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Abstract: Modeling with the Tweedie compound Poisson distribution is mostly done based on the Generalized Linear 

Model (GLM). GLM can be expanded into the Generalized Linear Mixed Model (GLMM) if there are fixed effects 

and random effects. GLMM modeling with Tweedie compound Poisson response variables is still rarely done because 

it is not analytically tractable and the density function cannot be stated in closed-form. By using the h-likelihood 

method, GLMM modeling with Tweedie compound Poisson can be solved numerically.  This research models the 

Tweedie compound Poisson response variable by using GLMM with two random effects, region and the time assumed 

to follow the first-order autoregressive process. A simulation study is carried out with an evaluation using the average 

relative bias and the average MSE. The simulation results show the greater the autoregressive coefficient results in the 

smaller value of the relative bias. MSE values that are close to zero indicate the model is very good in describing data. 

An application, which is conducted to model the total number of claims in a certain area and time based on the 2014 



2 

ADAM, KURNIA, PURNABA, MANGKU, SOLEH 

profile of risk and loss of motor vehicle insurance in Indonesia, shows model has small value of absolute bias and 

MSE.  

Keywords: first-order autoregressive; GLMM; h-likelihood; Tweedie compound Poisson. 

2010 AMS Subject Classification: 62J12, 97M30. 

 

1. INTRODUCTION 

The exponential dispersion model (EDM) is an exponential family distribution with additional 

dispersion parameters. EDM has an important role in modern data analysis because it is able to 

overcome problems where the response variable does not have a normal distribution. The density 

function of the random variable 𝑌 with the distribution including the EDM family is 

𝑓(𝑦; 𝜃, 𝜙) = 𝑎(𝑦; 𝜙) exp(
1

𝜙
(𝑦𝜃 − 𝑘(𝜃))) ,  (1) 

where 𝑘  and 𝑎  are known function, 𝜙 > 0 is dispersion parameter,  and 𝜃  is the natural 

parameter [2].  A characteristic of EDM is the mean-variance relation if the dispersion parameter 

is considered constant. In other words, if 𝑌 has EDM distribution with mean 𝜇, variance function 

𝑉𝑎𝑟(),  and dispersion parameter  𝜙 then  𝑉𝑎𝑟(𝑌) =  𝜙 𝑉𝑎𝑟(𝜇). If  𝑉𝑎𝑟(𝜇) = 𝜇𝑝, where 𝑝 

is index parameter, then 𝑌 is defined as Tweedie family distribution [2]. 

This research focuses on the Tweedie distribution family with a value of 𝑝 ∈  (1,2) which 

is the compound Poisson distribution. The random variable 𝑌 has compound Poisson distribution 

if 𝑌 = ∑ 𝐶𝑖 .
𝑁
𝑖=1 𝑌 is built by two random variables namely 𝑁 which has Poisson as the first 

distribution and C has gamma as the second distribution. This distribution has a probability of 

mass at zero and a skewed continuous distribution on the positive real line. As a result, this 

distribution can model data with a large zero. Henceforth the compound Poisson distribution is 

called the Tweedie compound Poisson distribution. 

There are many applications of the Tweedie compound Poisson distribution. In the actuarial 

field, the distribution of Tweedie compound Poisson is used to model the total number of insurance 

claims [1], [5]. In the field of climatology, the distribution of Tweedie compound Poisson is used 
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to model rainfall [6], [8]. In the field of fisheries, Tweedie compound Poisson distribution models 

the amount of fish caught [12]. 

 All those examples above are done based on a generalized linear model (GLM). GLM is 

an extension of the usual regression with the response variable not always coming from the normal 

distribution. GLM can be expanded into a generalized linear mixed model (GLMM) if there are 

fixed effects and random effects. GLMM with response variables have Tweedie's compound 

Poisson is still rarely performed. This is because the distribution itself is not analytically tractable 

and the density function cannot be stated in a closed-form [9], [10]. As a result, modeling involving 

the distribution of the Tweedie compound Poisson must be approximated numerically. 

In general, the numerical methods used are mostly based on penalized quasi-likelihood 

(PQL) [7]. But the PQL method is only able to estimate the regression parameters. The PQL 

method is not yet equipped with the ability to estimate variance parameters needed in GLMM. 

