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Abstract. In this paper, a deterministic model for the co-dynamics of Anthrax and Listerios diseases was formulated

to investigate the qualitative and quantitative relationship of both diseases by incorporating prevention and treatment

controls. The basic reproduction number, stability, existence and equilibria of each disease was investigated

separately. The Anthrax-Listeriosis co-dynamics model was analysed and it the idea of backward bifurcation

existed. The impact of Anthrax infection on the transmission of Listeriosis was determined. The Anthrax-

Listeriosis co-dynamics model was extended and included time dependent control variables. Pontryagin’s Maximum

Principle was used to obtain the optimal control strategies needed for eradication of Anthrax-Listeriosis infections.

We performed the numerical simulation of the co-dynamics model in order to give the quantitative implications of

the results. It was established that Anthrax infection can be attributed to increased risk of Listeriosis but Listeriosis

infection is not associate with the risk of Anthrax. Effective control of Anthrax means incorporating both the

intervention srategies of Anthrax and Listeriosis.
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1. INTRODUCTION

Researchers in [1, 2] attempted to determine effectiveness of vaccination policies using SIR

model. From the theoretical results of their study under constant vaccination, the dynamics

of the disease model is similar to dynamics without vaccination. Several studies have used the

methods of optimal control theory in the formulation of the models [3]. However, some of these

studies focused on the effects of vaccination on the spread and transmission of the diseases as

in the case of the authors in[4].

Moreover, authors in [5] studied a disease transmission model by considering the impact of

a protective vaccine and came out with the optimal vaccine coverage threshold required for

disease eradication. Also, in[6], optimal control was used to study a nonlinear SIR epidemic

model with vaccination strategy. Some modelling techniques have been employed and established

the role of optimal control using SIR epidemic model [7, 8]. [9], formulated an SIR epidemic

model by considering vaccination as control measure.

Authors in [10] formulated a model for the transmission of Listeriosis in animal and human

populations but never considered optimal control strategies in combating the disease. [11],

also applied optimal control to investigate the impact of chemo-therapy on malaria disease

with infection immigrants and [12] applied optimal control methods associated with preventing

exogenous reinfection based on a exogenous reinfection tuberculosis model.

[13] researched on the identification and reservours of pathogens for effective control of

sporadic disease and epidemics. Listeria monocytogenes is among the major zoonotic food

borne pathogen that is responsible for approximately twenty eight percent of most food-related

deaths in the United States annually and a major cause of serious product recalls worldwide.

The dairy farm has been observed as a potential point and reservour for listeria monocytogenes.

Listeria monocytogenes is the third major and common pathogen responsible for bacterial

meningitis among neonates in North America. Factors that are responsible and can increase

the risk of Listeriosis include acquired and induced immune suppression linked with HIV

infection, hematologic malignancies,cirrhosis, diabetes, hemochromatosis and renal failure with

hemodialysis [14].
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Deterministic models are often used to study the dynamics of diseases in epidemiology. In

recent times application of models in the study of disease transmission has increased. The

availability of clinical data and electronic surveillance has facilitated the applications of mathematical

models to critical examining of scientific hypotheses and the design of strategies of combating

diseases[15, 16, 17].

2. MODEL FORMULATION

In this section, we divide the population into compartments. Total human and vector populations

were represented by Nh and Nv respectively. Total human and vector populations expressed as;

(1) Nh = Sh + Ia + Il + Ial +Ra +Rl +Ral.

(2) Nv = Sv + Iv.

Variable Description

Sh Susceptible humans

Ia Anthrax Infected humans

Il Listeriosis Infected humans

Ial Co-infected humans

Ra Anthrax Recovered humans

Rl Listeriosis Recovered humans

Ral Co-infected Recovered humans

Sv Susceptible animals

Iv Infected animals

Cp Population of carcasses

TABLE 1. Co-dynamics model variables with their interpretations.
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Table 2 shows parameters used in the model formulaton and their descriptions.

FIGURE 1. Flow chart for the co-infection model.
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Parameter Description Value Reference

φ Anthrax death rate 0.2 [18]

m Listeriosis death rate 0.2 [10]

q Co-infected Anthrax related death rate 0.04 assumed

η Co-infected Listeriosis related death rate 0.08 assumed

βh Human transmission rate 0.01 [19]

βv Vector transmission rate 0.05 assumed

k Anthrax waning immunity 0.02 assumed

µv Vector natural death rate 0.0004 [19]

Ωh Human recruitment rate 0.001 assumed

Ωv Vector recruitment rate 0.005 [19]

α Anthrax recovery rate 0.33 [20]

δ Listeriosis recovery rate 0.002 assumed

ψ Co-infected waning immunity 0.07 assumed

ρ Listeriosis contribution to environment 0.65 assumed

σ Co-infected recovery rate 0.005 assumed

µb Bacteria death rate 0.0025 assumed

µh Human natural death rate 0.20 [21]

ω Listerios waning immunity 0.001 assumed

θ Modification parameter 0.45 assumed

ε Co-infected Anthrax recovery only 0.025 assumed

K Concentration of carcasses 10000 [20]

v Bacteria ingestion rate 0.50 [22]

TABLE 2. Co-dynamics model parameters and their interpretations.

The variables used in the frmulation of the model are described in Table 1.

Waning immunity rates are given by; ω,k and ψ. Where α,δand σare the recovery rates

respectively and τ (1−σ) are the co-infected persons who have recovered from Anthrax only.
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The co-infected infected persons who have recovered Listeriosis is denoted by (1− τ)(1−σ).

This implies that; σ + τ (1−σ)+(1− τ)(1−σ) = 1. Where, π =
Cpv

k+Cp
.

