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Abstract. In this manuscript, we have proposed and analyzed a differential equation model for HIV infection to

study the dynamics of three different populations: HIV-free CD4+ T cells, HIV-infected CD4+ T cells and free

virus of the model. In the model, we have incorporated fusion effect for HIV-free CD4+ T cell and free virus,

proliferation of HIV-free CD4+ T cells which follows a full logistic growth term and cure rate for HIV-infected

CD4+ T cells. Our main objective is to investigate the effects of fusion and cure rate on the dynamics of the model.

We have used next generation matrix method to calculate the basic reproduction number (R0) for this proposed

model. Local stability of the existing equilibrium points is discussed using Routh-Hurwitz theorem. Also, in order

to establish the global stability criteria Lyapunov functional and geometric approach are used. From the analysis it

is found that if the basic reproduction number R0 ≤ 1, HIV will be removed from the population of CD4+ T cells

and if R0 > 1, there exists chronic infection. Also, we have carried out numerical simulations in order to verify

the analytic results.
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1. INTRODUCTION

During the last decades, the mathematical theories have been used extensively to investi-

gate different viral infections like HIV, HBV, HCV, HTLV-1 and so on. Among these, human
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immunodeficiency virus (HIV) is one of the most studied viruses in the field of mathematical

theory of viral infections and researchers have developed a lots of mathematical models to in-

vestigate the in-host dynamics of HIV. Some of the main issues studied in the previous studies

are: the dynamics of the CD4+ T-cells [1, 2, 3], a type of lymphocytes that is mainly targeted by

HIV [4]; the dynamics of CD4+ T-cells and free virus with the effects of different inter-cellular

delays [5, 6]; different infection mechanisms and their consequences [7, 8]; different treatment

strategies to control infection with the effects of immune responses to the infection [9, 10].

In the year 2016, a generalized virus dynamics model was proposed by Hattaf and Yousfi

[11] in which they incorporated both virus-to-cell and cell-to-cell transmission processes along

with the cure rate. Mathematical analysis of the model was done and conditions for stability

of all existing equilibrium points of the model were carried out. Xua et al. [12] proposed a

model incorporating time delays and humoral immunity. From the analysis of the model, they

found that the global behaviour depends on the basic reproduction ratio of virus and immune

response. They also found that when basic reproduction ratio of immune response is greater

than one then the concentration of free virus is reduced by the immune response. In 2019,

Gupta and Dutta [13] proposed a model with the consideration that due to fusion effect a few

portion of HIV-free CD4+ T-cells and free virus get lossed during contact of HIV-free CD4+

T cells and free virus. Also in [14], they incorporated fusion effect and used homotopy anal-

ysis method (HAM) to find analytic solutions of the model. In 2020, Geng et al. [26] studied

a delayed differential equation model incorporating both the virus-to-cell and cell-to-cell in-

fection processes along with proliferation of HIV-free and HIV-infected CD4+ T cells. They

established that destabilization of the infected equilibrium may occur due to time delays which

leads to the existence of Hopf bifurcation.

In their study, Gupta and Dutta [13, 14] considered constant inflow rate for HIV-free healthy

CD4+ T cells which is an ideal situation as proliferation of existing CD4+ T cells also leads

to the formation of new CD4+ T cells. So, we have proposed a more realistic mathematical

model for HIV infection incorporating fusion effect and cure rate in this study. The model

formulation and the basic properties of the model like non-negativity and boundedness of the

solutions are discussed in the section 2. Also, we have discussed the stability conditions of the

model in section 3. All the analytic results are verified numerically. Finally, the concluding

remarks from the overall study are included in section 4.
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2. MODEL FORMULATION

Here, we have formulated a model with the effect of fusion and cure rate to describe the in

host HIV dynamics which is inspired by the models in [13, 14]. Our model constitutes of three

populations: HIV-free CD4+ T cells, HIV-infected CD4+ T cells and free virus. Dynamics of

each compartment and the overall model are discussed below:

2.1. HIV-free CD4+ T cells. As discussed earlier, CD4+ T cells are main target of HIV.

To formulate the in-host HIV model, we divide the CD4+ T cells in to two catagories: HIV-

free CD4+ T cells x(t), which are healthy T cells and HIV-infected CD4+ T cells y(t), which

are infected by HIV. Consider r is the rate at which HIV-free CD4+ T-cells are produced from

different sources like precursors in bone marrow and thymus. In different earlier studies [11, 12,

