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Abstract. With no specific treatment identified, COVID-19 remains a major threat to the world, as the scientific

community continues to look for a better understanding of the epidemiological cycle and dynamics of the virus.

Mathematical modeling of the 2019 coronavirus disease may provide a better insight into the virus complex dy-

namics and lay preventive measures that can be employed to contain the disease from spreading. In this research

article, a new compartmental SEIRW COVID-19 model is introduced and examined, to describe the dynamics of

the disease. We have established both local and global stability analysis for the model equilibria computed from

the mathematical model. Additionally, using personal protection, treatment, and spraying of disinfectant as time-

dependent control functions, we have developed a SEIRW optimal control COVID-19 epidemic model. Applying

the well-known Pontryagin’s maximum principle and the constructed Hamiltonian function, we have formulated

the optimality system for the nonlinear COVID-19 epidemic model. We have numerically solved the optimality

system for the COVID-19 compartmental model using the efficient fourth-order Runge-Kutta iterative scheme with

the forward-backward sweep method.
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1. INTRODUCTION

The globally threatening respiratory illness; COVID-19, was identified first in Wuhan city,

China in December, 2019. The Wuhan city became the epicenter of the deadly disease out-

break in China. The disease has since then spread across the globe, resulting in fear and panic

in nations, causing the cancellation of major events in the world, such as postponement of sports

seasons, compulsory closure of universities and colleges, and forcing many into self-imposed

quarantine and isolation [1]. The disease invaded other countries and continents through the

migration of infected people in China. The spreading of the disease to the different parts of

the world caused Europe; especially, Italy, Spain, and France, to be the epicenters, and then the

UK and the USA also became epicenters. Finally, the African continent, which was initially

considered to be unfavorably continent for the disease, due to the hotness nature of its temper-

ature, became susceptible to the disease [2]. The aggressiveness of the disease and its ability

to cause fatalities in humans caused governments to impose partial and complete lockdowns [3].

According to (WHO 2020) [4], coronaviruses consist of viruses identified with causing illness,

comprising of sicknesses such as the common cold and other complicated diseases. The virus

is transmitted through contact with the droplets, sneezes, or exhales from the infected person or

becoming contact with contaminated surfaces. Infected individuals may be symptomatic with

headache, aches, cough, fever, dyspnea, sore throat, diarrhea, and loss of taste or smell. The

COVID-19 infection can be prevented by adhering to the underlying measures: wearing of a

face mask, application of hand sanitizers, regular washing of hand with soap under running wa-

ter, avoidance of unnecessary mass gathering, social and personal distancing, self-isolation. As

of September 3rd, 2020, COVID-19 global confirmed cases reported by WHO are 25,605,665,

with 852,758 deaths, reported by WHO globally. The alarming number of intensified deaths

and confirmed cases reported globally each day prompted the World Health Organization to

declare the disease pandemic and consider it a global health emergency [5].

The study of infectious diseases using reliable mathematical and statistical modeling tools are

very useful for understanding the spread of diseases in susceptible populations and can help
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health policy makers to suggest possible control measures [6–14]. Even though it does not pro-

vide all-round insight to epidemic outbreaks, it has been of utmost importance to humans, as

it employs scientific investigation to uncover the causes and effects of infection. The complex

transmission dynamics of the 2019 coronavirus disease pandemic in the world has attracted a lot

of attention in computational epidemiological modeling see, e.g., [15–31]. In [32], the authors

generated a conceptual COVID-19 outbreak model in Wuhan considering the behavior reac-

tion of the people and governmental actions. The estimates from the two main components of

zoonotic introduction and emigration in 1918 influenza pandemic in London, United Kingdom

were used to compute the disease’s future trends, and the reporting ratio. In [33], Peng et al.

proposed and discussed a model on the dynamics of COVID-19 in China. In [34], the authors

examined the possibility of scrutinizing the available information on the ongoing outbreak of

and evaluating the burden on healthcare systems by using an SIR model to project the actual

numbers of infected cases, and identify Intensive care units and isolation wards burdens.

Sandar et al. [35], examined the COVID-19 transmission dynamics of a mathematical model

which considered the difference in transmission between symptomatic and asymptomatic pop-

ulation and the lockdown effect on the disease. The effect of 21 days lockdown was assessed

to lower the number of deaths and confirmed cases, using cases from three states in India.