(3)

dSh

dt
= Ωh + kRa +ωRl +ψRal−βhIvSh−πSh−µhSh

dIa

dt
= β IvSh−πIa− (α +µh +φ) Ia

dIl

dt
= πSh−βlIvIl− (δ +µh +m+ρ) Il

dIal

dt
= βhIvIl +πIa +(σ +µh +η +θ) Ial

dRa

dt
= αIa− (k+µh)Ra +(1− τ)γσ Ial

dRl

dt
= δ Il− (ω +µh)Rl +(1− τ)(1− γ)σ Ial

dRal

dt
= τσ Ial− (ψ +µh)Ral

dCp

dt
= ρIl +θ Ial−µbCp

dSv

dt
= Ωv−βv (Ia + Ial)Sv−µvSv

dIv

dt
= βv (Ia + cI)Sv−µvIv


3. ANALYSIS OF LISTERIOSIS ONLY MODEL

In this section, Listeriosis model only is considered.

(4)

dSh

dt
= Ωh +ωRl−πSh−µhSh

dIl

dt
= πSh− (δ +µh +m) Il

dRl

dt
= δ Il− (ω +µh)Rl

dCp

dt
= ρIl−µbCp


3.1. Disease Free Equilibrium (DFE). We obtain the DFE of the Listeriosis only model by

using system of equations in (4).

(5) Ωh +ωRl−πSh−µhSh = 0
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(6) Sh =
Ωh

µh

(7) ξ0l =
(
S∗h, I

∗
l ,R
∗
l ,C
∗
p
)
=

(
Ωh

µh
,0,0,0

)
.

3.2. Basic reproduction number. In this section, we employ the concept of the Next Generation

Matrix in computing ℜ0l . Using the theorem in [23] on the Listeriosis model only in (4). (ℜ0l) ,

is given by:

(8) ℜ0l =
vρΩh

µbµhK (δ +µh +m)

3.3. Existence of the disease free equilibrium. The (DFE) of the Listeriosis model only

was obtained using system of equations in (4). This was obtained as;

(9) ξ0l =

(
Ωh

µh
,0,0,0

)
.

ℜ0l of the Listeriosis only model was established as;

(10) ℜ0l =
vρΩh

µbµhK (δ +µh +m)
.

Using the next geration operator in [23, 24] , the linear stability can be established on the

system of equations in (4). The disease-free equilibrium, (ξ0l) is locally asymptotically stable

whenever (ℜ0l < 1) and unstable whenever (ℜ0l > 1) .

3.4. Endemic equilibrium (EE). The EE points are computed using system of equations in

(4). The EE points are as follows:

S∗h =
Ωh +ωR∗l
µh +π∗

, I∗l =
π∗S∗h

(δ +µh +m)
, R∗l =

δ I∗l
ω +µh

, C∗p =
ρI∗l
µb

.

ξ0l =
(
S∗h, I

∗
l ,R
∗
l ,C
∗
p
)
=

(
Ωh +ωR∗l
µh +π∗

,
π∗S∗h

(δ +µh +m)
,

δ I∗l
ω +µh

,
ρI∗l
µb

)
.
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(11) ξ0l =

(
Ωh +ωR∗l
µh +π∗

,
π∗S∗h

(δ +µh +m)
,

δ I∗l
ω +µh

,
ρI∗l
µb

)

(12)

S∗h =
Ωh +ωR∗l
µh +π∗

I∗l =
π∗S∗h

(δ +µh +m)

R∗l =
δ I∗l

ω +µh

C∗p =
ρI∗l
µb


3.5. Existence of the endemic equilibrium (EE).

Lemma 1. The Listeriosis only model has a unique EE if and only if ℜ0l > 1.

Proof. Listeriosis force of infection;
(

π =
Cpv

K +Cp

)
, satisfies the polynomial;

(13) P(π∗) = A(π∗)2 +B(π∗) = 0

Where;

A = Ωhρ (ω +µh)+µbK (m(ω +µh)+µh (δ +µh +ω))

and

B = (ω +µh)(1−R0l) .

By mathematical induction, A> 0 and B> 0 whenever ℜ0l < 1. It implies that π∗=
−B
A
≤ 0.

In conclusion, the Listeriosis model has no EE any time ℜ0l < 1. �

The analysis illustrates the impossibility of backward bifurcation in the Listeriosis only

model. Since there is no existence of EE whenever ℜ0l < 1.

4. ANALYSIS OF ANTHRAX ONLY MODEL

In this section, Anthrax only model is considered in the analysis of disease transmission.
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(14)

dSh

dt
= Ωh + kRa−βhIvSh−µhSh

dIa

dt
= β IvSh− (α +µh +φ) Ia

dRa

dt
= αIa− (k+µh)Ra

dSv

dt
= Ωv−βvIaSv−µvSv

dIv

dt
= βvIaSv−µvIv


4.1. Disease free equilibrium (DFE). We obtain the DFE of the Anthrax only model using

system of equations in (14).

(15) Ωh + kRa−βhIvSh−µhSh = 0

(16) Sh =
Ωh

µh

(17) Ωv−βvIaSv−µvSv = 0

(18) Sv =
Ωv

µv

(19) ξ0a = (S∗h, I
∗
a ,R
∗
a,S
∗
v , I
∗
v ) =

(
Ωh

µh
,0,0,

Ωv

µv
,0
)

4.2. Basic reproduction number (ℜ0a) .. In this section, We employed the concept of the

Next Generation Matrix in computing (ℜ0a). Using the theorem in [23] on the Anthrax model

in equation (14) , ℜ0a of the Anthrax only model is given by:

(20) ℜ0a =

√
ΩhΩvβhβv

µhµ2
v (α +µh +φ)
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4.3. Stability of the disease-free equilibrium. Using the next generation operator concept in

[23] on the systems of equation in model (14) , the linear stability of (ξ0a), can be established.

The DFE is locally asymptotically stable whenever ℜ0a < 1 and unstable otherwise.