Some methods had been done to overcome this problem such as Laplace approximation and the 

Gauss-Hermite quadrature adaptive method that are able to get variance parameter estimators in 

addition to estimating regression parameters [14]. 

The alternative method is hierarchical likelihood (h-likelihood) [13]. H-likelihood combines 

fixed and random effects in GLMM into an extended likelihood function. In this method the 

random effect does not have to be normal distribution like most in GLMM. For example, the 

random effect has gamma distribution while the response variable has Poisson distribution [3]. 

The h-likelihood method avoids the use of integrals in obtaining marginal likelihood. This method 

is also able to get the estimation of regression parameters and variance parameters. 

 Zhang [14] modeled Tweedie's compound Poisson using GLMM with one random effect. 

So the research question arises as to how the modeling involves the response variable that has 

Tweedie's compound Poisson distribution with two random effects? Supposed   the random 

effect added is the time assumed to follow the first-order autoregressive process [11],  the next 

research question is whether the h-likelihood method can be used to estimate the regression 
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parameters and variances in GLMM with a random effect of time following the first-order 

autoregressive process? 

This study examines the development of a model with a Tweedie compound Poisson  

response variable with two random effects namely region and time which is assumed to follow the 

first order autoregressive process. The h-likelihood method is used to estimate  regression 

parameters and variances. Details of model and method will be presented in section 2. To measure 

the goodness of the model, a simulation study is carried out in section 3 with the performance of 

the model based on the average relative bias and the Mean Squared Error (MSE). Section 4 is the 

application section which is carried out by modeling the total number of claims in some regions 

and time based on the 2014 risk and loss profile of a motor vehicle insurance insurance company 

in Indonesia. Finally section 5 contains conclusions. 

 

2. MODEL AND METHOD 

2.1 Basic Model 

EDM with 𝑉𝑎𝑟(𝜇) = 𝜇𝑝 for 𝑝 ∈ (1,2) is a Tweedie compound Poisson distribution if 𝑌 =

∑ 𝐶𝑖
𝑁
𝑖=1  where  𝑁  has Poisson (𝜆) distribution and 𝐶𝑖  has gamma 𝐺 (𝛼, 𝛾) distribution. If 

𝑁 = 0 then  𝑌 = 0. If 𝑁 > 0 then 𝑌 is the sum of 𝐶 i.i.d gamma random variables. Tweedie 

compound Poisson linear mixed model is a mixed model in which the 𝑌  has the Tweedie 

compound Poisson distribution and if there is a random effect 𝒗 and the relationship 𝝁 = 𝐸(𝑦|𝒗)  

so 

𝜼 = 𝑿𝜷 + 𝒁𝒗  (2) 

through  link function 𝑔(𝝁) = 𝜼 ,  where  𝜷  fixed effect vector,  𝑿  and  𝒁  are the 

associated design matrix, and  assumed  𝒗 ~ 𝑁(𝟎,𝑫).  The variance component 𝑫 is further 

expressed in terms of the relative covariance factor 𝚲 such that   𝑫 = 𝜙𝚲𝚲′  [14].  As a result, 

the specification of equation (2) can be expressed as   

𝜼 = 𝑿𝜷 + 𝒁𝚲𝒗∗ = 𝑿𝜷 + 𝒁∗𝒗∗  (3) 

where 𝒗∗~ 𝑁(𝟎,𝜙𝑰).  
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2.2 Proposed Model 

Let 𝑦𝑖𝑡𝑗 be the 𝑗 th observation that occurs in the region 𝑖  and time 𝑡 , where 𝑖 =

1,2, … ,𝑀 ,  𝑡 = 1,2, … , 𝑇  ,  𝑗 = 1,2, … , 𝑛𝑖𝑡  , and 𝑦𝑖𝑡𝑗  is also assumed to have Tweedie 

compound Poisson distribution and is related to a covariate variable 𝑥𝑖𝑡𝑗  through the following 

model 

𝐸(𝑦𝑖𝑡𝑗|𝑣𝑖 , 𝑢𝑡 ) = 𝜇𝑖𝑡𝑗,        

log 𝜇𝑖𝑡𝑗 = 𝛽0 +𝑥𝑖𝑡𝑗𝛽𝟏 + 𝑣𝑖 + 𝑢𝑡 , 

𝑢𝑡 = 𝜌 𝑢𝑡−1 + 𝜀𝑡, |𝜌| < 1, (4) 