Hou et al. [36]; investigated the possibility of applying a three-stage SEIR meta-population

model, which is in continuous-time, with consideration of the characteristics and the disease

dynamics, to explain the spatial dynamics of the epidemic. In [37], a transmission network

model of Bat-Host-Reservoir-People was formulated to determine the potentiality of the dis-

ease’s transmission from infection source; bat to the host; human. Nishiura et al. [38] employed

information from 28 infector-infectee pairs to derive the serial interval estimation of COVID-

19. The estimation was done by collecting dates of infectors illnesses from the onset and that of

infectee from research article and investigation reports, and analyses were performed on both.

Zhang et al. [39] illustrated the possibility of MERS-CoV’s transmissibility estimation and in-

dicated the effective way of containing the infection from spreading by employing quantitative

methodologies. Wu et al. [40], forecasted the national and global spread of COVID-19, by
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effectively accounting for Wuhan’s metropolitan-wide quarantine surrounding cities, from Jan

23− 24,2020. In [41], the authors examined the appropriate way of preventing COVID-19 at

the various departmental levels of China by proposing a time series model that predicts the dis-

ease’s trend. Based on the simulated results, various predictions were made about the future

trend of the disease. In [42], a COVID-19 model was developed, which used stochastic trans-

mission to evaluate the potency of contact tracing and isolation to curtail the disease.

In [43], the authors modified their existing transmission model of COVID-19 [44] by including

contact and diagnosis rates that are time-dependent, to refit the available new data. With this,

they predicted when the reproduction number would be less than 1. In [45], an application of

spatial statistics, specifically, moran’s I was employed to examine the spatial dynamics of the

COVID-19 epidemic in mainland China. In [46], the authors examined the growth model of the

three inflammatory lungs disease of MERS, SARS, and COVID-19, by considering the inhibi-

tion constant and growth rate of the diseases. The application of nonlinear fitting was used to

determine the parameters of the models for the diseases. The results from the parametric anal-

ysis indicated that the COVID-19 growth rate is twice that of SARS and MERS. Sari et.al [47],

introduced a simple SEIR model, which includes vaccination and treatment with the sole aim of

minimizing the expose and infected. In [48], wang et al. estimated the trend of the COVID-19

epidemic in Wuhan with two assumptions of the basic reproduction number, by proposing a

simple SEIR model for the disease dynamics.

The application of nonlinear differential equations with optimal control dynamics in epidemic

modeling has widely been studied [49–77]. Djidjou-Demasse et al. [78] explored some use-

ful control strategies that needs to be implemented to lower treatment costs and deaths of the

infected individuals. Grigorieva et al. [79] described the COVID-19 spread in humans, using

optimal control to derive an effective quarantine strategy for the SEIR model type. A COVID-

19 optimal control mathematical that captures four time-dependent control functions is studied

in [80]. In the work of the authors in [81], they developed and studied an epidemic deterministic
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model for the transmission dynamics and control of COVID-19 disease. They constructed Lya-

punov functions and investigated global stability for both disease-free and endemic equilibrium

points. They also considered global sensitivity analysis and cost-effectiveness analysis in their

study. Further recent works on optimal control modeling of COVID-19 infectious disease can

be found in [82–87].

In this research article, a new compartmental SEIRW COVID-19 model is considered to de-

scribe the dynamics of the disease. Our present study is motivated by deterministic com-

partmental modeling concepts, nonlinear differential equations, optimal control theory, and the

forward-backward sweep iterative method. This research is also inspired by the aforementioned

literature on mathematical modeling of COVID-19 and other infectious diseases.

The rest of this research work is organized as follows: Section 2 deals with formulating a de-

terministic non-optimal control COVID-19 mathematical model. In section 3, local and global

stability analysis are investigated. In section 4, a new SEIRW optimal control mathematical

model is constructed and analyzed using personal protection, treatment, and spraying of disin-

fectant as time-dependent control functions. Finally, in section 5, optimal control strategies for

the new Optimal control COVID-19 model are numerically solved and simulations results are

discussed.

2. COVID-19 MATHEMATICAL MODEL

We construct a new compartmental SEIRW model to describe the dynamics of the disease.

