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Abstract. Anti-angiogenic therapy is a novel treatment approach for cancer that aims at preventing a tumor from

developing its own blood supply system that it needs for growth. In this paper we consider a mathematical model

for cancer with treatment by using Lotka-Volterra Competition model. In order to minimize the side effects for

treatment, we propose a switched system to determine the duration of treatments by using the MDT method and

provide an analytical insight into the effectiveness of such method. An illustrative example is presented to show

the validity of the results.
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1. INTRODUCTION

According to the World Health Organization, cancer is the second leading cause of death

globally, and is responsible for an estimated 9.6 million deaths in 2018. Globally, about 1 in 6

deaths is due to cancer [1].
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The best treatment for cancer is early detection and then the use of suitable treatment such as

chemotherapy, surgery,immunotherapy, radiotherapy or anti-angiogenics therapy. In this paper,

we focus on cancer treatment by anti-angiogenics therapy. In order for the cancer to grow and

survive, it needs oxygen and nutrients which can be found in nearby blood vessels. So, to reduce

the growth of the cancer, anti-angiogenics drugs are used to prevent the cancer from forming

new blood vessels. Many angiogenesis inhibitors also affect other ways that cancers grow,

people may also receive these drugs with other types of treatment. For each type of cancer,

certain types of drugs have been used for treatment, but these drugs have many side effects such

as hypertension, delayed wound healing, bleeding and more. So we look for a way to minimize

these effects.

Mathematicians are trying to help the medical community in search for a cure for cancer.

For that, many mathematicians have developed mathematical models to help scientists predict

how different cancer types grow, and how to eliminate them [9, 10, 11]. Of those models

Lotka–Volterra model. [12, 13, 14, 15, 17] have been used to describe the interactions between

normal cells and cancer cells and the effect of treatment on them.

Some researchers [5, 6, 7, 8] have been studying cancer therapy strategies, which are based on

switching between successive parameter dependent domains of attraction. They used switched

system to model these strategies.

In this paper, we aim to propose a switched system to determine the duration of treatments by

using the MDT method and provide an analytical insight into the effectiveness of such method.

Specifically, time-driven switching control is used. The Lotka-Volterra model is discussed in

Section 2. The cancer dynamics are discussed in Section 3. Section 4 presents the model with

treatment. The proposed switching signal is defined in Section 5. An example illustrating the

results are presented in Section 6.

2. THE LOTKA-VOLTERRA COMPETITION MODEL [3]

A competition model is a system of differential equations used to describe the dynamics

of two or more species living in the same environment and sharing the same resources. If

one species is more efficient in finding resources, then it will increase in population and win

the competition driving the other species to extinction. But if there are enough resources to
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support all species then they can share the environment and coexist together. The Lotka-Volterra

competition model describes the competition between two species and assumes logistic growth

for each population which are reduced due to the competition between them. The mathematical

model is given by:

ẋ1 = α1x1

(
1− x1

K1

)
−β1x1x2

ẋ2 = α2x2

(
1− x2

K2

)
−β2x1x2(2.1)

where x1 and x2 are populations of species 1 and 2, respectively; α1 and α2 are the growth

rates of species 1 and 2, respectively; K1 and K2 are the carrying capacities of the populations;

β1 is the competition coefficient that measures the competitive effect that population 2 has on

population 1 and β2 is the competition coefficient that measures the competitive effect that

population 1 has on population 2.

To study the behavior of the model we will find the equilibria (steady states) and determine their

stability. There are four equilibria, as follows

(0,0),(K1,0) ,(0,K2) ,(x̄1, x̄2)

where

x̄1 =
α1α2K1−α2β1K1K2

α1α2−β1β2K1K2
, x̄2 =

α1α2K2−α1β2K1K2

α1α2−β1β2K1K2

Note that (x̄1, x̄2) exists if either

α1 > β1K2, α2 > β2K1

or

α1 < β1K2, α2 < β2K1

The stability of the equilibrium is determined by the eigenvalues of the Jacobian

(2.2) J =

α1− 2α1
K1

x1−β1x2 −β1x1

−β2x2 α2− 2α2
K2

x2−β2x1


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For E1 = (0,0) the matrix (2.2) is

J1 =

α1 0

0 α2


This matrix has two positive eigenvalues and (0,0) is always an unstable.