13, 14], they considered only this assumption for production of virus-free CD4+ T cells. But,

from the literatures of Biology it is found that proliferation of existing T cells can also produce

new T cells and some researchers [15, 16, 17, 18, 19, 20] have already used a simplified logistic

term ax
(

1− x
xmax

)
to describe this phenomenom. Considering that during the infection total

T cell population is x+ y, different researchers have used a full logistic term ax
(

1− x+ y
xmax

)
in their works [20, 21, 22, 23, 24, 25] to describe this proliferation process. Here, a and xmax

are the proliferation rate and maximum carrying capacity of T cells respectively. −d1x is the

natural decay rate of HIV-free CD4+ T cells. Therefore, the following equation represents

dynamics of virus-free CD4+ T cells when there is no HIV infection:

(2.1)
dx
dt

= r−d1x+ax
(

1− x
xmax

)

If β zx is the infection rate of HIV-free cells and f zx is the decay rate of HIV-free CD4+ T

cells and free virus due to fusion effect. ρ is the cure rate of HIV-infected CD4+ T cells to

the HIV-free class. With all these considerations, the dynamics of the HIV-free CD4+ T cells

during HIV infection can be expressed by the following differential equation:

(2.2)
dx
dt

= r−d1x+ax
(

1− x+ y
xmax

)
− f zx−β zx+ρy

2.2. HIV-infected CD4+ T cells. In addition to the assumptions discussed above, we con-

sider d2 is the natural death rate of HIV-infected CD4+ T cells. Then, dynamics of HIV-infected
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CD4+ T can be described by the following differential equation:

(2.3)
dy
dt

= β zx−d2y−ρy

2.3. Free Virus. In order to model the dynamics of free virus, we consider during the life-

time, an HIV-infected CD4+ T cell can produce N number of virus particles and natural clear-

ance rate of virions is denoted by d3. Then the dynamics of free virus can be represented by

the following equation:

(2.4)
dz
dt

= Nd2y−d3z− f zx

2.4. The Overall Model. Combining all the above equations, our overall model is:

(2.5)

dx
dt

= r−d1x+ax
(

1− x+ y
xmax

)
− f zx−β zx+ρy,

dy
dt

= β zx−d2y−ρy,
dz
dt

= Nd2y−d3z− f zx.

FIGURE 1. Pictorial representation of the model, where R1 = r +

ax
(

1− x+ y
xmax

)
.
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2.5. Assumptions. We have considered following assumptions in this study:

(i) The HIV-free CD4+ T cells are produced from the sources like precursors of bone marrow,

thymus as well as by proliferation of existing cells.

(ii) Due to the fusion effect, a few portion of HIV-free CD4+ T-cells and free virus get lossed

during their contact process.

(iii) Consider d1 ≤ d2 for the viral burden on the HIV infected CD4+ T-cells.

(iv) For identifying the proliferation process of existing CD4+ T-cells as compared to the

normal rate r−d1x, we consider d1 ≤ a.

TABLE 1. Values of parameters for the model (2.5).

Parameters Intervals Set 1 Set 2 Units Source

r 0-10 10 10 cells mm−3day−1 [20, 23, 26]

a 0.03-3 0.3 0.3 day−1 [20, 23, 26]

xmax 1500 1500 1500 mm−3 [20, 23, 26]

β 0.00025-0.5 0.00025 0.0027 virions mm3day−1 [20, 23, 26]

d1 0.007-0.1 0.1 0.1 day−1 [20, 26]

d2 0.2-0.5 0.2 0.2 day−1 [20, 23, 26]

d3 2.4-3 2.4 2.4 day−1 [20, 23, 26]

N 10-2500 10 10 virions/cell [20, 26]

f - 0.00002 0.00002 virions mm3day−1 Assumed

ρ - 0.2 0.2 day−1 Assumed

2.6. Basic Properties.

Theorem 1. For the system (2.5) with the initial conditions x(0) = x0 > 0,y(0) = y0 ≥ 0 and

z(0) = z0 ≥ 0, we have x(t),y(t),z(t)≥ 0 for all t > 0.

