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Abstract: Animal group dynamics have often been studied by biologists through the use of mathematical models 

and statistical analyses. Wildebeest herds (Connochaetes taurinus) occur in large numbers and follow certain 

migration patterns throughout the year. However, it is not known whether the aggregation patterns of migrating 

wildebeest herds follow predictable statistical distributions. In this work, we investigated whether social interactions 

between individual wildebeest can generate the observed distribution patterns of herds based on empirical data of 

wildebeest in the Serengeti, Tanzania. We quantified the distribution of real herds by analyzing the frequency 

distribution of wildebeest counts in aerial survey images collected in 2015. We then used a Lagrangian model of 
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animal interactions to simulate individual movement and herd aggregation patterns. We equipped the model with 

parameter values that matched empirical distributions. Our results from the empirical data analysis reveal that 

wildebeest herds follow a truncated power law in their aggregation patterns. We claim that this behaviour can be 

explained by social interactions between individual wildebeest. 

Keywords: agent based model; aggregation patterns; group size; frequency distribution; truncated power law. 

2010 AMS Subject Classification: 92B05, 92D40, 92D50. 

 

1. INTRODUCTION 

Animals are often found in groups such as fish schools, bird flocks, insect swarms and ungulate 

herds [1-2]. Being in a group helps members to engage in different behavioral activities such as 

in foraging, predator avoidance, resistance to toxic environmental conditions, reproduction or 

socialization [3-4]. Foraging animals usually travel in groups and make movement decisions that 

depend on forage availability but also on their social interactions [1]. The stability and direction 

of the group depends on the knowledge about quality and location of the food source and the 

ability of the informed individuals to influence group decisions to move to a desired direction 

[5]. 

Wildebeest (Connochaetes taurinus) and other ungulates migrate from Serengeti National Park 

in northern Tanzania to the Masai Mara region in Kenya creating yearly mass movement of 

millions of individuals of several species moving together in groups [6]. The great migration 

involves an estimated 1.3 million wildebeest, 200,000 zebra, and a multitude of gazelles, among 

various other hoofed species [7]. This migration is caused by the search for green and nutritious 

pasture by wildebeest in the Serengeti plains following rains and freshly green vegetation [6].  

The Serengeti wildebeest movement patterns have extensively been studied for decades. Some 

mathematical models exist in literature describing the effect of competition, predation, and 

harvesting in a single or multi-species system [8-10]; but little is known about mathematical 

models and statistical distributions that describe aggregation patterns of wildebeest herds to 

predict collective behavior resulting from such aggregations. 



3 

POWER LAW DISTRIBUTION IN WILDEBEEST HERDS 

Collective animal behaviour has been studied using different mathematical models such as Aoki, 

[11], Reynolds, [12] and Huth & Wissel, [13]. In 2002, Couzin, et al [14] introduced a three 

dimensional Lagrangian model to study collective behaviour of fish schools and bird flocks. This 

model considers three types of social interactions between individuals in their relevant 

neighborhoods that can trigger various movement responses, i.e., repulsion, alignment, and 

attraction [14]. Couzin’s model reveals that different group level behaviour may be caused by 

minor changes in individual level interactions within a herd. While this principle holds for some 

fish schools, we wanted to know if it can produce statistical distributions that match empirical 

data in ungulate herds of wildebeest of the Serengeti. Understanding a specific mathematical 

model and the statistical distribution of group sizes in wildebeest herds shows their evolutionary 

fitness as the optimal balance between costs and benefits of an individual wildebeest will 

determine whether it joins the group [4]. In this study, we analysed long-tailed distributions to 

predict aggregation patterns in wildebeest herds. This is because long-tailed group size 

distributions are similar to the aggregation of physical particles [15]. We considered and analysed 

three heavy tailed-distributions; power law, truncated power law and exponential distributions. 

We used the python package [16] to identify the best fitting statistical distribution to explain the 

observed aggregation in wildebeest herds detected in aerial survey images in the Serengeti, 

Tanzania, in 2015.  