4.4. Endemic equilibrium. The EE points are computed using system of equations in (14).

The EE points are as follows:

Sh =
Ωh + kR∗a
µh +βhI∗v

, I∗a =
βvS∗hI∗v

(α +µh +φ)
, R∗a =

αI∗a
k+µh

, S∗v =
Ωv

µv +βvI∗a
, I∗v =

βvS∗vI∗a
µv

.

The EE of the Anthrax only model is given by;

ξ0a =
(
S∗h, I

∗
a ,R
∗
a,S
∗
v , I
∗
v
)
=

(
Ωh + kR∗a
µh +βhI∗v

,
βvS∗hI∗v

(α +µh +φ)
,

αI∗a
k+µh

,
Ωv

µv +βvI∗a
,
βvS∗vI∗a

µv
.

)
Hence;

(21) ξ0a =

(
Ωh + kR∗a
µh +βhI∗v

,
βvS∗hI∗v

(α +µh +φ)
,

αI∗a
k+µh

,
Ωv

µv +βvI∗a
,
βvS∗vI∗a

µv
.

)
4.5. Existence of the endemic equilibrium.

Lemma 2. The Anthrax only model has a unique EE whenever ℜ0a > 1. Considering the EE

points of the Anthrax only model;

Proof. ξ0a =

(
Ωh + kR∗a
µh +βhI∗v

,
βvS∗hI∗v

(α +µh +φ)
,

αI∗a
k+µh

,
Ωv

µv +βvI∗a
,
βvS∗vI∗a

µv

)
.

The EE point satisfies the given polynomial;

(22) P(I∗a ) = A1 (I∗a )
2 +B1 (I∗a ) = 0

Where;

A1 = βv (Ωvβh (kφ +µh (α + k+φ +µh))+µh (k+µh)(α +φ +µh)µv)

and

B1 =(k+µh)
(
1−R2

0a
)
.

By induction, A1 > 0 and B1 > 0 whenever ℜ0a < 1. Hence, I∗a =
−B1

A1
≤ 0. In conclusion,

the Anthrax only model has no endemic any time ℜ0a < 1. �

The analysis shows the impossibility of backward bifurcation in the Anthrax only model.

Because there is no existence of EE whenever ℜ0a < 1.
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5. ANTHRAX-LISTERIOSIS CO-INFECTION MODEL

We consider the dynamics of the Anthrax-Listeriosis co-infection of system of equations in

equation (3).

5.1. Disease free equilibrium (DFE). The DFE of the Anthrax-Listeriosis model is obtained

using system of equations in (3).

(23) Ωh + kRa +ωRl +ψRal−βhIvSh−πSh−µhSh = 0

(24) Sh =
Ωh

µh

(25) Ωv−βv (Ia + cIal)Sv−µvSv = 0

(26) Sv =
Ωv

µv

DFE is given by;

ξ0al =
(
S∗h, I

∗
l , I
∗
a , I
∗
al,R

∗
l ,R
∗
a,R
∗
al,C

∗
p,S
∗
v , I
∗
v
)

Hence;

(27) ξ0al =

(
Ωh

µh
,0,0,0,0,0,0,0,

Ωv

µv
,0
)

5.2. Basic reproduction number. The concept of the next generation operator method in

[23] was employed on the system of equations in (3) to compute ℜal of the Anthrax-Listeriosis

co-infection model. The ℜal given by;

(28) ℜal = max{ℜa,ℜl}

Where, ℜa and ℜl are the reproduction numvers of Anthrax and Listeriosis respectively.
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(29) ℜa =

√
ΩhΩvβhβv

µhµ2
v (α +µh +φ)

and

(30) ℜl =
vρΩh

µbµhK

(
(σ +µh +η +θ)+θ (δ +µh +m)

(δ +µh +m)(σ +µh +η +θ)

)
Theorem 3. The ξ0al is locally asymptotically stable whenever ℜal < 1 and unstable otherwise.

5.3. Impact of Listeriosis on Anthrax. In this section, We analysed the impact of Listeriosis

on Anthrax and the vice versa. This was done by expressing the reproduction number of one in

terms of the other. By expressing the basic reproduction number of Listeriosis on Anthrax, that

is expressing ℜl in terms of ℜa;

From; ℜa =

√
ΩhΩvβhβv

µhµ2
v (α +µh +φ)

Solving for µh in the above,

(31) µh =
−G1ℜa +

√
G2

1ℜ2
a +4G2

2µvℜa

where,

G1 = µv (α +φ) and G2 = ΩhΩvβhβv

Given;√
G2

1ℜ2
a +4G2 = G3ℜa +G4,

Implies;

(32) µh =
ℜa (G3−G1)+G4

2µvℜa

By substituting µh into ℜl;

ℜl =
ℜ0l (G4 +(G3−G1)ℜa +2(σ +η +θ)µvℜa +θ (G4 +(G3−G1)ℜa +2(m+δ )µvℜa))

G4 +(G3−G1)ℜa +2(σ +η +θ)µvℜa

where R0l is given the relation;

ℜ0l =
vρΩh

µbµhK (δ +µh +m)
.
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Now, taking the partial derivative of ℜl with respect to ℜa;

(33)
∂ℜl

∂ℜa
=

2G4θ (m+δ − (σ +η +θ))µvℜ0l

[G4 +(G3−G1 +2(σ +η +θ)µvℜa)]
2 .

If (m+δ )≥ (σ +η +θ), the derivative
(

∂ℜl

∂ℜa

)
, is strictly positive. Two scenarios can be

deduced from the derivative
(

∂ℜl

∂ℜa

)
, depending on the values of the parameters;

∂ℜl

∂ℜa
= 0, and

∂ℜl

∂ℜa
≥ 0

(1) If
∂ℜl

∂ℜa
= 0, it implies that (m+δ ) = (σ +η +θ) and the biological implications is

that Anthrax has no significance effect on the spread of Listeriosis.