The population under consideration at time t is separated into susceptible S(t), exposed E(t),

infected I(t) and recovered R(t). W (t) present the virus in the environment. Let ΛN denotes

the recruitment rate of susceptible individuals. The model assumed that the susceptible get the

disease through contact with an exposed individual at a rate β1. The susceptible can again have

the disease through contact with a contaminated environment at rate β2. This assumption is

contained in the research of [88], which confirmed people becoming infected when they come

in contact with surfaces contaminated with the virus. This happens as a result of the exposed and

infected individuals shedding the environment, especially through droplets, sneezes, or exhales.
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Exposed individuals enter the infected class at a rate γ . Recovered individuals move to the

recovery class at a rate λ . The exposed and infected individuals shed the environment at rates

b and α , respectively. Let δ be the disease induced death in humans and η , decay rate of the

virus in the environment. All individual classes leave the population through natural death µ .

The dynamics for the model are presented in the schematic of Fig. 1.

FIGURE 1. Flowchart of the model.

Based on these assumptions and the presentation in the flowchart, the differential equations de-

scribing the model are given as:



COMPARTMENTAL SEIRW COVID-19 OPTIMAL CONTROL MODEL 7

(1)



dS
dt

= ΛN−β1SI−β2SW −µS

dE
dt

= β1SI +β2SW − γE−µE

dI
dt

= γE−δ I−λ I−µI

dR
dt

= λ I−µR

dW
dt

= bE +αI−ηW

All involving parameters are nonnegative and defined in Table 1 below.

TABLE 1. Parameters of the COVID-19 model

Parameter Description value Reference

η Decay rate of COVID-19 virus in the environment 0.1 Assumed

α Shedding rate of Symptomatic individuals 0.04 [19]

b Shedding rate of Asymptomatic individuals 0.04 [19]

ΛN Recuitment rate of Susceptible individuals 1.2∗103 Assumed

λ Recovered rate of human individuals 0.0036 [37]

µ Average lifespan of humans 0.0000391 Assumed
1
γ

Extrinsic incubation period of COVID-19 virus in

humans

0.07143 [37]

δ Disease induced death rate 0.1 [89]

β1 Effective contact rate of Asymptomatic individuals (1.5−3) [90]

β2 Effective contact rate of Susceptible individuals with

the environment

(1.5−3) [90]
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2.1. Existence of disease-free equilibrium and the reproduction number. The COVID-19

model has a disease-free equilibrium (DFE), determined by equating the right-hand side of the

equations in the model (1) to zero, given by:

E0 = (S0,E0, I0,R0,W0) =
(

ΛN

µ
,0,0,0,0

)
.

The basic reproduction number of the model at E0 = (S0,E0, I0,R0,W0) is determined by em-

ploying the results of the next-generation matrix of Driessche et al. [91]. We deduced the

following matrices based on [91],

F =



0 β1S β2S

0 0 0

0 0 0


, V =



(γ +µ) 0 0

−γ (δ +λ +µ) 0

−b −α η


Hence, the basic reproduction number for the COVID-19 model (1) is obtain by calculating the

spectral radius of the matrix ρ(FV−1) as:

(2) R0 =
ΛNγβ1

µ(γ +µ)(δ +λ +µ)
+

ΛNαγβ2

µη(γ +µ)(δ +λ +µ)
+

ΛNβ2b
µη(γ +µ)

2.2. Existence of endemic equilibrium. Consider the model system (1); there exist a unique

endemic equilibrium, denoted by;

EQ = (S∗,E∗, I∗,R∗,W ∗), with,

S∗ =
ΛN

R0

E∗ =
η(R0−µ)(δ +λ +µ)

(β1ηγ +β2b(δ +λ +µ)+β2αγ)
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I∗ =
γη(R0−µ)

(β1ηγ +β2b(δ +λ +µ)+β2αγ)

R∗ =
λγη(R0−µ)

µ(β1ηγ +β2b(δ +λ +µ)+β2αγ)

W ∗ =
(R0−µ)b(δ +λ +µ)+αγ

(β1ηγ +β2b(δ +λ +µ)+β2αγ)

3. STABILITY-DISEASE FREE EQUILIBRIUM

Theorem 1. When R0 < 1, the disease-free equilibrium E0 of the dynamical COVID-19 model (1)

is asymptotically stable.