The spatial probability distribution of a given species is an important element for understanding 

the aggregation patterns in that species [15]. Wildebeest in the Serengeti ecosystem aggregate in 

herds whose sizes are not well defined, i.e., ranging from tens of individuals to up to about 

400,000 [17]. Therefore, describing the group distribution with a model will be helpful for 

predicting movement of wildebeest aggregation. As this species is a key-stone species in the 

Serengeti ecosystem [18] upon which many other species depend, the results will be useful for 

further management of the Serengeti ecosystem and its forage resources for the benefit of both 

residents and migrating species. Further, long-tailed group size distributions have a cutoff size 

(maximum size) because the population is finite [4]. The cutoff size depends on ecological 
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conditions like food availability and presence of predators [4] and will be an important 

contribution to understanding habitat use and species aggregations in the Serengeti.  

The aim of our study was to investigate whether social interactions between individual 

wildebeest can generate the empirical power law distributions of wildebeest aggregations. 

Specifically, 1) we quantified the distribution of wildebeest herds by analyzing the frequency 

distribution of empirical wildebeest counts in aerial survey images; 2) we used an agent based 

model to understand herd aggregations and to investigate whether individual movement 

parameter values can generate simulated herd distributions that statistically match empirical 

distributions. 

 

2. MATERIALS & METHODS 

2.1 Description of data 

Data used in this study are based on aerial photo counts collected from the Serengeti ecosystem 

between April and May, 2015 showing the distribution of migratory herds of wildebeest [19]. 

The wildebeest migrations occur in a cycle between the Serengeti in Tanzania and the Masai 

Mara in Kenya; with most of the movements taking place in Tanzania [18], [20] The area 

surveyed includes the eastern and southern plains of Serengeti National Park, Loliondo Game 

Controlled Area, Maswa Game Reserve Area, and Ngorongoro Conservation Area. The images 

of migratory wildebeest were collected after every 10 seconds by a camera placed at the floor of 

the aircraft at the start of each transect [19]. Places where wildebeest were not detected returned 

a count of 0. The photos collected may not contain a complete herd density in each return as the 

maximum herd size was determined by the image area. The flight altitude was set at 213 m 

above the ground and the aircraft speed was maintained at 185 km/h. Reconnaissance flights 

over the surveyed area covered a total straight line distance of 2040 km. 

2.2 Empirical data analysis 

We analysed the empirical data to identify the presence of power laws. Power laws are 

probability distributions which take the form 𝑝(𝑥) ∝ 𝑥−𝛼 , where 𝑝(𝑥) is the probability of 
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obtaining a herd of size 𝑥, and 𝛼 is an exponent or a scaling parameter and lies in the range of 

 2 <∝< 3 [16]. The scaling parameter 𝛼  has been found to express the role environmental 

factors such as temperature, resource availability, and population density on group size 

distributions [4], [15] In recent years, several statistical methods for evaluating power law fit 

have been proposed [4], [15]. In this paper, we used a power law package for identifying the 

presence of long-tailed distributions that describe our data [16]. We selected this method because 

it is easy to implement and contains a variety of probability distributions for analysis. 

We performed goodness of fit tests of different distributions (power law, truncated power law and 

exponential distribution). The aim of performing the goodness of fit tests to the photo counts was 

to decide the distribution that best explains our data [16]. Data were fit to the three distributions 

in python software (power law python package as described by [16]. We used 

Kolmogorov-Smirnov tests to test for individual fit and the likelihood ratio 𝑅. We used 𝑝 and 

𝑅  values to compare two distributions at a time and determined the performance of the two fits. 

We set the 𝑝 − value  threshold to be  𝑝 ≤  0.05  [16]. When comparing two candidate 

distributions (say D1 and D2), if the likelihood ratio 𝑅, between two candidate distributions is 

positive, then the data are more likely to be in the first distribution (D1) and negative if the data 

are more likely in the second distribution (D2) [16]. 