Proof. To prove that x(t) is non-negative for t ≥ 0, consider if possible there exists a t0 such

that

x(t0) = 0,x
′
(t0)< 0,y(t)≥ 0,z(t)≥ 0, t ∈ [0, t0).

From equation (2.2), we obtain x
′
(t0) = r > 0, a contradiction. Thus, x(t)> 0 for all t > 0.

In the same manner, it can be shown that y(t) ≥ 0 and z(t) ≥ 0 for all t > 0. Also using the
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equation (2.3), it is obtained that

y(t) = e−(ρ+d2)t
(

y0 +
∫ t

0
β z(θ)x(θ)e(ρ+d2)θ dθ

)
≥ 0.

Hence y(t)≥ 0 for all t > 0. Furthermore, using the equation (2.4), we get

z(t) = e−
∫ t

0(d3+ f x(σ))dσ

(
z0 +

∫ t

0
Nd2y(u)e

∫ u
0 (d3+ f x(σ))dσ du

)
≥ 0.

which indicates that z(t)≥ 0 for all t > 0.

Therefore, all solutions (x(t),y(t),z(t)) of the system (2.5) exists and non-negative for all t >

0. �

Theorem 2. For any solution of the model (2.5), there exists B > 0 such that y(t)< B,z(t)< B

for all large t.

Proof. From the equation (2.1), the T cell concentration during absence of infection becomes

stable at a level x0 which is given by,

(2.6) x0 =
xmax

2a

[
(a−d1)+

√
(a−d1)2 +

4ra
xmax

]
Also, limt→∞ x(t)≤ x0.

Adding first two equations of the system (2.5), we get

x
′
+y

′
= r−d1x+ax

(
1− x+ y

xmax

)
− f zx−d2y≤ r+ax0−d1(x+y) (since d1 ≤ d2). It follows

that,

(2.7) x+ y≤ r+ax0

d1
+Ce−dt

where C is arbritary contant, which implies x+ y→ r+ax0

d1
when t → ∞. Therefore, x+ y is

bounded by
r+ax0

d1
. Thus, y is bounded, say by B1 > 0. From the third equation of model, we

find z is bounded say by B2 > 0. Take, B = max{B1,B2}. Then, any solution (x(t),y(t),z(t))

of the system (2.5) satisfies,

y(t)< B,z(t)< B for large t.

Therefore, the solution (x(t),y(t),z(t)) of the model (2.5) are uniformly bounded. Thus, we

have the region

(2.8) Ω = {(x(t),y(t),z(t)) ∈ R3
+ : x≤ x0,y < B,z < B}

which is positively invariant w.r.t. the model (2.5). �
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3. MATHEMATICAL ANALYSIS OF THE MODEL

In this section, we have calculated all stationary points of system (2.5) and investigated the

dynamical behaviours of system (2.5) around existing stationary points.

3.1. HIV-free equilibrium point and Basic reproduction number. The system (2.5) always

has a HIV-free equilibrium point E0 = (x0,0,0), where x0 is defined in equation (2.6). Using

method of Driessche and Watmough [27], we can calculate the basic reproduction number of

model (2.5) as follows:

Consider S = (y,z,x), then our system (2.5) can be represented as:

(3.1)
dS
dt

= E(S)−T (S)

where E(S) is appearance rate of new infections and T (S) is the transfer rate of population to

another compartment in the system (2.5), given by

E(S) =


β zx

0

0

 ,T (S) =


d2y+ρy

d3z+ f zx−Nd2y

d1x+ f zx+β zx− r−ax
(

1− x+ y
xmax

)
−ρy


The Jacobian matrix of E(S) and T (S) at the HIV-free equilibrium point E0 are

DE(E0) =

e2×2 02×1

01×2 0

 ,DT (E0) =

 t2×2 02×1

ax0

xmax
−ρ f x0 +βx0 d1−a

(
1− x0

xmax

)
+

ax0

xmax


where

e2×2 =

0 βx0

0 0

 , t2×2 =

d2 +ρ 0

−Nd2 d3 + f x0


Now

et−1 =
1

(d2 +ρ)(d3 + f x0)

Nd2βx0 βx0(d2 +ρ)