(2) If
∂ℜl

∂ℜa
> 0, it implies that (m+δ ) ≥ (σ +η +θ), and the biological implications is

that an increase in Anthrax cases would result in an increase Listeriosis cases in the

environment. That is Anthrax enhances Listeriosis infections in the environment.

However, by expressing the basic reproduction number of Anthrax on Listeriosis, that is expressing

ℜa in terms of ℜl;

(34) µh =
H1−H2ℜl +

√
H3ℜ2

l +H4ℜl +H5

2ℜl
.

where;

H1 = (1+θ)ℜ0l , H2 = (m+δ +σ +η +θ)

H3 = (σ +η +θ −m−δ ), H4 = 2(θ −1)(m+δ −σ −η−θ)ℜ0l

H1 = (1+θ)2
ℜ2

0l .

By letting,√
H3ℜ2

l +H4ℜl +H5 = H6ℜl +H7.

It implies that;

(35) µh =
(H6−H2)ℜl +H7 +H1

2ℜl

Therefore,
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(36) ℜ
2
a =

4ΩhΩvβhβvℜ2
l

[(H6−H2)ℜl +H7 +H1] [H7 +H1 +2(α +φ)ℜl +(H6−H2)ℜl]µv

Now, taking the partial derivative of ℜa with respect to ℜl in equation (36), gives;

(37)
∂ℜa

∂ℜl
=

4(H7 +H1) [H7 +H1 +(α +φ +H6−H2)ℜl]ΩhΩvβhβvℜl

[(H6−H2)ℜl +H7 +H1]
2 [H7 +H1 +(2(α +φ)+H6−H2)ℜl]

2
µv

If the partial derivative of ℜa with respect to ℜl is greater than zero,
(

∂ℜa

∂ℜl
> 0
)
, the

biological implication is that an inrease in the number of cases of Listeriosis would result in

an increase in the number of cases of Anthrax in the environment. Moreover, the the impact

of Anthrax treatment on Listeriosis can also be analysed by taking the partial derivative of ℜa

with respect to α ,
(

∂ℜa

∂α

)
.

(38)
∂ℜa

∂α
=− α

α +φ +µh

Clearly, ℜa is a decreasing function of α , the epidemiological implication is that the treatment

of Listeriosis would have an impact on the transmission dynamics of Anthrax.

5.4. Analysis of backward bifurcation. In this section, the phenomenon of backward bifurcation

was carried out by aplying the centre manifold theory on the sysyem of equations in (3) as

outlined in [25]. Considering βh and v as bifurcation parameters, it implies that ℜa = 1 and

ℜl = 1 if and only if,

(39) βh = β
∗
h =

µhµ2
v (α +φ +µh)

ΩhΩvβv

and

(40) v = v∗ =
µbµhK (δ +µh +m)(σ +µh +η +θ)

ρΩh (σ +µh +η +θ +θ (m+δ +µh))

Considering the following change of variables;

Sh = x1, Ia = x2, Il = x3,Ial = x4,Ra = x5,
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Rl = x6,Ral = x7,Cp = x8,Sv = x9,Iv = x10.

This would give the total population as;

N = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10.

By applying vector notation;

X = (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)
T .

The Anthrax-Listeriosis co-infection model can be expressed as;

(41)
dX
dt

= F (X) ,

where

F = ( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10)
T .

The following system of equation is obtained;

(42)

dx1

dt
= Ωh + kx5 +ωx6 +ψx7−βhx10x1−πx1−µhx1

dx2

dt
= βhx10x1−πx2− (α +µh +φ)x2

dx3

dt
= πx1−βlx10x3− (δ +µh +m+ρ)x3

dx4

dt
= βlx10x3 +πx2 +(σ +µh +η +θ)x4

dx5

dt
= αx2− (k+µh)x5 +(1− τ)γσx4

dx6

dt
= δx3− (ω +µh)x6 +(1− τ)(1− γ)σx4

dx7

dt
= τσx4− (ψ +µh)x7

dx8

dt
= ρx3 +θx4−µbx8

dx9

dt
= Ωv−βv (x2 + x4)x9−µvx9

dx10

dt
= βv (x2 + x4)x9−µvx10


Backward bifurcation was carried out by employing the centre manifold theory on the sysyem

of equations in (3). This concept involves computation of the Jacobian of the system of

equations in (42) at DFE. The Jacobian matrix at DFE is given by;
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(43) J (ξ0) =



−µh 0 0 J1 k ω ψ J2 0 J3

0 −J4 0 0 0 0 0 0 0 J3

0 0 −J5 J1 0 0 0 J2 0 0

0 0 0 −J6 0 0 0 0 0 0

0 α 0 J7 −J8 0 0 0 0 0

0 0 δ J9 0 −J10 0 0 0 0

0 0 0 σ 0 0 −J11 0 0 0

0 0 ρ θ 0 0 0 −µb 0 0

0 −J12 0 −J12 0 0 0 0 −µv 0

0 J12 0 J12 0 0 0 0 0 −µv


where; J1 =

ρΩh

µh
, J2 =

µb (δ +µh +m)(σ +µh +η +θ)

ρ (σ +µh +η +θ +θ (δ +µh +m))
,

J3 =
µ3

v (α +φ +µh)

Ωvβv
, J4 = (α +φ +µh),

J5 = (δ +µh +m) , J6 = (σ +µh +η +θ) , J7 = (1− τ)γσ ,

J8 = (k+µh) , J9 = (1− τ)(1− γ)σ , J10 = (ω +µh) ,

J11 = (ψ +µh) and J12 =
Ωvβv

µv
.

Clearly, the Jacobian matrix at DFE has a case of simple zero eigenvalue as well as other

eigenvalues with negative real parts. This is a clear indication that the centre maniflod theorem is

applicable. By applying the centre manifold theorem in [22, 25], the left and right eigenvectors

of the Jacobian matrix J(ξ0) is computed first. Letting the left and right eigenvector reprensented

by:

y =
[

y1, y2, y3, y4, y5, y6, y7, y8, y9, y10

]
and

w =
[

w1, w2, w3, w4, w5, w6, w7, w8, w9, w10

]T
respectively.