Proof. By evaluating the Jacobian matrix at the disease-free equilibrium, we obtained the sim-

plified Jacobian matrix given by

JE0 =



−µ 0
−β1ΛN

µ
0
−β2ΛN

µ

0 −(γ +µ)
β1ΛN

µ
0

β2ΛN

µ

0 γ −(δ +λ +µ) 0 0

0 0 λ −µ 0

0 b α 0 −η


clearly P1 =−µ < 0 and P2 =−µ < 0. The remaining matrix of JE0 is;

A =


−(γ +µ)

β1ΛN

µ

β2ΛN

µ

γ −(δ +λ +µ) 0

b α −η


The characteristic equation of the remaining matrix is given by;

(3) P3 +m1P2 +m2P+m3 = 0,
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with, a =−(γ +µ), b1 =
β1ΛN

µ
, c =

β2ΛN

µ
, d = γ , e =−(δ +λ +µ), f = b, g = α , h =−η .

where

m1 =−[a+ e+h]

m2 = [ae+ah+ eh−b1d− c f ]

m3 = [b1dh+ c f e−aeh− cdg]

From the Routh-Hurwitz criterion [92], the characteristic equation will have negative real parts

provided m1m2 > m3 > 0. Hence the disease-free equilibrium is locally asymptotically stable if

and only if these conditions hold, otherwise unstable. �

Theorem 2. The disease free equilibrium E0 = (S0,E0, I0,R0,W0) =
(

ΛN

µ
,0,0,0,0

)
is globally

asymptotically stable in R5
+ if R0 < 1.

Proof. We construct a Lyapunov function L(S,E, I,R,W ) : R5→ R+, for the steady state equi-

librium point (disease free) defined as

L =

(
γk1β1 +αγβ2 +bk3β2

k1k2k3

)
E +

(
γk1β1 +αγβ2 +bk3β2

γk2k3

)
I +(S−S0),

where k1 = η , k2 = (γ +µ) and k3 = (δ +λ +µ).

Then the time derivative of L is given by;
dL
dt

=

(
γk1β1 +αγβ2 +bk3β2

k1k2k3

)
dE
dt

+

(
γk1β1 +αγβ2 +bk3β2

γk2k3

)
dI
dt

+
dS
dt
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By substituting the right-hand sides of
dS
dt

,
dE
dt

and
dI
dt

into
dL
dt

, we obtain;

dL
dt

=

(
γk1β1 +αγβ2 +bk3β2

k1k2k3

)(
β1SI +β2SW − k2E

)
+

(
γk1β1 +αγβ2 +bk3β2

γk2k3

)(
γE− k3I

)
+

(
ΛN−β1SI−β2SW −µS

)
dL
dt

=

(
γk1β1 +αγβ2 +bk3β2

k1k2k3

)(
β1SI +β2SW

)
−

(
γk1β1 +αγβ2 +bk3β2

k1k3

)
E +

(
γk1β1 +αγβ2 +bk3β2

k1k3

)
E

−

(
γk1β1 +αγβ2 +bk3β2

γk1k3

)
I +
(

ΛN−β1SI−β2SW −µS
)

dL
dt

=

(
γk1β1 +αγβ2 +bk3β2

k1k2k3

)(
β1SI +β2SW

)
−

(
γk1β1 +αγβ2 +bk3β2

γk1

)
I +
(

ΛN−β1SI−β2SW −µS
)

Since (S0 =
ΛN

µ
) at the disease-free equilibrium,

dL
dt

=
ΛN

µ

((
γk1β1 +αγβ2 +bk3β2

k1k2k3

)(
β1I +β2W

)
−
(

β1I +β2W
))

−

(
γk1β1 +αγβ2 +bk3β2

γk1

)
I

dL
dt

= (R0−1)
(

β1I +β2W
)
−

(
γk1β1 +αγβ2 +bk3β2

γk1

)
I

It follows that
dL
dt
≤ 0 for R0 ≤ 1. Also it can clearly be seen that,

dL
dt

= 0 provided I = 0

and W = 0. Hence from [93], the disease-free equilibrium, E0 is globally asymptotically stable

when R0 < 1. �

3.1. Stability-Endemic Equilibrium.

Theorem 3. The endemic equilibrium EQ = (S∗,E∗, I∗,R∗,W ∗) for the COVID-19 model (1) is

locally asymptotically stable when R0 > 1.

Proof. The Jacobian matrix JEQ evaluated at the endemic equilibrium (S∗,E∗, I∗,R∗,W ∗) is

given by
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JEQ =



−β1I∗−β2W ∗−µ 0 −β1S∗ 0 −β2S∗

β1I∗+β2W ∗ −(γ +µ) β1S∗ 0 β2S∗

0 γ −(δ +λ +µ) 0 0

0 0 λ −µ 0

0 b α 0 −η


let C11 =−β1I∗−β2W ∗−µ , C13 =−β1S∗, C15 =−β2S∗,

C21 = β1I∗+β2W ∗, C22 =−(γ +µ), C23 = β1S∗, C23 = β2S∗,

C32 = γ , C33 =−(δ +λ +µ),

C43 = λ , C44 =−µ ,

C52 = b, C53 = α , C55 =−η .