where 𝛽0 and 𝛽1 are fixed effect vectors, 𝑣𝑖  ~ 𝑖𝑖𝑑 𝑁(0, 𝜎𝑣
2) is the random effect of the 𝑖-th 

region, the 𝑢𝑡 is the random effect of the time assumed to follow the first-order autoregressive 

process where 𝜀𝑡 is an error of the 𝑢𝑡  assumed 𝜀𝑡 ~ 𝑖𝑖𝑑 𝑁(0, 𝜎𝜀
2), and 𝜌 is the autoregressive 

coefficient. The random effects of 𝑣𝑖 and 𝑢𝑡 are assumed to be independent.  

 Suppose there is one covariate, then for each region 𝑖 at time 𝑡, equation (4) can be denoted 

in the following matrix form 

[

log 𝜇𝑖𝑡1

log 𝜇𝑖𝑡2

⋮
log 𝜇𝑖𝑡𝑛𝑖𝑡

] = [

1
1

𝑥𝑖𝑡1

𝑥𝑖𝑡2

⋮
1

⋮
𝑥𝑖𝑡𝑛𝑖𝑡

] [
𝛽0

𝛽1
] + 𝑣𝑖 [

1
1
⋮
1

] + 𝑢𝑡 [

1
1
⋮
1

] . (5) 

If  log 𝜇𝑖𝑡𝑗 =𝜂𝑖𝑡𝑗 then the above equation becomes  

[

𝜂𝑖𝑡1

𝜂𝑖𝑡2

⋮
𝜂𝑖𝑡𝑛𝑖𝑡

] = [

1
1

𝑥𝑖𝑡1

𝑥𝑖𝑡2

⋮
1

⋮
𝑥𝑖𝑡𝑛𝑖𝑡

] [
𝛽0

𝛽1
] + 𝑣𝑖 [

1
1
⋮
1

] + 𝑢𝑡 [

1
1
⋮
1

].  (6) 

So for region 𝑖, equation  (6) becomes  

[

𝜼𝑖1

𝜼𝑖2

⋮
𝜼𝑖𝑡

] = [

𝑿𝑖1

𝑿𝑖2

⋮
𝑿𝑖𝑡

] [
𝛽0

𝛽1
] + 𝑣𝑖

[
 
 
 
𝟏𝑛𝑖1

𝟏𝑛𝑖2

⋮
𝟏𝑛𝑖𝑇]

 
 
 

+ 𝑢𝑡

[
 
 
 
𝟏𝑛1𝑡

𝟏𝑛2𝑡

⋮
𝟏𝑛𝑚𝑡]

 
 
 

 .  (7) 

Supposed that the number of observation is balanced and if defined 𝒁1𝑖 = 𝟏𝑛𝑖
 and 𝒁2𝑡 = 𝟏𝒏𝒕

  

the equation (7) above  becomes 

𝜼𝑖 = 𝑿𝑖𝜷 + 𝒁1𝑖𝑣𝑖 + 𝒁2𝑖𝒖𝑖.  (8) 
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Model for all region is 

[

𝜼1

𝜼2

⋮
𝜼𝑚

] = [

𝑿1

𝑿2

⋮
𝑿𝑚

] [
𝛽0

𝛽1
] + [

𝒁11

0

0
𝒁12

⋮
0

⋮
0

⋯
⋯
⋱
⋯

0
0
⋯

𝒁1𝑚

] [

𝑣1

𝑣2

⋮
𝑣𝑚

] + [

𝒁21

0

0
𝒁22

⋮
0

⋮
0

⋯
⋯
⋱
⋯

0
0
⋯
𝒁2𝑇

] [

𝒖1

𝒖2

⋮
𝒖𝑇

]  

or  

 𝜼 = 𝑿𝜷 + 𝒁1𝒗 + 𝒁𝟐𝒖  (9)  

where  𝒁1 = 𝑰𝑚⨂𝒁1𝑖 , 𝒁𝟐 = 𝑰𝑇⨂𝒁2𝑡 , 𝜼 = (𝜼1
′ , 𝜼2

′ , … 𝜼𝑚
′ )′, 𝑿 = (𝑿𝟏

′ , 𝑿𝟐
′ , … , 𝑿𝒎

′ )′ , 𝒗 =

(𝒗1, 𝒗2, … , 𝒗𝑚)′ , 𝒖 = (𝒖1
′ , 𝒖2

′ , …𝒖𝑇
′ )′ , 𝑰𝑚  is identity matrix sized 𝑚 × 𝑚 , and 𝑰𝑇  is identity 

matrix sized 𝑇 × 𝑇.  