2.3 Comparison of group size distributions from the aerial photo counts 

We performed the goodness of fit test of a power law and exponential distributions. We found 

that  𝑅 =  2.292  and   𝑝 =  0.022 . Since 𝑅  was positive and  𝑝 < 0.05 , the power law 

distribution was chosen as the better fit compared to the exponential distribution. The goodness 

of fit test of a truncated power law and exponential distributions was performed and we obtained 

𝑅 =  2.754 and 𝑝 =  0.006. In fact, 𝑅 is positive and 𝑝 <  0.05. Therefore, the truncated 

power law distribution was chosen to be better than the exponential distribution. In the third case, 

the goodness of fit of a power law and truncated power law distributions was performed. The 

goodness of fit of these distributions fits was compared and found to be  𝑅 =  −1.349 and  𝑝 =

 0.1. Therefore, in this case we moderately support the truncated power law distribution as a 
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better fit (this is because the significance value 𝑝 >  0.05). Hence we conclude that truncated 

power law distribution gives the best goodness of fit of all the long-tailed distributions 

considered (see figure1). 

 

Figure 1: Histogram of the frequency distribution (A) and the power law plot of the probability 

density function (B) of the aerial photo counts for wildebeest herd sizes. 

 

Most of the herds counted had sizes up to 100 individuals while few herds had sizes beyond 100 

individuals to about 700 individuals (Fig. 1A). We observed the presence of a long-tail (B) 

suggesting the presence of aggregation patterns in wildebeest herds (Fig. 1B). In particular, the 

truncated power law was observed as the best fit to explain such aggregation patterns. 

From the empirical data analysis, we obtained the scaling parameter was 𝛼 = 2.561 and the 

standard deviation parameter was 𝜎 = 0.118. 

2.4 Simulated data 

We simulated the Lagrangian model of animal interaction to show individual wildebeest 

movement and eventually herd aggregation patterns of wildebeest individuals. The resulting 

distributions and parameters generated from the simulations were compared with the results 

observed from empirical data analysis. 

The model suggests that the collective behavior of wildebeest interactions results from three 

behavioral movement rules that are exhibited by wildebeest individuals; 1) wildebeest move into 
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the same direction as their neighbors; 2) they remain close to their neighbors, and; 3) they avoid 

collisions, i.e., getting too close to each other [5]. These rules were modeled using three distinct 

contributions to the inter-individual interactions:  

(i)  attraction, which ensures no animal remains isolated 

(ii) alignment of velocities, which makes neighboring animals move in the same direction; 

(iii) repulsion (short range repulsion), which prevents proximity that could lead to 

collisions. 

These three types of movement behavior have been used to study a wide range of taxonomic 

groups, including insects, birds and fish [7]. 

We further extended the model presented by Couzin [14] into two dimensions, i.e., we 

investigated how groups of wildebeest merge and split by considering how individuals change 

their relative positions. Following Couzin [14], if groups are composed of  𝑁  individuals  (𝑖 =

1, 2, 3, … 𝑁) with each individual having a position vector 𝑐𝑖(𝑡) and direction vector 𝑣𝑖(𝑡) 

moving with speed 𝑠𝑖 has a minimum distance  𝛼  between itself  𝑖  and others  𝑗  at all time. 

The desired direction of travel will then be  

      𝑑𝑖(𝑡 + ∆𝑡) = −
∑ 𝑐𝑖𝑗(𝑡)

𝑛𝑟
𝑗≠𝑖

|∑ 𝑐𝑖𝑗(𝑡)
𝑛𝑟
𝑗≠𝑖

|
            (1) 

Where,   𝑐 𝑖𝑗(𝑡) =
𝑐𝑗(𝑡)−𝑐𝑖(𝑡)

|𝑐𝑗(𝑡)−𝑐𝑖(𝑡)|
 is the unit vector in the direction of neighbor  𝑗 and  𝑛𝑟 is the 

number of animals in the region of repulsion. 

If no neighbors are within the zone of repulsion 𝑛𝑟 = 0, the individual responds to other animals 

within the zone of alignment (orientation) and the zone of attraction.  

The zone of alignment contains  𝑛𝑜  detectable neighbors with rr ≤ |cj − ci| < ro . The width of 

this zone is defined as  ∆ro = ro − rr  

Furthermore, an individual can align itself with other members within the zone of orientation. 