The characteristic equation of JEQ is given by

(4) P5 +D1P4 +D2P3 +D3P2 +D4P+D5 = 0.

where

D1 =−(C11 +C22 +C33 +C44 +C55)

D2 = (C11C22 +C11C33 +C11C44 +C11C55 +C22C33 +C22C44 +C22C55 +C33C44 +C33C55 +C44C55)

D3 = (C11C22C33 +C11C22C44 +C11C22C55 +C11C33C44 +C11C33C55 +C11C44C55 +C22C33C44

+C22C33C55 +C22C44C55 +C33C44C55 +C13C21C32 +C21C52−C23C32)
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D4 = (C11C22C33C44 +C11C22C33C55 +C11C22C44C55 +C11C33C44C55 +C22C33C44C55 +C25C32C53

+C23C32C44 +C23C32C55 +C21C33C52 +C21C44C52−C21C32C53−C13C21C32C44−C13C21C32C55

−C33C52−C44C55)

D5 = (C11C22C33C44C55 +C13C21C32C44C55 +C21C32C44C53 +C33C44C52−C23C32C44C55

−C21C33C44C52−C25C32C53)

Routh Hurtwiz criterion [92], provides the conditions for determining the stability of (4), as;

D1D2D3 > D2
3 +D2

1D4 and (D1D4−D5)(D1D2D3−D2
3−D2

1D4) > D5(D1D2−D3)
2 +D1D2

5.

If these condition are satisfied, the endemic equilibrium will be asymptotically stable, otherwise

unstable. �

Theorem 4. Given that S = S∗, E = E∗, I = I∗, R = R∗ and W =W ∗, then, the endemic equi-

librium of the mathematical model (1) is said to be globally asymptotically stable if R0 > 1 and

unstable if R0 < 1.

Proof. Let define a Lyapunov function, L : {(S,E, I,R,W ) ∈ τ1 | S,E, I,R,W > 0} −→ R given

by

L(S,E, I,R,W )=

(
S−S∗−S∗ ln

(
S
S∗

))
+

(
E−E∗−E∗ ln

(
E
E∗

))
+

(
I−I∗−I∗ ln

(
I
I∗

))
+(

R−R∗−R∗ ln

(
R
R∗

))
+

(
W −W ∗−W ∗ ln

(
W
W ∗

))
,

Differentiating L with respect to time.

dL
dt

=

(
S−S∗

S

)
dS
dt

+

(
E−E∗

E

)
dE
dt

+

(
I− I∗

I

)
dI
dt

+

(
R−R∗

R

)
dR
dt

+

(
W −W ∗

W

)
dW
dt
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dL
dt

=

(
S−S∗

S

)(
ΛN−β1SI−β2SW −µS

)
+

(
E−E∗

E

)(
β1SI +β2SW − γE−µE

)
+

(
I− I∗

I

)(
γE−δ I−λ I−µI

)
+

(
R−R∗

R

)(
λ I−µR

)
+

(
W −W ∗

W

)(
bE +αI−ηW

)

dL
dt

=

(
S−S∗

S

)(
ΛN−β1(S−S∗)(I− I∗)−β2(S−S∗)(W −W ∗)−µ(S−S∗)

)

+

(
E−E∗

E

)(
β1(S−S∗)(I− I∗)+β2(S−S∗)(W −W ∗)− γ(E−E∗)−µ(E−E∗)

)

+

(
I− I∗

I

)(
γ(E−E∗)−δ (I− I∗)−λ (I− I∗)−µ(I− I∗)

)

+

(
R−R∗

R

)(
λ (I− I∗)−µ(R−R∗)

)
+

(
W −W ∗

W

)(
b(E−E∗)+α(I− I∗)

−η(W −W ∗)

)

dL
dt

=

(
ΛN

(
S−S∗

S

)
−β1

(
(S−S∗)2

S

)
(I− I∗)−β2

(
(S−S∗)2

S

)
(W −W ∗)−µ

(
(S−S∗)2

S

))