The following were obtained;

w1 =
Kw5

µh
+

w2µ2
v (α +φ +µh)

µh
, w2 =

µ2
v

Ωvβv
,

w3 = w4 = w6 = w7 = w8 = 0 , w5 =
αµ2

v
Ωvβv (k+µh)

,

w9 =−w10, w10 = 1.

and
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y1 = y3 = y5 = y6 = y7 = y8 = y9 = 0 , y2 =
v10Ωvβv

µv (α +φ +µh)
,

y2 = y4, y10 =
−µv (σ +µh +η +θ)

Ωvβv
.

By further simplifications, it can be shown that;

a =
τw10µ3

v (σ +µh +η +θ)

Ωvβv
−2w10βv

[
µ2

v (σ +µh +η +θ)

µhΩvβv
+

αKµ2
v (σ +µh +η +θ)

µhΩvβv (k+µh)(α +φ +µh)

]
and

b = y2w10
Ωh

µh
> 0.

It can be deduced that the coefficient b would always be positive. Backward bifurcation will

take place in the system of equations in (3) if the coefficient a is positive. In conclusion, the

DFE is not globally stable.

This phenomenon only exists in situations where DFE and EE coexists. Epidemiological

implication is that the idea that whenever ℜ0 < 1, the disease can be controled is no longer a

sufficient condition.

6. SENSITIVITY ANALYSIS OF THE CO-INFECTION MODEL

We perfomed sensitivity annalysis of ℜal of the co-dynamics model. This is to determine

the significance each parameter on ℜal [26, 27]. The sensitivity index ofℜ0 to a parameter x is

given by the relation:

(44) Π
ℜ0
x =

(
∂ℜ0

∂x

)(
x

ℜ0

)
The sensitivity analysis of ℜ0a and ℜ0a were determined separately, since the basic reproduction

number of the co-infection model is usually;

(45) ℜ0 = max{ ℜ0a , ℜ0l }

6.1. Sensitivity indices of ℜ0a. In this section, we derive the sensitivity of ℜ0a to each of

the parameters. Detailed sensitivity indices of ℜ0a are shown in Table 3. The values in Table

3, showed that the most sensitive parameters are human recruitment rate, vector recruitment

rate, human transmission rate and vector transmission rate. In creasing or decreasing the human
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recruitment rate by 10% would increase or decrease ℜ0a by 12.164%. However, increasing or

decreasing human and vector transmission rates by 10% would increase or decrease ℜ0a by

1.216% and 0.243% respectively.

Parameter Description Sensitivity Index

Ωh Human recruitment rate 1.2164

Ωv Vector recruitment rate 0.2433

βh Human transmission rate 0.1216

βv Vector transmission rate 0.0243

α Anthrax recovery rate −0.0037

µh Human natural death rate −0.0122

µv Vector natural death rate −0.0061

φ Anthrax related death rate −0.0065

θ Modification parameter 3.42913∗10−6

TABLE 3. Sensitivity indices of ℜ0a to each of the parameter values.

6.2. Sensitivity indices of ℜ0l . In this section, we derive the sensitivity of ℜ0l to each of

the parameters. Detailed sensitivity indices of ℜ0l are shown in Table 4. The values in Table 4

showed that the most sensitive parameters are the human recruitment rate, Listeriosis contribution

to environment, bacteria ingestion rate and Listeriosis related death. Increasing or decreasing

the human recruitment rate by 10% would increase or decrease ℜ0l by 0.201487%. Moreover,

increasing or decreasing Listeriosis contribution to environment and bacteria ingestion rate by

10% would increase or decrease ℜ0l .
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Parameter Description Sensitivity Index

Ωh Human recruitment rate 0.0201487

σ Co-infected human recovery rate −5.41441∗10−6

µh Human natural death rate −0.00014638

η Listeriosis death rate among co-infected −5.41441∗10−6

θ Modification parameter 3.42913∗10−6

v Bacteria ingestion rate 0.0000402975

ρ Listeriosis contribution to environment 0.0000309981

K Concentration of carcases −2.01487∗10−10

δ Listeriosis recovery rate −0.0000402218

µb Carcases mortality rate −0.0080595

m Listeriosis related death −0.0000402218

TABLE 4. Sensitivity indices of ℜ0l to each of the parameter values.

7. EXTENSION OF THE MODEL TO OPTIMAL CONTROL

In this section, we extended model analysis to optimal control. This was carried out to

determine the impact of intervention schemes. The optimal control problem is derived by

incorporating the following control functions into the Anthrax-Listeriosis co-infection model in

Figure 1 and the introduction of an objective functional that seeks to minimise: (u1,u2,u3,u4,u5).

The controls u1(t) and u2(t) denotes the efforts on preventing Anthrax and Listeriosis respectively.

The controls u3(t) and u4(t) denotes the treatment of Anthrax and Listeriosis infected persons

respectively. Moreover, u3(t) satisfies 0≤ u3 ≤ f3 and u4(t) satisfies 0≤ u4 ≤ f4 where f3and

f4 denote drug efficacies use in the treatment of Anthrax and Listeriosis infections respectively.