Equation (4) assumed 𝑣𝑖 ~𝑖𝑖𝑑 𝑁(0, 𝜎𝑣
2 ), so the expectation value and covariance matrix of vector 

𝒗 = (𝒗1, 𝒗2, … , 𝒗𝑚)′  are 

𝐸(𝒗) = 𝟎  and  𝐶𝑜𝑣(𝒗) = 𝑮𝟏 = 𝜎𝑣
2 𝑰𝑚.  (10) 

On Equation (4) 𝒖𝑡 is assumed independent and AR(1)  so the expectation value and 

covariance matrix of vector 𝒖 = (𝒖1
′ , 𝒖2

′ , …𝒖𝑇
′ )′ are 

𝐸(𝒖) = 𝟎  dan 𝐶𝑜𝑣(𝒖) = 𝑮𝟐 = 
1

(1−𝜌2)
𝜎𝜀

2 𝚪,  (11) 

where 𝚪 is symmetrical matrix sized  𝑇 × 𝑇 with element  (𝑡, 𝑡′) is  𝜌|𝑡−𝑡′| ,  𝑡 = 1,… , 𝑇 and  

𝑡′ = 1,… , 𝑇. Matrix  𝚪 is  

𝚪 =

[
 
 
 
 

1
𝜌
⋮
⋮

𝜌𝑇−1

𝜌
1
⋮
⋮
⋯

⋯
⋱
⋱
⋮
⋯

⋯
⋮
⋮
1
𝜌

𝜌𝑇−1

⋮
⋮
𝜌
1 ]

 
 
 
 

  (12) 

Equation (10) and equation (11) are rearranged in the form of relative covariance factor 𝚲𝟏 and 

𝚲𝟐 so that  𝑮𝟏 = 𝜎𝑣
2𝚲𝟏𝚲𝟏

′  and  𝑮𝟐 = 𝜎𝜀
2𝚲𝟐𝚲𝟐

′  where 𝚲𝟏𝚲𝟏
′ = 𝑰𝑚, 𝚲𝟏 is a Cholesky 

decomposition matrix of d 𝑰𝑚, and 𝚲𝟐𝚲𝟐
′ =

𝚪

(1−𝜌2)
 where  𝚲𝟐 is a Cholesky decomposition 

matrix of first-order autoregressive correlation matrix 
𝚪

(1−𝜌2)
 . 

As a result, the proposed model on equation (4) becomes  

𝜼 = 𝑿𝜷 + 𝒁1𝚲𝟏𝒗
∗ + 𝒁𝟐𝚲𝟐𝒖

∗ = 𝑿𝜷 + 𝒁𝟏
∗𝒗∗ + 𝒁𝟐

∗𝒖∗  (13) 
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where  𝒗∗~ 𝑁(𝟎, 𝜎𝑣
2𝑰 ) and 𝒖∗~ 𝑁 (𝟎,

1

(1−𝜌2)
𝜎𝜀

2𝑰 ).  

If link function is a logarithmic function then  

 𝜼 = log 𝝁 = 𝑿𝜷 + 𝒁𝟏
∗𝒗∗ + 𝒁𝟐

∗𝒖∗ or  (14) 

 𝝁 = exp 𝜼 =  exp (𝑿𝜷 + 𝒁𝟏
∗𝒗∗ + 𝒁𝟐

∗𝒖∗)   

where  𝒗∗~ 𝑁(𝟎, 𝜎𝑣
2𝑰 ) and 𝒖∗~ 𝑁 (𝟎,

1

(1−𝜌2)
𝜎𝜀

2𝑰 ).  