+

(
β1(S−S∗)

(
E−E∗

E

)
(I− I∗)+β2(S−S∗)

(
(E−E∗)

E

)
(W −W ∗)− γ

(
(E−E∗)2

E

)

−µ

(
(E−E∗)2

E

))
+

(
γ(E−E∗)

(
(I− I∗)

I

)
−δ

(
(I− I∗)2

I

)

−λ

(
(I− I∗)2

I

)
−µ

(
(I− I∗)2

I

))

+

(
λ (I− I∗)

(
(R−R∗)

R

)
−µ

(
(R−R∗)2

R

)
+b(E−E∗)

(
(W −W ∗)

W

)

+α(I− I∗)

(
W −W ∗

W

)
−η

(
(W −W ∗)2

W

)
.
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which gives;

dL
dt

= ΛN−ΛN
S∗

S
−β1

(
(S−S∗)2

S

)
(I− I∗)−β2

(
(S−S∗)2

S

)
(W −W ∗)−µ

(
(S−S∗)2

S

)

+β1(S−S∗)(I− I∗)−β1
E∗

E
(S−S∗)(I− I∗)+β2(S−S∗)

(
(E−E∗)

E

)
(W −W ∗)

− γ

(
(E−E∗)2

E

)
−µ

(
(E−E∗)2

E

)
+ γ(E−E∗)

(
(I− I∗)

I

)

−δ

(
(I− I∗)2

I

)
−λ

(
(I− I∗)2

I

)

−µ

(
(I− I∗)2

I

)
+λ (I− I∗)

(
(R−R∗)

R

)
−µ

(
(R−R∗)2

R

)

+b(E−E∗)−b
W ∗

W
(E−E∗)+α(I− I∗)−α(I− I∗)−α

W ∗

W
(I− I∗)

−η

(
(W −W ∗)2

W

)
.

Grouping the above expression provides the equation;

dL
dt

= Q1−Q2, with,

Q1 = ΛN +β1(S−S∗)(I− I∗)+β2(S−S∗)

(
(E−E∗)

E

)
(W −W ∗)+ γ(E−E∗)

(
(I− I∗)

I

)

+λ (I− I∗)

(
(R−R∗)

R

)
+b(E−E∗)+α(I− I∗)

Q2 = ΛN
S∗

S
+β1

(
(S−S∗)2

S

)
(I− I∗)+β2

(
(S−S∗)2

S

)
(W −W ∗)+µ

(
(S−S∗)2

S

)

+β1
E∗

E
(S−S∗)(I− I∗)+ γ

(
(E−E∗)2

E

)
+µ

(
(E−E∗)2

E

)
+δ

(
(I− I∗)2

I

)

+λ

(
(I− I∗)2

I

)
+α(I− I∗)+µ

(
(I− I∗)2

I

)
+µ

(
(R−R∗)2

R

)
+b

W ∗

W
(E−E∗)

+η

(
(W −W ∗)2

W

)
.
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Clearly, the inequality Q1 < Q2 can be confirmed, indicating
dL
dt
≤ 0 when Q1 < Q2. Hence, it

can be verified that
dL
dt

= 0, when S = S∗, E = E∗, I = I∗, R = R∗ and W = W ∗. This implies

that the largest compact invariant set {(S,E, I,R,W ) ∈ τ1 :
dL
dt

= 0} is the singleton {EQ},

where EQ is the endemic equilibrium. Hence, from [93], EQ is globally asymptotically stable

in τ1. �

4. OPTIMAL CONTROL COVID-19 SEIRW MODEL

In this section, we develop and analyze a new optimal control COVID-19 SEIRW dynamic

model. We consider three multiple time-dependent control functions for our optimal control

model formulation consisting of ν1, denoting personal protection, ν2, denoting treatment of the

infected individuals and ν3, denoting spraying of the environment with disinfectant. For the

personal protection time-dependent control, we can think of wearing of face mask, application

of hand sanitizer, regular washing of hand with soap under running water, social distancing,

self-isolation, and other important preventive measures. The main aim for constructing this

new SEIRW optimal problem is to minimise the number of exposed and infected individuals in

the human population. For this purpose, we seek to minimise the objective functional given by;