Also, u5(t) is the treatment control on co-infected and it satisfies 0 ≤ u5 ≤ f5. Where f5 is the

drug efficacy use in the treatment of Anthrax-Listeriosis co-infected. The following system of

equations are obtained as a result of incorporating the controls in the model;
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(46)

dSh

dt
= Ωh + kRa +ωRl +ψRal− (1−u1)βhIvSh− (1−u2)πSh−µhSh

dIa

dt
= (1−u1)βhIvSh− (1−u2)πIa− (u3α +µh +φ) Ia

dIl

dt
= (1−u2)πSh− (1−u1)βlIvIl− (u4δ +µh +m+ρ) Il

dIal

dt
= (1−u1)βhIvIl +(1−u2)πIa +(u5σ +µh +η +θ) Ial

dRa

dt
= u3αIa− (k+µh)Ra +(1− τ)γu5σ Ial

dRl

dt
= u4δ Il− (ω +µh)Rl +(1− τ)(1− γ)u5σ Ial

dRal

dt
= τu5σ Ial− (ψ +µh)Ral

dCp

dt
= ρIl +θ Ial−µbCp

dSv

dt
= Ωv− (1−u1)βv (Ia + Ial)Sv−µvSv

dIv

dt
= (1−u1)βv (Ia + Ial)Sv−µvIv


In biological modelling, the objective of optimal control is to minimise spread or infections,

cost of treatment and cost of prevention. The objective functional that can be used to achieve

this is given by:

J (u1,u2,u3,u4,u5) =
∫ t f

0

(
A1Ia +A2Il +A3Ial +A4Iv +A5u2

1 +A6u2
2 +A7u2

3 +A8u2
4 +A9u2

5

)
dt.

(47) J =
∫ t f

0

(
A1Ia +A2Il +A3Ial +A4Iv +A5u2

1 +A6u2
2 +A7u2

3 +A8u2
4 +A9u2

5
)

dt.

subject to the system of equations in (46) .

Where, A1,A2,A3,A4,A5,A6,A7,A8,A9referred to as the weight constants to aid balance the

terms in the integral in order to avoid the dominance. They are termed as the balancing cost

factors. A1Ia,A2Il are the costs associated with infected persons with Anthrax and Listeriosis

respectively. A3Ial,A4Iv are the cost associated with co-infected persons and infected vectors

respectively. A5u2
1,A6u2

1 are the cost associated with efforts of prevention of Anthrax and

Listeriosis respectively. A7u2
3,A8u2

4 are the cost associated with the treatment of Anthrax and

Listeriosis infected persons respectively. A9u2
5 is the cost associated with the treatment of

infected with Anthrax-Listeriosis simultaneosly.

Wheret f is the final period of the intervention. This implies that (A1Ia,A2Il,A3Ial,A4Iv),

represents a linear function for the cost associated with infections
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and
(
A5u2

1,A6u2
2,A7u2

3,Au2
4,A9u2

5
)
, represents a quadratic function for the cost associated with

preventions and treatments.

The model control efforts is by linear combination of u2
i (t), (i = 1,2) . The quadratic in

nature of the control efforts are as a result of the assumption that costs are generally non-linear

in nature. Thus, our aim is to minimise the number of infectives and reduce cost of treatment.

The objective is finding the optimal functions
(
u∗1(t),u

∗
2(t),u

∗
3(t),u

∗
4(t)
)

, such that;

(48) J (u∗1,u
∗
2,u
∗
3,u
∗
4,u
∗
5) = {J (u1,u2,u3,u4,u5) | u1,u2,u3,u4,u5 ∈ ∪}

where, ∪= {(u1,u2,u3,u4,u5) : u1,u2,u3,u4,u5measurable,(
0≤ u1 ≤ 1,0≤ u2 ≤ 1,0≤ u3 ≤ f2,0≤ u4 ≤ f3,0≤ u5 ≤ f5∀t ∈

[
0, t f

])}
are the control set.

7.1. Pontryagin’s Maximum Principle. The Pontryagin’s Maximum Principle provides the

necessary conditions that an optimal must satisfy [28]. The principle changes the system of

equations in (46) and (47) into minimisation problem point-wise Hamiltonian (H), with respect

to;

(u1,u2,u3,u4,u5).

(49)

H = A1Ia +A2Il +A3Ial +A4Iv +A5u2
1 +A6u2

2 +A7u2
3 +A8u2

4 +A9u2
5

+ λ1 {Ωh + kRa +ωRl +ψRal− (1−u1)βhIvSh− (1−u2)πSh−µhSh}

+ λ2 {(1−u1)βhIvSh− (1−u2)πIa− (u3α +µh +φ) Ia}

+ λ3 {(1−u2)πSh− (1−u1)βlIvIl− (u4δ +µh +m+ρ) Il}

+ λ4 {(1−u1)βhIvIl +(1−u2)πIa +(u5σ +µh +η +θ) Ial}

+ λ5 {u3αIa− (k+µh)Ra +(1− τ)γu5σ Ial}

+ λ6 {u4δ Il− (ω +µh)Rl +(1− τ)(1− γ)u5σ Ial}

+ λ7 {τu5σ Ial− (ψ +µh)Ral}

+ λ8
{

ρIl +θ Ial−µbCp
}

+ λ9 {Ωv− (1−u1)βv (Ia + Ial)Sv−µvSv}

+ λ10 {(1−u1)βv (Ia + Ial)Sv−µvIv}


where λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10 are refered to as the co-state variables

(adjoint variables).
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Theorem 4. Given optimal controls
(
u∗1,u

∗
2,u
∗
3,u
∗
4,u
∗
5
)

and solutions

Sh, Ia, Il, Ial,Ra,Rl,Ral,Cp,Sv, Ivof the correspondingstate systems

(46) and (47) that minimise the objective functional J (u1,u2,u3,u4,u5)

over ∪. Then there exists adjoint variables

λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10 satisfying;

(50)
dλi

dt
=− ∂H

∂
·
x (t)

where

i = 1,2,3,4,5,6,7,8,8,9,10

and
·
x= Sh, Ia, Il, Ial,Ra,Rl,Ral,Cp,Sv, Iv

with tranversality conditions,

λ1 (t f ) = λ2 (t f ) = λ3 (t f ) = λ4 (t f ) = λ5 (t f ) = λ6 (t f ) = λ7 (t f ) = λ8 (t f ) = λ9 (t f ) =

λ10 (t f ) = 0,

and ;

(51)

u∗1 = min
{

1,max
(

0,
βhIvSh (λ2−λ1)+βlIvIl (λ4−λ3)+βvSv (Ia + Ial)(λ10−λ9)