2.3 Parameter Estimation 

In equation (14) above, it can be seen that the first parameters to be estimated are 𝜷, 𝒗∗, and 

𝒖∗. Those parameters are estimated by h-likelihood method.  According to [3],  h-likelihood is 

defined as 

 ℎ = 𝑙1 + 𝑙2 + 𝑙3  (15) 

where 𝑙1 = log 𝑓(𝒚 | 𝒗∗, 𝒖∗)  is the log-density function for 𝒚  given   𝒗∗  and 𝒖∗ , 𝑙2  is the  

log-density function for 𝒗∗ with  𝒗∗~ 𝑁(𝟎, 𝜎𝑣
2𝑰 ), and 𝑙3 is the  log-density function for 𝒖∗ 

with 𝒖∗~ 𝑁 (𝟎,
𝜎𝜀

2

(1−𝜌2)
𝑰 ). Since 𝒚 has Tweedie compound Poisson distribution,  𝒚 is belong to 

the MDE family with  𝑉𝑎𝑟(𝜇) = 𝜇𝑝 and  1 < 𝑝 < 2. As a result, the density function of 𝒚 is 

as defined in equation (1).  

The parameter estimation solution can be done by maximizing the h-likelihood function 

above, by finding the solution of the equation 
𝑑ℎ

𝑑𝜷
= 0, 

𝑑ℎ

𝑑𝒗∗ = 0, and 
𝑑ℎ

𝑑𝒖∗ = 0. Since the Tweedie 

compound Poisson distribution is not a closed-form, then a numerical approximation is carried out.  

Parameter estimation can be solved by the Newton-Raphson method as follows 

  [

𝜷𝑘+1

 𝒗𝑘+1
∗

𝒖𝑘+1
∗

] = [

𝜷𝑘

 𝒗𝑘
∗

𝒖𝑘
∗
] + 𝑯𝑘

−1

(

 
 

𝑑ℎ

𝑑𝜷

𝑑ℎ

𝑑𝒗∗

𝑑ℎ

𝑑𝒖∗)

 
 

|
|
𝜷 = 𝜷𝑘

𝒗∗ = 𝒗𝑘
∗

𝒖∗ = 𝒖𝑘
∗
  (16) 

where Hessian matrix  𝑯 is 

 𝑯 =

[
 
 
 
 
 

−

−𝐸 (
𝑑2ℎ

𝑑𝜷2
) −𝐸 (

𝑑2ℎ

𝑑𝜷𝑑𝒗∗
) −𝐸 (

𝑑2ℎ

𝑑𝜷𝑑𝒖∗
)

𝐸 (
𝑑2ℎ

𝑑𝒗∗𝑑𝜷
) −𝐸 (

𝑑2ℎ

𝑑𝒗∗2) −𝐸 (
𝑑2ℎ

𝑑𝒗∗𝑑𝒖∗)

−𝐸 (
𝑑2ℎ

𝑑𝒖∗𝑑𝜷
) −𝐸 (

𝑑2ℎ

𝑑𝒖∗𝑑𝒗∗) −𝐸 (
𝑑2ℎ

𝑑𝒖∗2) ]
 
 
 
 
 

  . (17) 
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In every iteration, (𝑘 + 1)𝑡ℎ solutions satisfy the above equation. Iteration continue until solution 

converged.    

After getting the parameter estimates of  𝜷, 𝒗∗, and 𝒖∗ , then the variance parameters 

will be estimated. To get the estimation of variance parameters, [13] defined adjusted hierarchical 

likelihood  ℎ𝐴 as 

ℎ𝐴 = ℎ −
1

2
ln {det (  

𝑯

2𝜋
)}  (18) 

where ℎ is h-likelihood function from equation (15) and 𝑯 is a  Hessian matrix from equation 

(17).  

The adjusted profile hierarchical likelihood  is  ℎ𝑝 = ℎ𝐴|𝜷=𝜷̂,𝒗∗=𝒗̂∗,𝒖∗=𝒖̂∗  where 𝜷̂, 𝒗̂∗,  and 𝒖̂∗ 

are estimated values from equation (16).  

Variance parameters 𝜎𝑣
2 and 𝜎𝜀

2 can be obtained by iteratively solving the equation  

(
 𝜎𝑣

2
𝑘+1

𝜎𝜀
2
𝑘+1

) = (
𝜎𝑣

2
𝑘

𝜎𝜀
2
𝑘

) +  𝑱−𝟏 (

𝑑ℎ𝐴

𝑑𝜎𝑣
2

𝑑ℎ𝐴

𝑑𝜎𝜀
2

)|
𝜎𝑣

2 = 𝜎𝑣
2
𝑘

𝜎𝜀
2 = 𝜎𝜀

2
𝑘

  (19) 

until convergent where 𝑱  is Hessian matrix containing the second derivatives  of  adjusted 

hierarchical likelihood  hA function. 