(5) J(ν1,ν2,ν3) =
∫ t f

0

[
h1E +h2I +

1
2
(n1ν

2
1 +n2ν

2
2 +n3ν

2
3 )
]
dt

subject to

(6)



dS
dt

= ΛN− (1−ν1)(β1SI +β2SW )−µS

dE
dt

= (1−ν1)(β1SI +β2SW )− γE−µE

dI
dt

= γE− (δ +λ +µ + r0ν2)I

dR
dt

= λ I + r0ν2I−µR

dW
dt

= bE +αI−ηW − τν3W,

with control set defined as;
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U := {ν = (ν1,ν2,ν3)|ν j(t) is Lebesgue measurable,0≤ νi(t)≤ 1, t ∈ [0, t f ] for j = 1,2,3.}(7)

The weight constants h1 and h2 are associated with exposed and infectious individuals respec-

tively. Also the positive weights n1, n2 and n3 are associated with time-dependent control

functions ν1, ν2 and ν3 respectively.

From equations (5) and (6), the Hamiltonian function related to the optimal control problem is

given by

H = h1E +h2I +
1
2
(n1ν

2
1 +n2ν

2
2 +n3ν

2
3 )

+ϑ1

[
ΛN− (1−ν1)(β1SI +β2SW )−µS

]
+ϑ2

[
(1−ν1)(β1SI +β2SW )− γE−µE

]
+ϑ3

[
γE− (δ +λ +µ + r0ν2)I

]
+ϑ4

[
λ I + r0ν2I−µR

]
+ϑ5

[
bE +αI−ηW − τν3W

]
,

(8)

We can determine an optimal solution for a given optimal control problem using the Pontryagin

maximum principle developed and studied in [94]. Now, suppose that (ζ ,ξ ) represent an opti-

mal control solution for a given dynamical optimal control problem, then there exist adjoint or

co-state variables, ς = (ς1, ς2, · · · ,ςn) which satisfies the equation below

(9)



dζ

dt = ∂H(t, ζ , ξ , ς)
∂ς

,

0 = ∂H(t, ζ , ξ , ς)
∂ξ

,

dς

dt =−
∂H(t, ζ , ξ , ς)

∂ζ
.
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By applying equation (9) and the Hamiltonian function (8), the adjoint state model or system

and the optimal control characterisation for the optimal control problem are given in the theorem

below.

Theorem 5. Suppose that (ν1
∗, ν2

∗,ν3
∗) is an optimal control and suppose that

(S∗,E∗, I∗,R∗,W ∗) is an optimal control solution for the dynamical optimal control problem (5)-

(6) that minimize J(ν1,ν2,ν3) over U , then there exist adjoint variables ϑ1,ϑ2,ϑ3,ϑ4 and ϑ5

that satisfies the dynamical model below.

dϑ1

dt
= (ϑ1−ϑ2)(1−ν1)β1I +(ϑ1−ϑ2)(1−ν1)β2W +µϑ1

dϑ2

dt
=−h1 +(ϑ2−ϑ3)γ +µϑ2−bϑ5

dϑ3

dt
=−h2 +(ϑ1−ϑ2)(1−ν1)β1S+(ϑ3−ϑ4)λ +(ϑ3−ϑ4)r0ν2 +δϑ3−αϑ5 +µϑ3

dϑ4

dt
= µϑ4

dϑ5

dt
= (ϑ1−ϑ2)(1−ν1)β2S+ηϑ5

with transversality conditions

(10) ϑ j(T ) = 0, j ∈ {1,2,3,4,5}.

with control functions (ν∗1 , ν∗2 , ν∗3 ) which satisfies the optimality condition given by

(11)



ν∗1 = min

1,max

0,

(ϑ2−ϑ1)
β1SI
n1

+(ϑ2−ϑ1)
β2SW

n1




ν∗2 = min

1,max

0,(ϑ3−ϑ4)
r0I
n2




ν∗3 = min

1,max

0,(ϑ5)
τW
n3



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Proof. In order to obtain the co-state dynamical model and the transversality conditions, we

need to apply the well-known Maximum Principle constructed and studied in [94] to partially

differentiate the Hamiltonian function (8) as follows:

(12)



dϑ1

dt
=−∂H

∂S ,

dϑ2

dt
=−∂H

∂E ,

dϑ3

dt
=−∂H

∂ I

dϑ4

dt
=−∂H

∂R ,

dϑ5

dt
=− ∂H

∂W .

with

(13) ϑ j(t f ) = 0, j ∈ {1,2,3,4,5}.

Finally, to obtain the control characterization (11), we need to solve for u∗1,u
∗
2 and u∗3 from the

equation below.