For E2 = (K1,0) the matrix (2.2) is

J2 =

−α1 −β1K1

0 α2−β2K1


This matrix has eigenvalues {−α1,α2−β2K1}. It follows that (K1,0) is a saddle if

K1 <
α2

β2
,

but asymptotically stable if

K1 >
α2

β2
.

For E3 = (0,K2) the matrix (2.2) is

J3 =

α1−β1K2 0

−β2K2 −α2


This matrix has eigenvalues {α1−β1K2,−α2}. It follows that (0,K2) is a saddle if

K2 <
α1

β1
,

but asymptotically stable if

K2 >
α1

β1
.

For E4 = (x̄1, x̄2) the matrix (2.2) is

J4 =

α1− 2α1
K1

x̄1−β1x̄2 −β1x̄1

−β2x̄2 α2− 2α2
K2

x̄2−β2x̄1


From equation (2.1) , (x̄1, x̄2) satisfies the equations

α1

(
1− x̄1

K1

)
−β1x̄2 = 0
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α2

(
1− x̄2

K2

)
−β2x̄1 = 0

and so

J4 =

 −α1
K1

x̄1 −β1x̄1

−β2x̄2
−α2
K2

x̄2


Then

det (J4) = x̄1x̄2

(
α1α2

K1K2
−β1β2

)
,

tr (J4) =−
α1

K1
x̄1−

α2

K2
x̄2.

It follows that E4 is a saddle if

K1K2 >
α1α2

β1β2
,

but asymptotically stable if

K1K2 <
α1α2

β1β2
.

Theorem 2.1. For the Lotka-Volterra two species competition model we have four cases,

A. If K1 >
α2
β2

and K2 <
α1
β1

then (K1,0) is asymptotically stable and (0,K2) is unstable, so

x1 gains the competition.

B. If K1 <
α2
β2

and K2 >
α1
β1

then (0,K2) is asymptotically stable and (K1,0)is unstable, so

x2 gains the competition.

C. If K1 <
α2
β2

and K2 <
α1
β1

then the two species coexist at (x̄1, x̄2) which is asymptotically

stable. In this case both (K1,0) and (0,K2) are unstable.

D. If K1 >
α2
β2

and K2 >
α1
β1

then (K1,0) and (0,K2) are both asymptotically stable and the

bistability occurs for the two species. [2]

3. CANCER DYNAMICS

In this section we use Lotka-Volterra model (2.1) to describe the competition between normal

cells x1 and cancer cells x2. The model parameters have the following biological meaning: β1

represents the negative effect of the cancer cells on normal cells, while β2 represents the effect of

the normal cells on cancer cells, α1 and α2 are the maximum growth rates of normal and cancer

cells respectively, K1 and K2 denote the carrying capacities of normal and cancer cells. This
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system contains four equilibria each with different stability properties based on the conditions

mentioned in Theorem (2.1).

1. E = (0,0) will always exist and unstable, so it is not biologically important.

2. E = (K1,0) represents normal cells and no cancer cells. If K1 >
α2
β2

and K2 <
α1
β1

then

this is an asymptotically stable equilibrium point which means that the cancer will be

eliminated.

3. E = (0,K2) represents an invasive cancer. If K1 <
α2
β2

and K2 >
α1
β1

then this is an asymp-

totically stable equilibrium point which means that the cancer will destroy all normal

cells.

4. E = (x̄1, x̄2) represents a stable coexistence of both cancer and normal cells. If K1 <
α2
β2

and K2 < α1
β1

then this is an asymptotically stable equilibrium point which means that

the cancer is controlled at a certain level.