The preferred travel direction resulting from the zone of orientation is the average of the 

neighbor’s velocities [14]. This zone can be explained by the equation 
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      𝑑𝑖(𝑡 + ∆𝑡) =
∑ 𝑣𝑗(𝑡)

𝑛𝑜
𝑗≠𝑖

|∑ 𝑣𝑗(𝑡)
𝑛𝑜
𝑗≠𝑖

|
            (2) 

According to Couzin et al., 2002, wildebeest individuals tend to be attracted towards other 

individuals (to avoid being isolated). The attraction represents the tendency of wildebeest to join 

groups and to avoid being on the periphery [2]. The zone of attraction contains  𝑛𝑎  detectable 

neighbors with  𝑟𝑜 ≤ |𝑐𝑗 − 𝑐𝑖| < 𝑟𝑎 . The width of this zone is defined as   ∆𝑟𝑎 = 𝑟𝑎 − 𝑟𝑜 . 

Attraction can be explained as  

      𝑑𝑖(𝑡 + ∆𝑡) =
∑ 𝑐𝑖𝑗(𝑡)

𝑛𝑎
𝑗≠𝑖

|∑ 𝑐𝑖𝑗(𝑡)
𝑛𝑎
𝑗≠𝑖

|
         (3) 

Re writing equations (1 to 3) we have the resulting direction of all group embers to be 

    𝑑′
𝑖(𝑡 + ∆𝑡) =

𝑑𝑖(𝑡+∆𝑡)

|𝑑𝑖(𝑡+∆𝑡)|
         (4) 

 

3. MAIN RESULTS 

3.1 Agent Based Model on movement patterns and aggregations 

To analyse the individual movement and herd aggregations of wildebeest individuals, we 

investigated the effect of different parameters in the model (Table 1). The values of the 

parameters were obtained after running the agent based model several times to obtain values that 

properly describe the movement patterns in the interaction zones (zone of attraction, zone of 

alignment and zone of repulsion). 

Parameter Symbol Unit       Values used 

Number of individuals 𝑁 None 100 − 5,000 

Region of repulsion  rr units 0.01 

Region of orientation  ro units 0.05 

Region of attraction  r𝑎 units 6 

Speed 𝑠 Units per second 0.01 

Time step ∆𝑡 seconds 0.01 

Table 1: Parameters used in the agent based model that were based on the previous model 

simulation 
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Individuals in the model start with random orientation and random positions in the region in 

which each individual can detect at least one neighbor [2]. We simulated the movement 

behaviour of individuals using parameters like number of individuals 𝑁, which represents the 

assumed population size and ranged between 100 and 5,000 individuals. In each population size, 

we ran the simulations up to 10,000 time steps, which were assumed to be dynamically stable. 

The collective behavior of the model was observed by the resulting distribution after each 

simulation. After 10,000 time steps, we recorded the resulting herds as optimal, and we 

combined the final herd sizes from different simulations to make a total of 1,600 herds (each 

simulation gives 100 herds). We analysed the collective behaviour in different interaction zones 

by varying the parameter values (see table 1). The radius of the interaction zones was tested for 

different values and we obtained the best values of interaction zones (regions) which are region 

of repulsion  rr = 0.01  units, region of attraction  ra = 6 units, region of orientation 

(alignment) ro = 0.05  units and the time step ∆t = 0.01 seconds (figure 2). 

3.2 Comparison of group size distributions from the agent based model 

We performed the goodness of fit tests to the agent based model data to decide which 

distribution best explains the agent based model. 

First we performed the goodness of fit test of a power law and exponential distributions and 

found that 𝑅 =  1.351  and  𝑝 =  0.176. The value of 𝑅 was positive and 𝑝 > 0.05, here the 

power distribution had a better fit than the exponential distribution. Second, the goodness of fit 

test of a truncated power law and exponential distribution was performed and we obtained 𝑅 =

 2.836 and 𝑝 =  0.004. As 𝑅 is positive and 𝑝 <  0.05, the truncated power law distribution 

fitted the data better than the exponential distribution. In the third case, the goodness of fit of a 

power law and truncated power law distribution was performed and compared. As  𝑅 =

 −2.291 and  𝑝 =  0.003, the truncated power law distribution fitted better than power law. 

Hence we conclude that truncated power law distribution gives the best goodness of fit of all the 

long-tailed distributions considered (figure 2). 
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Figure 2: Histogram of the frequency distribution (A) and the power law plot of the probability 

density function (B) of the agent based model (Lagrangian model) fitting empirical data on 

wildebeest herd distribution. 