(14)



∂H
∂ν1

= 0,

∂H
∂ν2

= 0,

∂H
∂ν3

= 0.

�
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5. NUMERICAL SIMULATION AND DISCUSSION

This section deals with numerical simulations and results discussions for our optimality system.

Since analytical solutions of nonlinear optimal control problems or systems is a very difficult

task, we have therefore for this purpose used the fourth-order Runge-Kutta iterative scheme in

MATLAB to generate our numerical solutions. We consider the following initial conditions:

S0 = 880, E0 = 100, I0 = 40, R0 = 10 and W0 = 5. The positive constants in the objective

functional are assigned the following values: h1 = 10, h2 = 10, n1 = 10, n2 = 5 and n3 = 8.

The model parameter values for the various numerical simulation illustrations are provided in

table 1.

5.1. Minimizing through controls ν1 and ν2. To contain the disease, the controls ν1 and ν2

are utilized to improve the objective functional to optimality. The exposed and infected plots

showed the effectiveness of the strategy considered. Thus, with the controls ν1 and ν2, the

exposed and infected plots of figure 2 showed a differentiable reduction in the graphs of control

compared to the scenarios without control. This implies that the strategy of ν1 and ν2 is efficient

in containing the disease from spreading.
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FIGURE 2. Numerical solutions for the Exposed and Infected populations with

(ν1 6= 0,ν2 6= 0) and without optimal control functions
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5.2. Minimizing through controls ν1 and ν3. The controls ν1 and ν3 are utilized to improve

the objective functional to optimality. The exposed and infected plots showed the effectiveness

of the strategy considered by displaying an observable difference in the plots of figure3. With

the controls ν1 and ν3, the exposed and infected plots of figure 3 showed a drastic reduction in

the control graphs compared to the graphs without control. This shows that the strategy of ν1

and ν3 is efficient in containing the disease from spreading.
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FIGURE 3. Numerical solutions for the Exposed and Infected populations with

(ν1 6= 0,ν3 6= 0) and without optimal control functions

5.3. Minimizing through controls ν2 and ν3. To improve the objective functional to opti-

mality, the controls ν2 and ν3 are utilized. The plots of the exposed and infected individuals

as indicated in figure 4 showed an observable distinction in the control and without control

graphs. The controls ν2 and ν3, provided the desired results of explicitly lowering the number

of exposed and infected individuals, suggesting the effectiveness of this strategy.
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FIGURE 4. Numerical solutions for the Exposed and Infected populations with

(ν2 6= 0,ν3 6= 0) and without optimal control functions

5.4. Minimizing through controls ν1, ν2 and ν3. Finally, all the three controls are utilized

to improve the objective functional to optimality. The exposed and infected plots of figure 5

showed the effectiveness of the strategy considered. The controls ν1, ν2 and ν3, provided the

desired results of explicitly minimizing the number of exposed and infected individuals. This

is confirmed in the plots of figure 5 with the control graphs compared to the scenarios without

control. This is an indication that the controls; ν1, ν2, and ν3 are effective in containing the

disease from spreading.
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FIGURE 5. Numerical solutions for the Exposed and Infected populations with

(ν1 6= 0,ν2 6= 0,ν3 6= 0) and without optimal control functions
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5.5. Control profiles. Finally, figure 6 represents the optimal control plot of personal protec-

tion, spraying the environment with disinfectant and treatment of infected individuals.
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FIGURE 6. control profile.

5.6. Conclusion. In this article, a new compartmental SEIRW COVID-19 model is introduced

and analyzed. We derived the model equilibria (disease-free and endemic) and the basic repro-

duction number for the non-optimal control SEIRW epidemic model. Stability analysis for the

nonlinear SEIRW COVID-19 model is locally and globally investigated. In this study, we have

used mathematical modeling concepts in optimal control theory to explore some control strate-

gies by formulating a new optimal control problem that describes the dynamics of the deadly

COVID-19 disease. The control model was analyzed by utilizing the Pontryagin’s maximum

principle, to derive the optimality system for the SEIRW COVID-19 model. We have generated

some interesting numerical results using fourth-order Runge-Kutta scheme with the forward-

backward sweep method, which is one of the most reliable and efficient iterative schemes for

nonlinear dynamical optimal control problems. The simulated results proved the incomparable

impact of the control strategies considered by substantially reducing the exposed and infected

individuals in the population.
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