4. CANCER MODEL WITH TREATMENT

In this section we will consider using an anti-angiogenic drug to stop the cancer from having

its own blood vessels. This treatment will slow the growth of the cancer or sometimes shrink it.

In order to study the cancer model with treatment we will use the following model :

ẋ1 = α1x1

(
1− x1

K1

)
−β1x1x2

ẋ2 = x2

(
α2− γ− α2x2

K2

)
−β2x1x2(4.1)

where γ < α2 denotes the anti-angiogenic treatment rate.

4.1. Existence of Equilibrium. We will have four equilibria as follows:

E1 = (0,0),E2 = (K1,0) ,E3 = (0,K2(1−
γ

α2
)),E4 = (x∗1,x

∗
2)

where

x∗1 =
α1α2K1− (α2− γ)β1K1K2

α1α2−β1β2K1K2
, x∗2 =

α1(α2− γ)K2−α1β2K1K2

α1α2−β1β2K1K2

E1,E2, always exists, but E3 exists if γ < α2 and E4 exists if either

α1 >
α2− γ

α2
β1K2, (α2− γ)> β2K1
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or

α1 <
α2− γ

α2
β1K2, (α2− γ)< β2K1.

4.2. Stability Analysis. The stability of the equilibria is determined by the eigenvalues of the

Jacobian,

(4.2) J =

α1−2α1
K1

x1−β1x2 −β1x1

−β2x2 α2− γ−2α2
K2

x2−β2x1


For E1 = (0,0) the matrix (4.2) is

J1 =

α1 0

0 α2− γ



Since γ < α2, then this matrix has two positive eigenvalues and (0,0) is always an unstable.

For E2 = (K1,0) the matrix (4.2) is

J2 =

−α1 −β1K1

0 α2− γ−β2K1



with eigenvalues {−α1,α2− γ−β2K1}. It follows that (K1,0) is a saddle if

K1 <
α2− γ

β2
,

and asymptotically stable if

K1 >
α2− γ

β2
.

For E3 =
(

0,K2

(
1− γ

α2

))
the matrix (4.2) is

J3 =

α1− β1K2
α2

(α2− γ) 0

−β2K2
α2

(α2− γ) γ−α2



with eigenvalues
{

α1− β1K2
α2

(α2− γ) ,γ−α2

}
. It follows that

(
0,K2

(
1− γ

α2

))
is a saddle if

K2 <
α1α2

β1 (α2− γ)
,
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and asymptotically stable if

K2 >
α1α2

β1 (α2− γ)
.

For E4 = (x∗1,x
∗
2)

J4 =

α1−2α1
K1

x∗1−β1x∗2 −β1x∗1

−β2x∗2 α2− γ− α2
K2

x∗2−β2x∗1



From equation (4.1) ,we get

J4 =

−α1
K1

x∗1 −β1x∗1

−β2x∗2 −
α2−γ

K2
x∗2



Then

det (J4) = (x∗1x∗2)
(

α1(α2− γ)

K1K2
−β1β2

)
,

tr (J4) =−
α1

K1
x∗1−

α2− γ

K2
x∗2.

It follows that E4 is a saddle if

K1K2 >
α1 (α2− γ)

β1β2
,

and asymptotically stable if

K1K2 <
α1 (α2− γ)

β1β2
.

In order to destroy all the cancer cells we need to focus on the equilibrium point E2 = (K1,0)

and try to satisfy the conditions that make it asymptotically stable and make E3 unstable (i.e.)

