) = R0, M (0) = M0.
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The parameters interpretations are as follows: N is the total population of the people, Sp is

the susceptible, Ep is the exposed, Ip is the infected (symptomatic), Ap is the asymptotically

infected, and Rp is the recovered/removed people. M represents the market. Πp is the birth rate,

µp is the natural death rate and ηp is given as the transmission’s disease coefficient between

infected and susceptible individuals. ηp represents recruitment coefficient. ψ represents the

transmissible multiple of infected (symptomatic) and asymptotically infected. Given ψ ∈ [0,1],

which means when ψ = 0, no transmissible multiple will exists and thus vanish, and if ψ = 1,

it shows that similar procedure will take place like symptomatic infection. θp represents the

proportion of asymptomatic infection. ϖp and pp are the transmission rates of infected that

have completed the incubation period, respectively. Further more θp and τp are the recovery

or removal rate of both infected (symptomatic), asymptotically infected, respectively. Qp is the

contribution of the virus to market by infected (symptomatic), while ϖp is the contribution of

the virus to market by asymptotically infected and π is the removing rate of virus from market

We have the following definitions of fractional integral-order and the Caputo fraction derivative-

order:

Definition 2.1. The fractional integral with fractional order β ∈ ℜt of function x(t) , t > 0 is

defined as:

(2) Iβ x(t) =
∫ t

0

(t− s)β−1 x(s)
Γ(β )

ds

where t = t0 is the initial time and Γ(β ) is the Euler’s gamma function.

Definition 2.2. The Caputo fractional derivative with order α ∈ n−1,n of function x(t) , t > 0

is defined as:

(3) cDt
αx(t) = In−αDnx(t) ,Dt =

d
dt
.

3. STABILITY ANALYSIS OF FRACTIONAL ORDER SYSTEM

The stability analysis (local), which is established on stability theory of fractional-order sys-

tem is examined in this section. It is noted that the equilibrium point of fractional order is the

same with the integer counterpart but their condition is quite different from each other. For
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integer order, the equilibrium point is not stable when the eigenvalue is non-negative, while that

of the fractional order can still be stable even when the eigenvalue is non-negative.

Theorem 3.1. [Stability Analysis] The necessary and sufficient condition for Caputo fractional

derivative to be locally asymptotically stable, with system (5) where α ∈ (0,1] is if and only if

λi of the Jacobian, ∂

∂y f (t,y) , computed at the equilibrium points is satisfied by
∣∣arg λi|> απ

2 ,

i = 1,2,3,4,5,6.

Proof. Consider the following commensurate fraction-order system:

(4) cDt
αyi (t) = f (t,yi (t)) ,yi (to) = y0

where cDt
α is the Caputo fractional derivative with order α ∈ (0,1].

In order to evaluate the equilibrium points, let put

(5) cDt
αyi (t) = 0⇒ fi ( f1

eqn, f2
eqn, f3

eqn, f4
eqn, f5

eqn, f6
eqn) = 0.

for which we can get the equilibrium points f1
eqn, f2

eqn, f3
eqn, f4

eqn, f5
eqn, f6

eqn.

Now to evaluate the asymptotic stability, let consider the system cDt
α f (x) = f (x,y) in the

sense of Caputo and to find the asymptotic stability, let yi (t) = yi
eqnεi (t). The equilibrium

point ( f1
eqn, f2

eqn, f3
eqn, f4

eqn, f5
eqn, f6

eqn) is locally asymptotically stable if the eigenvalues of

the Jacobian



∂ ( f1)
∂ (y1)

∂ ( f1)
∂ (y2)

∂ ( f1)
∂ (y3)

∂ ( f1)
∂ (y4)

∂ ( f1)
∂ (y5)

∂ ( f1)
∂ (y6)

∂ ( f2)
∂ (y1)

∂ ( f2)
∂ (y2)

∂ ( f2)
∂ (y3)

∂ ( f2)
∂ (y4)

∂ ( f2)
∂ (y5)

∂ ( f2)
∂ (y6)

∂ ( f3)
∂ (y1)

∂ ( f3)
∂ (y2)

∂ ( f3)
∂ (y3)