 

3. SIMULATION STUDY 

3.1 Simulation Design 

In this section a simulation study will be conducted to evaluate the goodness of the developed 

model. The determination of the parameter values in this simulation refers to [11] and [14]. The 

stages of the simulation are as follows: 

1. Generating sample data with the following conditions 

a. The total areas are 35 regions (𝑀 = 35) and observation times are12 (𝑇 = 12). In each 

region and time there are 10 observations so that in total there are 𝑆 =  4200 

observations. 

b. Determine three categories of autoregressive coefficient values 𝜌 = 0.2, 𝜌 = 0.5, and 𝜌 = 

0.8. 
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c. Determine three categories of variance from the region random effect,  𝜎𝑣
2 = 0.1,  𝜎𝑣

2 =

0.5, and  𝜎𝑣
2 = 1. 

d. Set  𝜎𝜀
2 = 0.5, index parameter  𝑝 = 1.5, and dispersion parameter  𝜙 = 1. 

e. Generate covariate variable  𝒙~Normal (0,1).  

f. Set the initial value 𝜷𝟎 = (0,0), region 𝒗0, where  𝒗0~ 𝑁(𝟎, 𝜎𝑣
2𝑰𝑀 ), and time 𝒖0, 

where  𝒖0~ 𝑁 (0,
𝜎𝜀

2

(1−𝜌2)
 𝑰𝑇). The values 𝜌, 𝜎𝑣

2,  and 𝜎𝜀
2  are taken from steps 1.b, 1.c, 

and 1.d. 

g. Get matrices  𝒁𝟏
∗ = 𝒁1𝚲𝟏 and 𝒁𝟐

∗ = 𝒁2𝚲𝟐 where  𝒁1 = 𝑰𝑀⨂𝒁1𝑖, 𝒁𝟐 = 𝑰𝑇⨂𝒁2𝑡, 

𝒁1𝑖 = 𝟏𝑛𝑖
 and 𝒁2𝑡 = 𝟏𝒏𝒕

. 𝚲1 and  𝚲2 are Cholesky decomposition matrices  so  

𝚲𝟏𝚲𝟏
′ = 𝑰𝑚 and 𝚲𝟐𝚲𝟐

′ =
𝚪

(1−𝜌2)
 where 𝚪 = [

1
𝜌
⋮

𝜌𝑇−1

𝜌
⋱
⋮
⋯

⋯
⋯
⋱
𝜌

𝜌𝑇−1

⋮
𝜌
1

] and  𝜌 is specified  on 1.b. 

h. Generate response variable, 𝒚, has  Tweedie Compound Poisson distribution with 

parameter 𝝁(𝒚|𝒗0, 𝒖0) = 𝝁 =  exp (𝑿𝜷𝟎 + 𝒁𝟏
∗𝒗0 + 𝒁𝟐

∗𝒖0), index parameter   𝑝 =

1.5 , and  dispersion parameter 𝜙 = 1.  

2. Estimate the parameters of the fixed effect 𝜷, the region random effect  𝒗∗, and the time 

random effect 𝒖∗ using the h-likelihood method until convergent.  

3. Estimate  variance component  𝜎𝑣
2 and  𝜎𝜀

2 using  adjusted profile likelihood ℎ𝐴 method 

until convergent. 

4. Perform step 2 again  by using the initial values  𝜷, 𝒗∗,𝒗∗, 𝜎𝑣
2 , and  𝜎𝜀

2 obtained from 

step 2 and 3 above.  

5. Find the estimated value  𝜼̂ = 𝑿𝜷̂ + 𝒁𝟏
∗ 𝒗̂∗ + 𝒁𝟐

∗ 𝒖̂∗ then 𝝁̂ = exp 𝜼̂ or 𝐸(𝒚̂|𝒗̂, 𝒖̂). 