γ > m, where m = max
{

α2−β2K1,α2− α1α2
β1K2

}
.
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5. DESIGN OF THE SWITCHING SIGNAL

As mentioned in section 1, the treatment can have many side effects especially for high

dosage of the drugs. So, in order to minimize these side effects, doctors need to reduce the

dosage for periods of time or even stop the treatment. Our purpose is to determine the best du-

ration for different dosages that would maintain the effectiveness of the treatment by introducing

switching into model (4.1). Assume that the treatment γ is a parameter which varies over time

in a simple way: it is a piecewise constant that switches its value at some certain times tk, where

t0 = 0 < t1 < t2 < · · ·< tm < · · ·< ∞, as k = 0,1,2, · · · . Assume there are n different treatment

rates γi where γi is a piecewise constant parameter, i∈ {1,2,3, · · · ,n}. Consider a switching sig-

nal σ(t) : [t0,∞)→ I = {1,2,3, · · · ,n} ,n ∈ N which is a piecewise right-continuous function.

Let τk = tk+1− tk denotes the dwell time. This leads to the following model:

ẋ1 = α1x1

(
1− x1

K1

)
−β1x1x2

ẋ2 = x2

(
α2− γi−

α2x2

K2

)
−β2x1x2(5.1)

where i ∈ {1,2,3, · · · ,n} follows the switching signal σ(t), m < γi < α2. In order to destroy

cancer cells and reduce the side effects of the treatment, we use MDT method in [16] and

theorem in [20] which we state for convenience of the reader:

Theorem 5.1. [16] Consider the nonlinear switched system

(5.2) ẋ = fσ(t)(x)

with n = 2, and the two subsystems are active in turn. If ẋ = f1(x) is exponentially asymptoti-

cally stable, and there exists a Lyapunov function V1(x) such that

V̇1(x)|(1) =
∂V1

∂x
f1(x)≤−λ1V1(x)

where

a1 ‖x‖2 ≤V1(x)6 b1 ‖x‖2 , 0 < a1 < b1

and the subsystem ẋ = f2(x) is unstable and there exists a Lyapunov function V2(x) such that

V̇2(x)|(2) =
∂V2

∂x
f2(x)≤ λ2V2(x)
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where

a2 ‖x‖2 ≤V2 6 b2 ‖x‖2 , 0 < a2 < b2

then we have three cases

(i) If λ2 < λ1, then system (5.2) is asymptotically stable under arbitrary switching with

τ
(1)
k ≥ τ0, τ

(2)
k ≤ τ0, where τ

(i)
k is the dwell time of the ith subsystem ẋ = fi(x), i ∈ I, and

the MDT is given by

(5.3) τ0 =
ln(µ1µ2)

λ1−λ2
, µi =

bi

ai
, i ∈ I

(ii) If λ1 = λ2, then system (5.2) is asymptotically stable under arbitrary switching with

τ
(1)
k − τ

(2)
k ≥ τ0, and the MDT is given by

(5.4) τ0 =
ln(µ1µ2

λ1)
, µi =

bi

ai
, i ∈ I

(iii) If λ2 > λ1, then system (5.1) is asymptotically stable under arbitrary switching with

τ
(1)
k ≥ λ2+ε

λ1
τ0,τ

(2)
k ≤ τ0, and the MDT is given by

(5.5) τ0 =
ln(µ1µ2)

ε
, µi =

bi

ai
, i ∈ I

where ε > 0 is an arbitrary positive real number.

Theorem 5.2. [20] Consider the nonlinear switched system (5.2) with n = 3, and the three

subsystems are active in turn. If ẋ = f1(x) and ẋ = f2(x) are exponentially asymptotically

stable, and there exists a Lyapunov function Vi(x) such that

V̇i(x)|(i) =
∂Vi

∂x
fi(x)≤−λiVi(x)

where

ai ‖x‖2 ≤Vi(x)6 bi ‖x‖2 , 0 < ai < bi for i = {1,2}

and the subsystem ẋ = f3(x) is unstable and there exists a Lyapunov function V3(x) such that

V̇3(x)|(3) =
∂V3

∂x
f3(x)≤ λ3V3(x)

where

a3 ‖x‖2 ≤V3 6 b3 ‖x‖2 , 0 < a3 < b3

then we have three cases
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(i) If λ3 < λ1 + λ2, then system (5.2) is asymptotically stable under arbitrary switching

with τ
(1)
k ≥ τ0, τ

(2)
k ≥ τ0 and τ

(3)
k ≤ τ0, where τ

(i)
k is the dwell time of the ith subsystem

ẋ = fi(x), i ∈ I, and the MDT is given by

(5.6) τ0 =
ln(µ1µ2µ3)