0 0


Therefore, basic reproduction number (R0) of the system (2.5) is given by spectral radius of

et−1 and hence R0 =
Nd2βx0

(d2 +ρ)(d3 + f x0)
.
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3.2. HIV-infected equilibrium point. HIV-infected stationary point E =(x,y,z) must satisfy

r−d1x+ax
(

1− x+ y
xmax

)
− f zx−β zx+ρy = 0(3.2)

β zx−d2y−ρy = 0(3.3)

Nd2y−d3z− f zx = 0(3.4)

Equations (3.3) and (3.4) lead to

x =
d3(d2 +ρ)

Nd2β − (d2 +ρ) f
,

y =
d3β

Nd2β − (d2 +ρ) f
z.

Substituting x and y in the equation (3.2), we get

z =
rp2 +(a−d1)(d2 +ρ)d3 p−

a(d2 +ρ)2d2
3

xmax

p f d3(d2 +ρ)+ pd2d3β +
a(d2 +ρ)βd2

3
xmax

where p = Nd2β − (d2 +ρ) f . These non-trivial solutions of the system (2.5) exist whenever

R0 > 1. Thus, we have following proposition:

Proposition 1. When R0 ≤ 1, only HIV-free equilibrium point E0 = (x0,0,0) exists in Ω for

the system (2.5) and for R0 > 1 there exists two equilibrium points: HIV-free equilibrium point

E0 = (x0,0,0) and HIV-infected equilibrium point E = (x,y,z) ∈ int(Ω).

3.3. Behaviour of the Model (2.5) around E0. In this section, we have studied the local and

global behaviour of our model (2.5) around HIV-free equilibrium point E0.

Theorem 3. The HIV-free equilibrium point E0 is locally asymptotically stable for R0 < 1,

locally stable for R0 = 1 and unstable otherwise.

Proof. The Jacobian matrix J(E0) at HIV-free equilibrium point E0 is,

J(E0) =


(
−d1 +a

(
1− x0

xmax

)
− ax0

xmax

) (
− ax0

xmax
+ρ

)
(− f x0−βx0)

0 −(d2 +ρ) βx0

0 Nd2 −d3− f x0


One characteristic root of J(E0) is

λ1 =−d1 +a
(

1− x0

xmax

)
− ax0

xmax
=− r

x0
− ax0

xmax
< 0.
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Other two characteristic roots are given by the equation,

(3.5) λ
2 +A1λ +A2 = 0

where,

A1 = d2 +ρ +d3 + f x0 > 0

A2 = (d2 +ρ)(d3 + f x0)−Nd2βx0 = (d2 +ρ)(d3 + f x0)(1−R0).

Therefore, one characteristic root of J(E0) is negative. Also, for R0 < 1, A2 > 0. Therefore,

Routh-Hurwitz criteria indicates that when R0 < 1, HIV-free equilibrium point E0 is locally

asymptotically stable. For R0 = 1, one eigen value is zero. J(E0) has a positive character-

istic root when R0 > 1 which leads to instability of the HIV-free equilibrium point E0. This

completes the proof. �

Theorem 4. The HIV-free equilibrium point E0 is globally asymptotically stable when R0 ≤ 1,

unstable otherwise.

Proof. Define Lyaponuv’s functional as:

L =
Nd2

d2 +ρ
y+ z

Differentiating w.r.t. t,
dL
dt

=
Nd2

d2 +ρ

dy
dt

+
dz
dt

Putting
dy
dt

and
dz
dt

from the system (2.5),

(3.6)
dL
dt

= z(d3 + f x)
[

Nd2βx
(d2 +ρ)(d3 + f x)

−1
]
≤ z(d3 + f x0)(R0−1)

It is straightforward from equation (3.6) that if R0≤ 1,
dL
dt
≤ 0. We have,

dL
dt

= 0 for two cases:

z = 0 or R0 = 1 and x = x0. Hence, as per Lyapunov- Lasalle theorem [28] when R0 ≤ 1, all

solutions in the region Ω approaches to the HIV-free equilibrium point E0.