6. Repeat steps 1 to 6 above as many as 𝑅 = 100 times.  

7. Evaluate the model as in [14] by  

• Mean Relative Bias =
1

𝑅
 ∑

(𝝁̂𝒊−𝝁𝒊)

𝝁𝒊

𝑅
𝑖=1   . 

• 𝑀𝑆𝐸 =
1

𝑅
 ∑ (𝝁̂𝒊 − 𝝁𝒊)

2𝑅
𝑖=1  . 

3.2 Simulation Result 
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Modeling using directly generated data always produce not invertible Hessian matrix. It is 

necessary to scale the covariate and the response variables. The trial and error results by dividing 

the values of those two variables by 10000 produce a invertible Hessian matrix so that further 

modeling is done by scaling the data and based on the algorithm steps above. Model 1 is as in 

equation (4) then compared with the Model 2 

𝐸(𝑦𝑖𝑡𝑗|𝑣𝑖 , 𝑢𝑖𝑡) = 𝜇𝑖𝑡𝑗,  

log 𝜇𝑖𝑡𝑗 = 𝛽0 +𝑥𝑖𝑡𝑗𝛽𝟏 + 𝑣𝑖 + 𝑢𝑡   (20)  

that is, a model that does not have  autoregressive assumptions on the time random effect. The 

initial values of the parameters are assumed similar to Model 1. Other assumption is 𝜎𝜀
2 becomes 

variance of 𝑢𝑡.  

In this simulation study, estimating the parameters of both models  was carried out using 

the h-likelihood method. The computational program was built using the R programming software. 

Much like [11] studies were conducted with known autoregressive coefficient values. In addition, 

the dispersion parameter values and Tweedie distribution index parameters were also assumed to 

be known referring to [14]. Simulation results with 100 replications can be seen in Table 1 and 

Figure 1  

Table 1 Simulation result from 100 replications 

Model 1 with time AR (1) 

Rho 0.2 0.5 0.8 

Variance 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1 

Relative 

Bias 

1.730 1.177 0.863 1.647 0.643 0.432 0.875 0.376 0.176 

MSE 1.58E-06 3.39E-06 4.68E-06 1.62E-05 1.21E-05 5.65E-06 0.002 8.91E-05 8.91E-05 

Model 2 without time AR (1) 

Variance 0.1 0.5 1 

Relative 

Bias 1.5118    0.7067  0.4602 

MSE 0.0000  7.12E-07 1.73E-07 
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From Table 1  Model 1, for the same autoregressive coefficient, the greater the regions 

variances the smaller the relative bias. Then, the greater the autoregressive coefficient the smaller 

the relative bias produced. This shows that, the greater the autoregressive coefficient, the more 

unbiased the estimator can be. In addition, the greater the region variances the more unbiased the 

estimators produced. In other words, the autoregressive coefficient and regional variance influence 

the biasness of Model 1 estimators. Model 1 with a small autoregressive coefficient produce more 

bias than Model 2.  For the largest autoregressive coefficient,  Model  1 produces an unbiased 

estimator. On medium autoregressive coefficient, Model 2 produces an unbiased estimator only 

for a small variance.  Generally, Model 1 produces more an unbiased estimator than Model 2. 

Figure 2 explains this with 𝑟ℎ𝑜 = 0 is for Model 2 and the remains are for Model 1.  The 

simulation results in Table 1 also show the MSE values of the two models approaching zero. This 

shows that both models describe the data very well. 

 

 

Figure 1 Relative Bias 

 

4. APPLICATION STUDY 

The data used comes from the Financial Services Authority (FSA), which is a report on the risk 

profile and loss of motor vehicle insurance of a general insurance company in Indonesia in 2014. 

The total claim becomes the observed response variable, the deductible becomes the fixed effect, 

and the region code as many as 35 regions as well as the month of occurrence to be random effects. 

The month of occurrence that are considered to follow the first order autoregressive process then.  
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For the purposes of this study the data were partly drawn through simple random sampling of 

175,000 items of actual data. In each region and month, 10 policy numbers were taken.  

Similar to the simulation study, the application study was also carried out on two models. 

Model 1 is using the autoregressive assumption on the time random effect as defined on equation 

(4) and Model 2 is without the autoregressive assumption on the time random effect as on equation 

(20). 