λ1 +λ2−λ3
, µi =

bi

ai
, i ∈ I

(ii) If λ1 = λ2 = λ3, then system (5.2) is asymptotically stable under arbitrary switching

with τ
(1)
k + τ

(2)
k − τ

(3)
k ≥ τ0, and the MDT is given by

(5.7) τ0 =
ln(µ1µ2µ3)

λ1
, µi =

bi

ai
, i ∈ I

(iii) If λ3 > λ1 + λ2, then system (5.2) is asymptotically stable under arbitrary switching

with τ
(1)
k ≥ λ3+ε

λ1+λ2
τ0,τ

(2)
k ≥ λ3+ε

λ1+λ2
τ0,τ

(3)
k ≤ τ0, and the MDT is given by

(5.8) τ0 =
ln(µ1µ2µ3)

ε
, µi =

bi

ai
, i ∈ I

where ε > 0 is an arbitrary positive real number.

6. NUMERICAL ILLUSTRATIONS

In this section, we apply the method from Theorem (5.1) on two subsystems, the second

subsystem represents the interaction between cancer and normal cells without treatment while

in the first subsystem we introduce treatment using anti-angiogenic drugs. Also the method

from Theorem (5.2) on three subsystems is applied in the second example, where we introduce

a third subsystem with a lower dosage of the drug to minimize the side effects. To illustrate

these method, we assume the following values for fixed parameters α1 = 0.9,α2 = 0.9, K1 =

K2 = 10,β1 = 0.18, β2 = 0.045. In the first example , we choose γ1 = 0.6, γ2 = 0, and for the

second example, we choose γ1 = 0.75,γ2 = 0.5,γ3 = 0.

Consider the following switched system:

ẋ1 = 0.9x1(1−0.1x1)−0.18x1x2

ẋ2 = x2 (0.9− γi−0.09x2)−0.045x1x2(6.1)
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Example 6.1. Consider the following subsystems:

(6.2) subsystem1 :


ẋ1 = 0.9x1 (1−0.1x1)−0.18x1x2

ẋ2 = x2 (0.3−0.09x2)−0.045x1x2

(6.3) subsystem2 :


ẋ1 = 0.9x1 (1−0.1x1)−0.18x1x2

ẋ2 = 0.9x2 (1−0.1x2)−0.045x1x2

where subsystem 1 is the competition model between normal and cancer cells with treatment

(γ1 = 0.6) and in subsystem 2 we stop using the treatment (γ2 = 0). we will use numerical sim-

ulations to prove that the switched system is asymptotically stable if we use the MDT method

found in Theorem (5.1) even though subsystem 2 is unstable. This shows that we can stop using

the drugs for a specific time period and then use it again for another time period and repeat

this process without loosing stability, so the cancer would still be decreasing in size and we can

minimize the side effects of the drug.

Analysing system (6.2) and (6.3) by using Linearization method, we find that the equilibrium

point (10,0) is unstable for subsystem 2 and asymptotically stable for subsystem 1. To use The-

orem (5.1) to find the MDT for the switched system (6.1), we need to translate the point (10,0)

to the origin by using the transformation x1 = u1 +10, x2 = u2 and get the switched system

(6.4) subsystem3 :


u̇1 =−0.09u2

1−0.9u1−0.18u1u2−1.8u2

u̇2 =−0.15u2−0.09u2
2−0.045u1u2

(6.5) subsystem4 :


u̇1 =−0.09u2

1−0.9u1−0.18u1u2−1.8u2

u̇2 = 0.45u2−0.09u2
2−0.045u1u2
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Let V1 = 1
3u2