Since J(E0) has one positive characteristic root when R0 > 1, therefore HIV-free equilibrium

point E0 is unstable. �

Numerically, stability of the HIV-free equilibrium point E0 are shown in the figure 2 which

verifies the analytic results. From table 1, we get R0 = 0.541 < 1 for parameters as in the data

set 1. Thus, theorem 4 indicates that virus will be cleared out. Fig. 2(a) depicts the increase of
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the HIV-free CD4+ T cells in the first few days and then it goes to equilibrium state. Fig. 2(b)

describes the rapid increase of HIV-infected CD4+ T cells in the starting few days and then

it decreases fastly and it becomes zero after some days. From fig. 2(c), it is clear that in the

starting few days, free virus population decreases very fastly until it reaches the zero level.

FIGURE 2. Dynamics of HIV-free CD4+ T cells (a), HIV-infected CD4+ T cells

(b) and virus (c) vs. time for R0 = 0.541 < 1.

3.4. Behaviour of the Model (2.5) around E. In this section, we have studied both the local

and global behaviour of the model (2.5) around the HIV-infected equilibrium point E.

Theorem 5. If

(i) R0 > 1,

(ii) M0−
ρ f z
d2
≥ 0 where M0 = d1−a+a

(
2x+ y
xmax

)
.

then, HIV-infected equilibrium point E(x,y,z) is locally asymptotically stable.

Proof. The Jacobian matrix J(E) at HIV-infected equilibrium E is

(3.7) J(E) =


−Z

(
− ax

xmax
+ρ

)
(− f x−βx)

β z −(d2 +ρ) βx

− f z Nd2 −d3− f x


where

Z = d1−a
(

1− x+ y
xmax

)
+

ax
xmax

+ f z+β z =
r
x
+

ax
xmax

+
ρy
x

> 0.

The characteristic equation of J(E) is

(3.8) λ
3 +B1λ

2 +B2λ +B3 = 0
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where

B1 = Z +d2 +ρ +d3 + f x > 0,

B2 =

(
r
x
+

ax
xmax

)
(d2 +ρ +d3)+

ρd3y
x

+
aβxz
xmax

+ f xM0,

B3 =

(
ax

xmax
+d2

)
β zd3 + f zd3(d2 +ρ)> 0,

B1B2−B3 = B2(Z +ρ + f x)+d2

{(
r
x
+

ax
xmax

)
(d2 +ρ +d3)+

aβxz
xmax

+ f xM0

}
+

d3

{(
r
x
+

ax
xmax

)
(ρ +d3)+

ρd3y
x

+ f xM0

}
+d2d3

(
M0−

ρ f z
d2

)
,

M0 = d1−a+a
(

2x+ y
xmax

)
.

From the above analysis, we have B2 > 0 if M0 ≥ 0 and B1B2−B3 > 0 if M0−
f ρz
d2
≥ 0. Using

Routh-Hurwitz criteria, the HIV-infected equilibrium point E is locally asymptotically stable

when M0−
ρ f z
d2
≥ 0. �

We know, the system (2.5) will be uniformly persistent in the region int(Ω) if there exists

ε > 0, irrespective of initial data in int(Ω), such that for all solutions (x(t),y(t),z(t)) of the

model (2.5)

lim
t→∞

infx(t)> ε, lim
t→∞

infy(t)> ε, lim
t→∞

infz(t)> ε

for (x(0),y(0),z(0)) ∈ int(Ω).

Theorem 6. The system (2.5) is uniformly persistent when R0 > 1.

Proof. From equation (3.6), it is clear that for all solutions sufficiently close to E0 and initiating

in int(Ω),
dL
dt

> 0 when R0 > 1. Thus, a neighborhood of E0 is left by these solutions. Solutions

on the x-axis which is positively invariant satisfies the equation,

dx
dt

= r+ax
(

1− x
xmax

)
−d1x

Thus, x→ x0 as t→∞. Thus, when R0 ≤ 1 all the solutions in Ω approaches to E0 along x-axis.