 

In the simulation of distribution of herds of wildebeest from the agent based model most of the 

herds counted had sizes up to 40 individuals while few herds had sizes beyond 40 individuals to 

about 120 individuals (Fig. 2A). The resulting smaller group sizes were due to small population 

size selected for a computer to handle (100-5,000). We observed the presence of a long-tail (Fig. 

2B), suggesting the presence of aggregation patterns in wildebeest herd where the truncated 

power law was observed as the best fit to explain such aggregation patterns. 

From the agent based model simulations, we obtained the scaling exponent parameter  was 𝛼 =

2.809 and the standard deviation parameter was 𝜎 = 0.105. 

 

4. DISCUSSION 

The simulations of our agent-based model exhibited characteristic aggregation patterns that were 

most similar to the empirical data. We observed a close match between parameters from the 

empirical data and agent based model. These parameters include the scaling parameter from the 

power law ( 𝛼 ) and the standard deviation 𝜎.  

Though there is a difference in the maximum herd size of the aerial photo counts from that of the 
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agent based model, the aggregation pattern remains to be the similar (Fig.1 and Fig.2). In the 

empirical data, the maximum herd size was about 700 individuals while in the agent-based 

model this was about 120 individuals. This shows that in the Serengeti ecosystem wildebeest 

herd sizes vary from small groups composed of tens of individuals to hundreds of thousands. The 

similarity in aggregation patterns of wildebeest herds and agent based model is evidence that the 

selected agent based model generates group size distributions that are long-tailed. This 

observation relates with earlier studies like [4], where the elementary model of animal 

agrregation was found consistent with empirical data. 

The three forces of attraction, alignment, and repulsion assume that individuals change their 

orientation in response to the orientation of, at least some, of their neighbors [14]. This was also 

observed when running our simulations of the agent based model, in which individuals were 

allowed to detect and join neighbors to form herds. Hence our results confirm that coordination 

and large scale patterns of wildebeest herds of the Serengeti can be formed from the actions of 

individuals [2].  

Furthermore, the statistical distribution in our results converged to a truncated power law, which 

matched the empirical data distribution of wildebeest herds. Biologically, this is important 

because individuals join groups to respond to internal needs (e.g., hunger, thirst, exhaustion) and 

external needs (e.g., detection and avoidance of predators) [2], [14], [15]. 

We also identified variations in wildebeest group sizes from the empirical data as well as in the 

agent based model. This variation signifies that wildebeest respond to different circumstances for 

their survival. First, depending on the environmental conditions, the size and stability of 

wildebeest groups may vary. For instance, wildebeest tend to travel longer distances in large 

groups during the wet season i.e., when food and water are plentiful [20]. Second, the presence 

of predators causes wildebeest to form larger and stable groups as a mechanism of defense [3]. 

Third, wildebeest congregate to form larger groups before they navigate across dangerous 

terrains such as rivers with crocodiles [18]. Other factors that influence group dynamics include 

habitat open and closed habitats [4]. Habitat openness increases the probability of more 
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conspecifics to join the group (increased attraction) as open habitat increases the opportunity of 

wildebeest to see each other and join groups [4]. In contrast, closed habitat leads to smaller and 

unstable groups because patches of closed habitat prevent individuals from seeing each other [4]. 

 

5. CONCLUSIONS 

Our agent based model and the empirical data display a truncated power law. These results are in 

agreement with earlier studies like [4] and [15], where a truncated power law was found to best 

describe the aggregation patterns in animal (ungulate) herds. In our study we observed that the 

truncated power law can present a reliable tool for describing aggregation patterns in wildebeest 

herds of the Serengeti ecosystem. This consistency in empirical data and the model of animal 

aggregation is evidence that social interaction behaviors alone can lead to large-scale patterns 

observed in the empirical data. Since wildebeest is a principal species in the Serengeti ecosystem 

upon which many other species depend, understanding its aggregation patterns will be useful for 

further management of the Serengeti ecosystem and its forage resources. Although more data is 

needed from other migrating species like zebra (Equus burchelli) and Thomson’s Gazelles 

(Eudorcas thomsonii) to quantify the collective aggregation patterns, we believe that this model 

applies to a wide scale of cases where group size can be large and aggregation is based on minor 

changes in individual level interactions. 
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