1 + u2
2 be a Lyapunov function for the 3rd subsystem, and V2 = 1

2u2
1 + u2

2 be a

Lyapunov function for the 4th subsystem. Next;

V̇1|(1) =
2
3

u1
(
−0.09u2

1−0.9u1−0.18u1u2−1.8u2
)
+2u2

(
−0.15u2−0.09u2

2−0.045u1u2
)

=−0.06u3
1−0.6u2

1−0.12u2
1u2−1.2u1u2−0.3u2

2−0.18u3
2−0.09u1u2

2

≤−0.6u2
1−0.3u2

2 =−0.3
(
2u2

1 +u2
2
)
≤−0.3V1

V̇2|(2) = u1
(
−0.09u2

1−0.9u1−0.18u1u2−1.8u2
)
+2u2

(
0.45u2−0.09u2

2−0.045u1u2
)

=−0.09u3
1−0.9u2

1−0.18u2
1u2−1.8u1u2 +0.9u2

2−0.18u3
2−0.09u1u2

2

≤−0.9u2
1 +0.9u2

2 = 0.9
(
−u2

1 +u2
2
)
≤ 0.9V2

then, λ1 = 0.3,λ2 = 0.9, and

1
5
‖u‖2 ≤V1(u)≤ ‖u‖2

1
4
‖u‖2 ≤V2(u)≤ ‖u‖2

where ‖u‖2 = u2
1 +u2

2, and then µ1 = 5,µ2 = 4. Since λ2 > λ1, choose ε = 0.8, then

τ0 =
ln(5×4)

0.8
=

ln(20)
0.8

= 3.744665

The simulation is presented in Figure 1,with initial Condition: [x1(0),x2(0)] = [12,4], and

switching signal:

σ(t) =


2, t ∈ [t2k+1, t2k+2) , t2k+2− t2k+1 = 3.5

1, t ∈ [t2k, t2k+1) , t2k+1− t2k = 22 where k=0,1,2,...

So, we can use the treatment for τk = 22, and then stop using it for τk = 3.5, and repeat this

process without loosing stability, and the cancer would still be decreasing in size.
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FIGURE 1. State response with MDT τ0 = 3.744665

Example 6.2. Consider the following subsystems:

(6.6) subsystem1 :


ẋ1 = 0.9x1 (1−0.1x1)−0.18x1x2

ẋ2 = x2 (0.15−0.09x2)−0.045x1x2

(6.7) subsystem2 :


ẋ1 = 0.9x1 (1−0.1x1)−0.18x1x2

ẋ2 = x2 (0.4−0.09x2)−0.045x1x2

(6.8) subsystem3 :


ẋ1 = 0.9x1 (1−0.1x1)−0.18x1x2

ẋ2 = 0.9x2 (1−0.1x2)−0.045x1x2

where subsystem 1 is the competition model between normal and cancer cells with treatment

(γ1 = 0.75), in subsystem 2 we use treatment with rate (γ2 = 0.5) and in subsystem 3 we stop

using the treatment (γ3 = 0) Analysing system (6.6), (6.7) and (6.8) by using Linearization

method, we find that the equilibrium point (10,0) is unstable for subsystem 3, asymptotically

stable for subsystems 1 and 2. Using Theorem (5.2) to find the MDT for the switched system

(6.1), we need to translate the point (10,0) to the origin by using the transformation x1 =

u1 +10, x2 = u2 and get the switched system

(6.9) subsystem4 :


u̇1 =−0.09u2

1−0.9u1−0.18u1u2−1.8u2

u̇2 =−0.3u2−0.09u2
2−0.045u1u2
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(6.10) subsystem5 :


u̇1 =−0.09u2

1−0.9u1−0.18u1u2−1.8u2

u̇2 =−0.05u2−0.09u2
2−0.045u1u2

(6.11) subsystem6 :


u̇1 =−0.09u2

1−0.9u1−0.18u1x2−1.8u2

u̇2 = 0.45u2−0.09u2
2−0.045u1u2

Let V1 =
1
6u2

1+
1
2u2

2 be a Lyapunov function for the 4th subsystem, V2 =
1
9u2

1+u2
2 be a Lyapunov

function for the 5th subsystem, and V3 =
1
2u2

1+u2
2 be a Lyapunov function for the 6th subsystem.