2A5

)}
u∗2 = min

{
1,max

(
0,

πSh (λ3−λ1)+πIa (λ4−λ2)+ρ (Il +θ Ial)λ8

2A6

)}
u∗3 = min

{
1,max

(
0,

αIa (λ2−λ5)

2A7

)}
u∗4 = min

{
1,max

(
0,

δ Il (λ3−λ6)

2A8

)}
u∗5 = min

{
1,max

(
0,

σ Ial [λ4 +(1− τ)γλ5 +(1− τ)(1− γ)λ6− τλ7]

2A9

)}


Proof. There exists an optimal control due to the convexity of the integrand of the objective

functional J with respect to u1, u2, u3, u4, u5 , a priori boundedness of the state solutions

and the Lipschitz property of the state system with respect to the state variables [28]. The

differential equations governing the adjoint variables are obtained by differentiating the Hamiltonian

function, evaluated at the optimal control.
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From the relation;

(52)
dλi

dt
=− ∂H

∂
·
x (t)

where i = 1,2,3,4,5,6,7,8,8,9,10 and
·
x= Sh, Ia, Il, Ial,Ra,Rl,Ral,Cp,Sv, Iv. The system of

equations obtained as a result of taking the partial derivatives of the Hamiltonian with respect

to the associated state variables are the solutions of the adjoint systems. The following adjoint

or co-state variables are solutions of adjoint systems obtained below;

(53)

−dλ1

dt
= µhλ1 +(1−u1)βhIv (λ1−λ2)− (1−u2)

(
Cpv

K +Cp

)
(λ1−λ3)

−dλ2

dt
= −A1−u3αλ5 +(1−u2)

(
Cpv

K +Cp

)
(λ2−λ4)+(−uα +µh +φ)λ2

+(1−u1)βvSv (λ9−λ10)

−dλ3

dt
= −A2 +(1−u1)βvIv (λ3−λ4)−u4δλ6− (1−u2)ρλ8 +(u4δ +µh +m)λ3

−dλ4

dt
= −A3 +(u5σ +µh +η +θ)λ4− (1− τ)γu5σλ5 +(1− τ)(1− γ)u5σλ6

+τu5σλ7 +θλ8 +(1−u1)βvSv (λ10−λ9)

−dλ5

dt
= −kλ1 +(k+µh)λ5

−dλ6

dt
= −ωλ1 +(ω +µh)λ6

−dλ7

dt
= −ψλ1 +(ψ +µh)λ7

−dλ8

dt
= (1−u2)Sh

Kv

(K +Cp)
2 (λ2−λ3)+(1−u2) Ia

Kv

(K +Cp)
2 (λ2−λ4)+µbλ8

−dλ9

dt
= (1−u1)βv (Ia + Ial)(λ9−λ10)−µvλ9

−dλ10

dt
= −A4 +(1−u1)βhSh (λ1−λ2)+(1−u1)βhIl (λ3−λ4)


The system of equations in (7.7)satisfies the tranversality conditions; λ1 (t f )= λ2 (t f )= λ3 (t f )=

λ4 (t f ) = λ5 (t f ) = λ6 (t f ) = λ7 (t f ) = λ8 (t f ) = λ9 (t f ) = λ10 (t f ) = 0.

Now, combining the Pontryagin’s Maximum Principle and the existence result of the optimal

control[29, 28].

Moreover, the characterisation of the optimal control is obtained by solving the partial derivative

of the Hamiltonian function with respect to the control sets and equating the derivatives to zero.

(54)
∂H
∂ui

= 0
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where; ui = u∗i , and i = 1,2,3, . . . ,n. The following are obtained;

(55)

∂H
∂u1

= 0 = 2A5u1 +βhIvSh (λ1−λ2)+βlIvIl (λ4−λ3)+βvSv (Ia + Ial)(λ9−λ10)

∂H
∂u2

= 0 = 2A6u2 +πSh (λ1−λ3)+πIa (λ2−λ4)−ρ (Il +θ Ial)λ8

∂H
∂u3

= 0 = 2A7u3 +αIa (λ5−λ2)

∂H
∂u4

= 0 = 2A8u4 +δ Il (λ6−λ3)

∂H
∂u5

= 0 = 2A9u5 +σ Ial [λ4 +(1− τ)γλ5 +(1− τ)(1− γ)λ6 + τλ7]


By re-arranging and simplification;

(56)

u∗1 =
βhIvSh (λ2−λ1)+βlIvIl (λ4−λ3)+βvSv (Ia + Ial)(λ10−λ9)

2A5

u∗2 =
πSh (λ3−λ1)+πIa (λ4−λ2)+ρ (Il +θ Ial)λ8

2A6

u∗3 =
αIa (λ2−λ5)

2A7

u∗4 =
δ Il (λ3−λ6)

2A8

u∗5 =
σ Ial [λ4 +(1− τ)γλ5 +(1− τ)(1− γ)λ6− τλ7]

2A9


By employing the phenomenon of standard control arguments involving the bounds on the

controls, it can be concluded that;

(57) u∗i =


0 i f Φ∗i ≤ 0

Φ∗i i f 0 < Φ∗i < 1

1 i f Φ∗i ≥ 1

for i = 1, 2, 3, 4, 5

where;

(58)

Φ∗1 =
βhIvSh (λ2−λ1)+βlIvIl (λ4−λ3)+βvSv (Ia + Ial)(λ10−λ9)

2A5

Φ∗2 =
πSh (λ3−λ1)+πIa (λ4−λ2)+ρ (Il +θ Ial)λ8

2A6

Φ∗3 =
αIa (λ2−λ5)

2A7

Φ∗4 =
δ Il (λ3−λ6)

2A8

Φ∗5 =
σ Ial [λ4 +(1− τ)γλ5 +(1− τ)(1− γ)λ6− τλ7]

2A9


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�

8. NUMERICAL RESULTS

Numerical solutions of the optimal system are illlustrated using Runge-Kutta fourth order

scheme. These were obtained by solving the state systems, adjoints equations and the transversality

conditions. This is a two-point boundary-value problem with two boundary conditions at initial

time, t = 0 and final time, t = t f . The objective is to solve this optimal problem at time, t f = 120

days. This period represents the time at which prevention and treatment strategies should end.