We can show that the uniform persistence of system (2.5) is implied by the local behaviors of

solutions around E0 along with the instability of E0. Using a uniform persistence result from

[29] and a similar argument from the proof of the Proposition 3.3 in [30], the proof of the

theorem is completed. �
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In our study, we have used global-stability criteria develoved by Li and Muldowney [31] to

study the global behaviour of HIV-infected equilibrium point E. We have, int(Ω) is simply

connected and when R0 > 1, E is the unique stationary point in int(Ω). From theorem 4, it is

straightforward that an absorbing compact set H ⊂Ω exists for the model (2.5). Also, already

it is proved that the solutions of model (2.5) are ultimately bounded and the conditions

(3.9) x(t)≤ x0,y(t)< B,z < B

for B > 0 and all large t, are satisfied by any positive solution of the model (2.5) in int(Ω).

We have the following theorem regarding global behaviour of HIV-infected equilibrium point

E.

Theorem 7. The HIV-infected equilibrium point E whenever it exists is globally asymptotically

stable in the interior of H if

(3.10) v := B f + v0 < 0,

where

v0 = max
{
−d1 +a

(
1− ε

xmax

)
+

x0B f
ε

,−d2 +
ax0

xmax

}
and ε is constant of uniform persistent and B is defined in equation (3.9).

Proof. For a general solution (x(t),y(t),z(t)) of the model (2.5), associated Jacobian matrix J

is

(3.11) J(E) =


−Z − ax

xmax
+ρ − f x−βx

β z −(d2 +ρ) βx

− f z Nd2 −d3− f x


J[2], corresponding second additive compound matrix [21, 31] of J is

J[2] =


−(Z +d2 +ρ) βx f x+βx

Nd2 −(Z +d3 + f x) − ax
xmax

+ρ

f z β z −(d2 +ρ +d3 + f x)


where

Z = d1−a
(

1− x+ y
xmax

)
+

ax
xmax

+ f z+β z
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Define,

Q = Q(x,y,z) =


1 0 0

0
y
z

0

0 0
y
z


Now, we compute the directional derivative matrix Q f in the direction of f [32] as follows,

Q f =


0 0 0

0
y
′

z
− yz

′

z2 0

0 0
y
′

z
− yz

′

z2


Then,

Q f Q−1 =


0 0 0

0
y
′

y
− z

′

z
0

0 0
y
′

y
− z

′

z


Define,

X :=Q f Q−1 +QJ[2]Q−1

=


−(Z +d2 +ρ)

βxz
y

( f x+βx)z
y

Nd2y
z

y
′

y
− z

′

z
−Z−d3− f x − ax

xmax
+ρ

f z β z
y
′

y
− z

′

z
−d2−ρ−d3− f x


=

X11 X12

X21 X22



where X11 =−(Z +d2 +ρ),X12 =

(
βxz

y
( f x+βx)z

y

)
,X21 =

Nd2y
z
f z

 and

X22 =


y
′

y
− z

′

z
−Z−d3− f x − ax

xmax
+ρ

β z
y
′

y
− z

′

z
−d2−ρ−d3− f x

 .

Let, (u,v,w) be a vector in R3, consider a norm in R3 as |(u,v,w)|= max{|u|, |v|+ |w|}. Con-

sider, the corresponding Lozinskii measure be µ . Then we have (see [33]):

(3.12) µ(X)≤ max{g1,g2}
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with

(3.13) g1 = µ1(X11)+ |X12|,g2 = |X21|+µ1(X22)

Here, |X12|, |X21| are matrix norm and µ1 be the Lozinskii measure w.r.t. l1 norm. Specifically,

µ1(X11) =−Z−d2−ρ, |X12|=
( f x+βx)z

y
, |X21|=

Nd2y
z

+ f z

To calculate µ1(X22), we consider the solutions of system (2.5) from the interior of the compact

set H ⊂Ω which satisfies (3.9), then:

µ1(X22) = max

{
y
′

y
− z

′

z
−Z−d3− f x+β z,

y
′

y
− z

′

z
−d2−ρ−d3− f x+

∣∣∣∣− ax
xmax

+ρ

∣∣∣∣
}

≤ y
′

y
− z

′

z
− f x−d3 +max

{
−d1 +a

(
1− 2x+ y

xmax

)
− f z,−d2 +

ax
xmax

}
<

y
′

y
− z

′

z
− f x−d3 + v0

where,

v0 = max
{
−d1 +a

(
1− ε

xmax

)
+

x0B f
ε

,−d2 +
ax0

xmax

}
.