Next;

V̇1|(1) =
1
3

u1
(
−0.09u2

1−0.9u1−0.18u1u2−1.8u2
)
+u2

(
−0.3u2−0.09u2

2−0.045u1u2
)

=−0.03u3
1−0.3u2

1−0.06u2
1u2−0.6u1u2−0.3u2

2−0.09u3
2−0.045u1u2

2

=−0.3u2
1−0.3u2

2 =−0.3
(
u2

1 +u2
2
)
≤−0.3V1

V̇2|(2) =
2
9

u1
(
−0.09u2

1−0.9u1−0.18u1u2−1.8u2
)
+2u2

(
−0.05u2−0.09u2

2−0.045u1u2
)

=−0.02u3
1−0.2u2

1−0.02u2
1u2−0.2u1u2−0.1u2

2−0.18u3
2−0.09u1u2

2

≤−0.2u2
1−0.1u2

2 =−0.1
(
2u2

1 +u2
2
)
≤−0.1V2

V̇3|(3) = u1
(
−0.09u2

1−0.9u1−0.18u1x2−1.8u2
)
+2u2

(
0.45u2−0.09u2

2−0.045u1u2
)

=−0.09u3
1−0.9u2

1−0.18u2
1u2−1.8u1u2 +0.9u2

2−0.18u3
2−0.09u1u2

2

≤−0.9u2
1 +0.9u2

2 = 0.9(−u2
1 +u2

2)≤ 0.9V3

then, λ1 = 0.3,λ2 = 0.1, and λ3 = 0.9, and

1
7
‖u‖2 ≤V1(u)≤ ‖u‖2

1
10
‖u‖2 ≤V2(u)≤ ‖u‖2

1
4
‖u‖2 ≤V3(u)≤ ‖u‖2
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FIGURE 2. State response with MDT τ0 = 6.26087

where ‖u‖2 = u2
1+u2

2, and then µ1 = 7,µ2 = 10 and µ3 = 4. Since λ1+λ2 < λ3, choose ε = 0.9,

then

τ0 =
ln(7×10×4)

0.9
=

ln(280)
0.9

= 6.26087

The simulation is presented in Figure 2, with initial Condition: [x1(0),x2(0)] = [15,7], and

switching signal:

σ(t) =



2, t ∈ [t3k+1, t3k+2) , t3k+2− t3k+1 = 28.5

3, t ∈ [t3k+2, t3k+3) , t3k+3− t3k+2 = 6

1, t ∈ [t3k, t3k+1) , t3k+1− t3k = 28.5 where k=0,1,2,...

So, we can use the treatment for τk = 28.5 with treatment rate of 0.5 and then stop using it

for τk = 6, and then with treatment rate of 0.75 for τk = 28.5, and repeat this process without

loosing stability, and the cancer would still be decreasing in size.

7. CONCLUSION

In this paper, we have considered a mathematical model using Lotka-Volterra Competition

model to describe the competition between normal cells and cancer cells with treatmen, we

have used an anti-angiogenic drug to stop the cancer from having its own blood vessels. This

treatmen slows the growth of the cancer or sometimes shrinks it, but it can have many side

effects especially for high dosage of the drugs. So, in order to minimize these side effects,
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we determined the best duration for different dosages that would maintain the effectiveness of

the treatment by introducing switching. We have proposed a switched system to determine the

duration of treatments by using the MDT method and provide an analytical insight into the

effectiveness of such method. Specifically, time-driven switching control is used. We proved

that the drugs can be stopped for a specific time period and then used again for another time

period and repeat this process without loosing stability, and the cancer would still decrease in

size.
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