∂ ( f3)
∂ (y4)

∂ ( f3)
∂ (y5)

∂ ( f3)
∂ (y6)

∂ ( f4)
∂ (y1)

∂ ( f4)
∂ (y2)

∂ ( f4)
∂ (y3)

∂ ( f4)
∂ (y4)

∂ ( f4)
∂ (y5)

∂ ( f4)
∂ (y6)

∂ ( f5)
∂ (y1)

∂ ( f5)
∂ (y1)

∂ ( f5)
∂ (y1)

∂ ( f5)
∂ (y1)

∂ ( f5)
∂ (y1)

∂ ( f5)
∂ (y1)

∂ ( f6)
∂ (y1)

∂ ( f6)
∂ (y2)

∂ ( f6)
∂ (y3)

∂ ( f6)
∂ (y4)

∂ ( f6)
∂ (y5)

∂ ( f6)
∂ (y6)


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evaluated at the equilibrium point is satisfied by
∣∣arg λ1,2,3,4,5,6

∣∣> απ

2 [25, 26, 29, 30]. �

The above integer-order derivatives of the system (1) is replaced by fractional derivatives of

order 0 < α ≤ 1 in the sense of Caputo as follows:

(6)

cDt
αSp (t) = Πp−µpSp−

ηpSp (ψAp + Ip)

Np
−ηwSpM,

cDt
αEp (t) =

ηpSp (ψAp + Ip)

Np
+ηwSpM− (1−θp)wpEp−θpρpEp−µpEp,

cDt
α Ip (t) = (1−θp)wpEp− (τp +µp) Ip,

cDt
αAp (t) = θpρpEp− (τap +µp)Ap,

cDt
αRp (t) = τapAp + τpIp−µpRp,

cDt
αM (t) =−πM+ϖpAp +QpIp.

where 0 < α ≤ 1. All the parameters are positive constants.

We use R0 to establish the stability and existence conditions of both disease-free and endemic

for the equilibrium points, which is the number of people that one sick person will infect (on

average).

There are two equilibria in the system (6) when equating them to zero, namely, the existence

of disease-free equilibrium, E0 point, and the endemic equilibrium, Ee points.

3.1. Disease-free equilibrium, E0. At this subsection, we demonstrate the asymptotic stabil-

ity of the disease-free, E0. when R0 < 1. The basic reproduction number, R0, of the system (6)

as defined by [22] is

R0 =
θpρp (µp + τp)(πψµpηw +wpΠpηp)+(1−θp)wp (τap +µp)(ΠpQpηw +πηpµp)

Πp (µp + τp)(τap +µp)(θp (ρp−wp)µp +µp +Wp)
,

The disease-free equilibrium is:

(7) E0 = (S∗ =
Πp

µp
,E∗ = 0, I∗ = 0,A∗ = 0,R∗ = 0,M∗ = 0)
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System (6) at E0 is asymptotically stable if after obtaining the Jacobian matrix and it’s eigen-

values are satisfied by using

(8) |arg λi|>
απ

2
,

which was described in Theorem (3.1). This ensures that the E0 is locally asymptotically stable

if R0 < 1 , or otherwise unstable when R0 > 1.

However, condition in system (8) is satisfied for the disease-free equilibrium, EE0 , as given

in the Theorem (3.1)

Theorem[section]

Theorem 3.2. [disease-free equilibrium] A sufficient condition for the system (6) to be locally

asymptotically stable at E0 is if and only if

(9)

R0 =
θpρp (µp + τp)(Πψµpηw +wpΠpηp)+(1−θp)wp (τap +µp)(ΠpQpηw +πηpµp)

Πp (µp + τp)(τap +µp)(θp (ρp−wp)µp +µp +Wp)
< 1.