From the system (2.5), we get

y
′

y
=

β zx
y
−d2−ρ

z
′

z
=

Nd2y
z
−d3− f x

From (3.13), we have

g1 =−Z−d2−ρ +
( f x+βx)z

y
=

y
′

y
−Z +

f xz
y

<
y
′

y
+ v

g2 <
Nd2y

z
+ f z+

y
′

y
− z

′

z
− f x−d3 + v0 <

y
′

y
+ v

Therefore, we have

µ(X)≤ y
′

y
+ v

Define v with the help of (3.9) as:

v := B f + v0 < 0
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Consider, t̄ be sufficiently large time such that (x(t),y(t),z(t))∈H for all t ≥ t̄ and (x(t),y(t),z(t))

be any positive solution starting in the compact absorbing set H ⊂Ω. Then, along each solution

(x(t),y(t),z(t)) with the condition (x(0),y(0),z(0)) ∈ H and t > t̄, we have

1
t

∫ t

0
µ(X)ds≤ 1

t

∫ t̄

0
µ(X)ds+

1
t

ln
y(t)
y(t̄)

+

(
t− t̄

t

)
v.

Consequently,

q̄2 := lim
t→∞

sup sup
x0∈H

1
t

∫ t

0
µ(X(x(s,x0)))ds < 0

From [31], we have globally asymptotically stability criteria for the HIV-infected equilibrium

point E is that v < 0, which completes the proof. �

Numerical results for HIV-infected equilibrium E are shown in figure 3. From table 1,

we get R0 = 5.8424 > 1 for data set 2. Therefore, a unique HIV-infected equilibrium point

E(178.042,164.599,136.962) exists. Global dynamics of the HIV-free CD4+ T cells, HIV-

infected CD4+ T cells and free virus are depicted when R0 > 1 i.e. whenever HIV-infected

equilibrium exists. Also, for this parameter set 2, the conditions for the analytic results are

satisfied and hence these analytic results are numerically verified.

FIGURE 3. Dynamics of HIV-free CD4+ T cells, HIV-infected CD4+ T cells

and virus vs. time for R0 = 5.8424 > 1.

4. DISCUSSION

In this paper, we have considered the classical virus infection model with the effects of fusion

and cure rate along with the consideration that multiplication of the existing CD4+ T cells can

occur and it follows full logistic growth term ax
(

1− x+ y
xmax

)
. In the earlier studies of fusion

effect and cure rate, constant inflow rate of the HIV-free CD4+ T cells was considered by

Gupta and Dutta [13, 14]. In our paper, we have studied the effects of fusion and cure rate with

consideration of proliferation of healthy CD4+ T cells. Essential criteria like non-negativity
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and boundedness of the solutions for a biologically feasible model are proved. Also, basic

reproduction number (R0) is calculated for our model (2.5) and it is found to be a threshold

parameter in our study. Our stability analysis indicates that if R0 ≤ 1 then T cell population

will be free from HIV infection and HIV infection persists for R0 > 1. Also, stability analysis

of HIV-infected equilibrium point established that proliferation rate and the basic reproduction

number are the important factors for stability of the HIV-infected equilibrium point. Therefore,

proliferation of T cells cannot be ignored while analyzing the dynamics of HIV for better

outcomes.

We can study the effect of fusion rate on the dynamics of the model by means of numerical

simulations. For this purpose, we consider two different fusion rates ( f ) with other parameters

same as data set 2. The effect of fusion rate ( f ) is shown in figure 4. It is observed that when

the fusion rate is increased the HIV-infected CD4+ T cell and virus population decrease.

FIGURE 4. Dynamics of HIV-free CD4+ T cells, HIV-infected CD4+ T cells

and virus vs. time for different values of f .

Similarly, the effects of cure rate (ρ) on the dynamics of the model are shown in figure 5. It

is clear that when cure rate is increased the transition time of HIV-free CD4+ T cell population

increases and the HIV-infected CD4+ T cell population and virus population decrease.

FIGURE 5. Dynamics of HIV-free CD4+ T cells, HIV-infected CD4+ T cells

and virus vs. time for two different values of ρ .
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From the overall study, it is clear that a treatment policy that can increase the transfer rate

of HIV-infected CD4+ T cells to HIV-free class along with the loss of free viruses due to the

fusion effect will be effective to control HIV infection.
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