Following optimal control strategies were considered; prevention of Anthrax infection u1,

prevention of Listeriosis infection u2, control efforts u3 and u4on treatment of Anthrax and

Listeriosis respectively. Control efforts u5 on the treatment of Anthrax-Listeriosis co-infection.

The four most effective were selected.

The description of the variables and parameters used in the simlation of the co-dynamics

model is shown in Table 2.

8.1. Strategy 1: Prevention, (u2) and treatment, (u4) of Listeriosis. Objective functional

was optimised by using Listeriosis prevention control, (u2) and Listeriosis treatment control,

(u4) and setting the Anthrax prevention control, (u1), Anthrax treatment control, (u3) and

Anthrax-Listeriosis co-infection control, (u5) to zero. Figure 2: showed decrease in Listeriosis

infected persons but not as much as Anthrax infected persons. However, Figure 3: showed

reduction in Anthrax-Listeriosis co-infected individuals. Case without control is indicated with

black line and case with control is indicated with blue line.
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FIGURE 2. Effects of prevention and treatment on Anthrax and Listeriosis

infected population.

FIGURE 3. Effects of prevention and treatment on Anthrax-Listeriosis infected

population and bacteria population.

8.2. Strategy 2: Prevention of Anthrax, (u1) and Listeriosis, (u2). Objective functional is

optimised by using Anthrax prevention control, (u1) and Listeriosis prevention control, (u2) by

setting the Anthrax treatment control, (u3), treatment control of Listeriosis, (u4) and treatment

control of co-infected, (u5) to zero. Observations; Figure 4: showed reduction of Anthrax
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infections and reduction of Listeriosis infection. Much reduction of Anthrax infections than

Listeriosis infections. Figure 5: showed reduction in Anthrax-Listeriosis co-infection and

reduction in bacteria population. Case without control is indicated with black line and case

with control is indicated with blue line.

FIGURE 4. Effects of Anthrax and Listeriosis prevention on Anthrax and

Listeriosis infected population.

FIGURE 5. Effects of Anthrax and Listeriosis prevention on co-infected

population and bacteria population.
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8.3. Prevention, (u1) and treatment, (u3) of Anthrax. Objective functional was optimised

by using anthrax prevention control, (u1) and anthrax treatment control, (u3) by setting Listeriosis

prevention controls, (u2), treatment control of Listeriosis, (u4) and treatment control of co-

infected, (u5) to zero. Figure 6: showed reduction of Anthrax infection and reduction in

Listeriosis infections. Figure 7: showed reduction of Anthrax-Listeriosis co-infection and

reduction of bacteria population responsible for the diseases in the environment. Case without

control is indicated with black line and case with control is indicated with blue line.

FIGURE 6. Effects of prevention and treatment on Anthrax and Listeriosis

infected population.

FIGURE 7. Effects of prevention and treatment on co-infected population and

bacteria population.
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8.4. Treatment of Anthrax, (u3) and Listeriosis, (u4). Objective functional was optimised

by using anthrax treatment control, (u3) and Listeriosis treatment control, (u4) by setting the

Anthrax prevention control, (u1), Listeriosis control, (u2) and treatment control of co-infection,

(u5) to zero. Figure 8: showed complete reduction of Anthrax infections and reduction of

Listeriosis infected persons. Figure 9: showed reduction of Anthrax-Listeriosis co-infected and

reduction of bacteria population responsible for the diseases in the environment. Case without

control is indicated with black line and case with control is indicated with blue line.

FIGURE 8. Effects of Anthrax and Listeriosis treatment on Anthrax and

Listeriosis infected population.

FIGURE 9. Effects of Anthrax and Listeriosis treatment on co-infected

population and bacteria population.
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9. CONCLUSION

Anthrax-Listeriosis co-infection model was formulated and incorporated the following control

strategies; prevention of persons, prevention of vectors, treatment of infected persons, treatment

of infected vectors and treatment of Anthrax-Listeriosis co-infected persons. The Co-dynamics

model was qualitatively and quantitatively analysed for understanding of the transmission mechanism

of Anthrax and Listeriosis co-infection.

Observations: the disease free equilibrium of the Anthrax only model was locally stable

whenever ℜ0a was less one and a unique endemic equilibrium whenever ℜ0a was greater than

one. Moreover, we observe that the disease free equilibrium of the Listeriosis only model was

locally stable whenever ℜ0l was less one and a unique endemic equilibrium whenever ℜ0l was

greater than one.

Our model analysis also revealed that the disease free equilibrium of the Anthrax-Listeriosis

co-infection model is locally stable whenever ℜal was less one and unstable otherwise. Our

model exhibeted the phenomenon of backward bifurcation. Epidemiological implications: the

idea of Co-dynamics model been locally stable whenever ℜal was less than one and unstable

otherwise does not fully apply. Hence, the Anthrax-Listerios co-dynamics model showed a case

of co-existence of the disease free equilibrium and endemic equilibrium whenever ℜal was less

than one.

We observed that the impact of Listeriosis on Anthrax infections showed that Anthrax infections

can be linked with increased risk of Listeriosis but the reverse was not the case. Moreover,

prevention and treatment of Anthrax without keeping Listeriosis under control was not the best

strategy of combating either of these diseases. Prevention and treatment of Listeriosis can only

be the effective way of combating Listeriosis if only Anthrax is kept under control. Anthrax

infections can be linked to increased bacteria growth as shown in Figure 3 and Figure 5.
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