Proof. To prove Theorem 3.2, it would be sufficient to show that all eigenvalues of Jacobian of

(6) at E0 have a negative real part. Hence, we have



−µp 0 − Πpηp
µpNup

0 0 −ηwΠp
µp

0 −(1−θp)Wp−θpρp−µp
Πpηp
µpNup

0 0 ηwΠp
µp

0 (1−θp)Wp −τp−µp 0 0 0

0 θpρp 0 0 0 0

0 0 τp 0 −µp 0

0 0 Qp 0 0 −u


Then for

Seqn,Eeqn, Ieqn,Aeqn,Reqn,Meqn = (S∗ =
Πp

µp
,E∗ = 0, I∗ = 0,A∗ = 0,R∗ = 0,M∗ = 0)

we find that
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A =



−µp 0 − ηpΠp
µpNup

0 0 −ηwΠp
µp

0 −(1−θp)Wp−θpρp−µp
ηpΠp
µpNup

0 0 ηwΠp
µp

0 (1−θp)Wp −τp−µp 0 0 0

0 θpρp 0 0 0 0

0 0 τp 0 −µp 0

0 0 Qp 0 0 −u



,

and its eigenvalues has

(10)
[−µp],

[−µp].

It follows that Equation (10) is less than zero, which implies that R0 < 0 and satisfy the

condition in Equation (8). Hence, the eigenvalues of the system (6) is always negative (due to

all the parameters are positive). So (6) is locally asymptotically stable. Then the disease-free

equilibrium, E0, is locally asymptotically stable. Conversely, it becomes unstable when

(11)

R0 =
θpρp (µp + τp)(πψµpηw +wpΠpηp)+(1−θp)wp (τap +µp)(ΠpQpηw +πηpµp)

Πp (µp + τp)(τap +µp)(θp (ρp−wp)µp +µp +Wp)
> 1.

�

3.2. Endemic equilibrium, Ee. According to the system (6), we obtain the endemic points,Ee,

by solving the quadratic equation , λ 6 + Aλ 5 + Bλ 4 +C λ 3 + Dλ 2 + E. We define Ee =

(S∗p,E
∗
p, I
∗
p,A
∗
p,R
∗
p,M

∗) as the endemic point of system (6). We give more results on the en-

demic equilibrium in the next section.

4. EXPERIMENTAL SIMULATION CALCULATION

The Adams-type predictor-corrector method is applied for all simulations. It has been intro-

duced in [24], and further investigated in [23, 27, 25], which is an implicit numerical method.

The Adams-type predictor-corrector scheme gives the error-free means of solving a problem
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with a sensible and logical choice of the time step [23]. This scheme can also be applied to

different numerical works like [31] and [32], just to mention few

To illustrate the stability of the fractional epidemic model as in Equation (6), we choose the

following parameters Πp = 107644.22451, µp = 0.01302252898, ηp = 0.05, x = 0.02, ηw =

0.000001231, θp = 0.1243,Wp = 0.00047876,ρp = 0.005,τp = 0.09871,τap = 0.854302,Qp =

0.000398,ϖp = 0.001,u = 0.01, and pp = 8266000 with the following initial values

(Sp,Ep, Ip,Ap,Rp,M) = (8065518,200000,282,200,0,50000) [22]. By direct solving, and us-

ing Maple 18 software, it can be shown that the equilibrium points of the fractional-order model

(6) are,

E1(Sp1 ,Ep1, Ip1 ,Ap1,Rp1,M1) = (0.265999997106,0,0,0,0,0),

and

E2(Sp2,Ep2, Ip2,Ap2,Rp2 ,M1) = (5.651243575107,−4.467596802107,−1.676361008105,

−32013.52343,−3.370818116106,−8204.596258).

Hence, the Jacobian matrix for the corresponding equilibrium point (R1, I1) is given as

J =



H∗ 0 −6.049−9 S 0 0 +1.231−6 S

1.210−10 A+6.049−9 I−1.231−6 M +1.406−2 6.049−10 S 0 0 1.2316 S

0 1.925−4 +1.117−1 0 0 0

0 6.215−4 0 0 0 0

0 0 9.871−2 0 +1.302−2 0

0 0 3.98−4 0 0 −0.01



where H∗ = 1.303−2 +1.210−10 A+6.049−9 I +1.231−6 M

and its eigenvalues for disease-free, E0 are
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λi =