To show that the response variable has Tweedie compound Poisson distribution, the index 

parameters of the Tweedie compound Poisson distribution must be between 1 and 2, or 1 < 𝑝 <

2. The Poisson compound distribution index of Tweedie 𝑝 is obtained from the Tweedie package 

in 𝑅  with the tweedie.profile () function. The program package also produces dispersion 

parameters 𝜙. Figure 2 shows the highest likelihood profile value achieved by the index parameter 

𝑝 between 1.5 and 1.6. 

 

 
Figure 2 Likelihood profile of Total Claim 

 

Table 2 shows  total claim data has Tweedie compound Poisson distribution with index  

parameter 𝑝 = 1.58 and dispersion parameter 𝜙 = 1.27.    

Table 2 Index and dispersion parameter  

 Value 

𝑝 1.581633 

𝜙 1.269497 
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The correlation coefficient between the total claims data at  time 𝑡 and 𝑡 − 1 is equal to 

ρ = 0.362 and the initial value 𝜎𝜀
2 = 0.1 is obtained by finding the variance of the difference in 

the total claims at time t reduced by multiplication between the correlation coefficient ρ with the 

total claim time t -1. The initial value of the area random effect 𝜎𝜀
2 = 0.5, and the regression 

parameters 𝛽0 =  0, and 𝛽1 =  0 refer to [4]. 

From Table 3 below it can be seen that the two models produce different estimates of 

regression parameters. The parameter 𝛽0 in Model 1 is -2.357819 and 𝛽1 is 13.291004. While 

in Model 2, the estimated value of the parameter 𝛽0 is -2.378214 and 𝛽1 is 13.2967676. As a 

result, the interpretation of the fixed effect on Model 1 is that if the deductible changes to one 

rupiah, then the expected total value of claims will change 56004.37 rupiahs, while in Model 2 if 

the deductible changes to one rupiah, then the expected total value of claims will change 55241.07 

rupiahs. 

 

Table 3 Estimate Parameter 

 Model 1 

With AR(1) assumption  

 

Model 2 

Without AR(1) assumption  

 

 Estimate SE Estimate SE 

Fixed Effects 

Intercept(𝛽0) -2.357819 0.2347547 -2.378214 0.204398 

Deductible(𝛽1)     13.291004 0.4012697 13.297676  0.3995944 

Random Effect Variance 

Region  1.145744     0.1575271 1.104661      0.1504604 

Time 0.133413    0.0048725 0.114967      0.0044087 

 

Residual   

 

0.678343 

  

0.678252 
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Table 4 Absolute Bias and MSE 

 Mean Absolute Bias MSE 

Model 1 

With AR(1) 

assumption  

 

0.2283721 0.6691346 

Model 2 

Without AR(1) 

assumption  

 

0.2376156 0.6783145 

 

In the estimation of the random effects variance, Model 2 produces a relatively smaller 

variance than Model 1. In both models, the region's random effect is greater than the residual. This 

shows that there is diversity in the total value of claims between regions. Whereas the variance 

estimate of time random effect is smaller than the variance estimate   of residuals. This shows 

there is a total diversity of claims in time but there is no variation in total claims between time 

Evaluation of the model is done by calculating the mean absolute bias value and MSE of 

both models. Table 4 shows that the Model 1 produces a smaller mean absolute bias compared to 

the Model 2. In addition, the MSE value of Model 1 is smaller than the Model 1. This shows that 

in the application study, Model 1 is relatively better than the Model 2. 

 

5.  CONCLUSION 

The h-likelihood method can be used to estimate the regression and variance parameters in GLMM 

with response variables has Tweedie compound Poisson distribution with two random effects 

namely region and time which are assumed to follow the first-order autoregressive process. The 

simulation study shows that for models with a  time that are assumed to follow the first-order 

autoregressive process, the greater the autoregressive coefficient the relative bias produced is 

smaller and the greater the variance of regions the more unbiased the estimators produced. In other 

words, the autoregressive coefficient and regional variance influence the predictor's  biasness. 
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MSE values close to zero indicate that the model describes the data well. The application study 

shows the absolute bias value and the MSE model with a  time which is assumed to follow the 

first-order autoregressive process is smaller when compared to models with a time without first-

order autoregressive assumptions. In general, models with a time that are assumed to follow the 

first-order autoregressive process are relatively better when compared to models with a time 

random effect without first-order autoregressive assumptions. 
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