−0.0130225289800000+0.0 I

−0.111776330077532+0.0 I

1.202177465×10−17 +0.0 I

−0.0165618396943470+0.0 I

−0.0130225289800000+0.0 I

−0.00745763833812104+0.0 I


that of the endemic, Ee are

λi =



−0.112003453058485+0.0 I

0.00536130750693023+0.0 I

5.981499334×10−17 +0.0 I

−0.0183894177579582+0.0 I

−0.0130225289800000+0.0 I

−0.0126690330704869+0.0 I


while the characteristic equation of the fractional pandemic model as in Equation (6) is:

P(λ ) = λ
6 +0.2233925961λ

5 +0.01567525179λ
4 +0.0003930329343λ

3

+0.000004072131855λ
2 +0.00000001494421577λ

Therefore, the argument
∣∣arg λ1,2,3,4,5,6

∣∣ of matrix J at α = 0.8 fall with the range of values,

3.141592654. The values of |arg λ1| of the (Sp,Ep, Ip,Ap,Rp,M) points is said to be stable and

the system gives the asymptotically stable because all the eigenvalues fulfill |arg λ1|> απ

2 . That

is, |arg λ1|= 3.141592654 > 2.000000000 = απ

2 .

Also, by direct calculation, it is easy to show that

R0 =
θpρp (µp + τp)(πψµpηw +wpΠpηp)+(1−θp)wp (τap +µp)(ΠpQpηw +πηpµp)

Πp (µp + τp)(τap +µp)(θp (ρp−wp)µp +µp +Wp)
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= 0.0001737293975, which obtained result are in agreement and compatible with Theorem 3.2,

(disease-free equilibrium), where R0 < 0.0001737293975. This implies that the conditions for

asymptotically stable and existence as discussed above are satisfied. It indicates that the spread

of a disease depends on the contact rates with infected individual within the population. Basic

reproduction number, R0, which is the number of people that one sick person will infect (on

average) also affects the model behaviour. We used R0 to establish the existence and stabil-

ity conditions at the equilibrium points. For pandemic processes, this parameter determines a

threshold whenever R0 > 1, a typical infective gives rise, on average, to more than one sec-

ondary infection, leading to pandemic. Otherwise, when R0 < 1, then, infective typically give

rise (on average) to less than one secondary infection, and in this case, the the prevalence of

infection cannot increase.

Figure 1 displays the comparison result by Atangana Baleanu derivative with Figure (a)−(b)

in [22] with Caputo derivative in both integer and fractional forms. Caputo derivative technique

is very applicable and also this is a better and efficient approach for the solving fractional

ordinary differential equations of such order.

Figure 2 shows the dynamics of corona virus model with different values of individual

in a particular time, t (day) in a stable endemic equilibrium when parameters are taken as

Πp = 107644.22451, µp = 0.01302252898, ηp = 0.05, x = 0.02, ηw = 0.000001231, θp =

0.1243,Wp = 0.00047876,ρp = 0.005,τp = 0.09871,τap = 0.854302,Qp = 0.000398,ϖp = 0.001,u=

0.01, and pp = 8266000. With the initial [22], while Figure 4 displayed the reactions of sub-

groups population in system (6).
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FIGURE 1. The comparison result by Atangana Baleanu derivative for Figure

(a)− (b) in [22] with Caputo derivative.
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FIGURE 2. The total time (day) susceptible, exposed, infected symptomatic,

asymptotically infected, recovered, and market population in system (6).
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FIGURE 3. Shows the reactions of subgroups population in system (6).
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5. CONCLUSION

In this paper, we have considered the coronavirus (COVID-19) pandemic model. The frac-

tional ordinary differential equations were defined in the sense of the Caputo derivative. Adams-

type predictor-corrector method with α ∈ (0,1] is applied to obtain an approximation to the

solution of the model of fractional order. The results obtained by the proposed scheme are

compared with that of Atangana Baleanu derivative method in integer both fractional order

forms. Basic reproduction number, R0, affects the model behaviour. We used R0 to establish

the existence and stability conditions at the equilibrium points. The proposed method is very

applicable and can also be used as a alternate approach for the solving fractional ordinary dif-

ferential equations of such order. We see the tool as the recommended tools for modeling in

science and engineering.
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