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Abstract: In this paper, we describe a theoretical discussion about local linear negative binomial regression for 

predicting the number of speed violations on toll road. Data on the number of speed violations on toll roads is a 

count data. Count data is a non-negative integer data generated from continuous calculation process. We usually use 

Poisson regression to analyze count data of a response variable. But, one of infractions on Poisson regression 

assumption is over-dispersion. To overcome that over-dispersion we should use negative binomial nonparametric 

regression model approach. The negative binomial nonparametric regression model is a development of the negative 

binomial parametric regression model. In this research, we theoretically discuss estimation of negative binomial 
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nonparametric regression model based on local linear estimator which is applied to data of the number of speed 

violations on toll roads. The estimation results of the negative binomial nonparametric regression model that we 

have obtained then can be used to predict the number of speed violations on toll roads so that the Ministry of 

Transportation together with the police can use it to take preventive measures. 

Keywords: local linear estimator; negative binomial regression; the number of speed violations; nonparametric 

regression.  

2010 AMS Subject Classification: 62G05, 62G08, 62P99, 65D15. 

 

1. INTRODUCTION 

Regression analysis is a method to determine the functional relationship between predictor 

variables and response variables. One of regression models is Poisson regression. Poisson 

regression model is the popular regression model on the count response variable [1]. One of the 

common departures from Poisson regression is that the failure of mean equal variance restriction 

(equi-dispersion cases), over-dispersion are mostly appeared. Negative binomial regression can 

be used to handle that over-dispersion in the Poisson regression model [2].  

The researches about handling over-dispersion cases in the Poisson regression have often 

been done by some researchers. Generalized Poison has been used for modeling the  number of 

traffic accidents by [3]. According to Ismail and Jemain [4], generalized Poisson and negative 

binomial regression can handle over-dispersion in Poisson regression. Development of negative 

binomial regression model for handling over-dispersion cases has been done by [5] and [6]. The 

other research was conducted by [7] that discussed the difference between negative binomial 

regression and Poisson regression in analyzing AIDS death rate, and concluded that negative 

binomial regression approach is better than Poisson to handle the over-dispersion.   

In parametric regression modeling we assume that the regression curve tends to form a 

certain pattern, such as linear, quadratic, etc. But in the fact, there are many cases where the 

regression curve does not always form a certain pattern. In this case, nonparametric regression 
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modeling is more suitable to be used [8]. The nonparametric regression approach becomes an 

alternative analysis tool in the uncertain pattern because nonparametric regression has high 

flexibility that is by no assuming the form of regression curve but estimating regression function 

just based on behavior of data itself. There are some estimators used in the nonparametric 

regression approach for example local polynomial estimator ([9], [10]), local linear estimator 

([11]–[14]), spline and kernel estimator ([15]–[29]). 

Although there have been studies about negative binomial regression and nonparametric 

regression models, for either count data and other data types, but those studies was still limited to 

the one independent variable or one predictor variable. Therefore, in this research we develop 

those models to a negative binomial nonparametric regression model with more than one 

predictor variables which is applied to the count data namely data of the number of speed 

violations on toll roads. Hence, in this research we discuss theoretically how we estimate the 

model by using local linear estimator. The local linear estimator was chosen because it has the 

advantage on estimating the function at each point so that the approximate revenue obtained is 

closer to the actual observation data pattern such that the estimated model we have obtained then 

can be used for predicting the number of speed violations on toll roads.. 

 

2. PRELIMINARIES 

A model that has very similar properties to the Poisson model is Poisson-Gamma model in which 

the dependent variable 𝑦𝑖 is modeled as a Poisson variable with a mean 𝜆𝑖 where the model 

error is assumed to follow a Gamma distribution. As it names implies, the Poisson-Gamma is a 

mixture of two distributions and was first derived by [30]. This mixture distribution was 

developed to account for over-dispersion that is commonly observed in discrete or count data 

[31]. It became very popular because the conjugate distribution (same family of functions) has a 

closed form and leads to the negative binomial (NB) distribution.  

As discussed by [32] that the name of this distribution comes from applying the binomial 
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theorem with a negative exponent. There are two major parameterizations that have been 

proposed and they are known as the NB1 and NB2, the latter one being the most commonly 

known and utilized. NB2 is therefore described first in this sub-section. Suppose that we have a 

series of random counts that follows the Poisson distribution:  

(1)                  𝑓(𝑦𝑖; 𝜆𝑖) =
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖!
 

where 𝑦𝑖 is the observed number of counts for 𝑖 = 1,2, … , 𝑛; and 𝜆𝑖 is the mean of the Poisson 

distribution. If the Poisson mean is assumed to have a random intercept term and this term enters 

the conditional mean function in a multiplicative manner, we get the following relationship [2]: 

(2)               𝜆𝑖 = 𝑒
(𝛽0+∑ 𝑥𝑖𝑗𝛽𝑗

𝑇𝐾
𝑗=1 )

𝑒𝜀𝑖 = 𝜇𝑖𝜈𝑖 

where exp⁡(𝛽0 + 𝜀𝑖)  is defined as a random intercept;  𝜇𝑖 = exp⁡(𝛽0 + ∑ 𝑥𝑖𝑗𝛽𝑗
𝑇𝐾

𝑗=1 )  is the 

log-link between the Poisson mean and the covariates or independent variables 𝑥s⁡ and s are 

the regression coefficients. The relationship can also be formulated using vectors, such that 𝜇𝑖 =

exp⁡(𝐱𝑗
𝑇𝜷). The probability density function (PDF) of the NB2 model is therefore [33]: 

(3)          𝑓(𝑦𝑖, 𝜇𝑖, 𝜑) =
𝛤(𝑦𝑖+𝜑)

𝛤(𝑦𝑖+1)𝛤(𝜑)
(

𝜑

𝜇𝑖+𝜑
)𝜑(

𝜇𝑖

𝜇𝑖+𝜑
)𝑦𝑖 

The first two moments of the NB2 are the following: 

(4)          𝐸(𝑦𝑖, 𝜇𝑖 , 𝜑) = 𝜇𝑖 

(5)          𝑉𝑎𝑟(𝑦𝑖, 𝜇𝑖, 𝜑) = 𝜇𝑖 +
𝜇𝑖
2

𝜑
 

Furthermore, the NB1 is very similar to the NB2, but the parameterization of the variance 

(the second moment) is slightly different than in equation (5). The first two moments of the NB1 

are the following: 

(6)          𝐸(𝑦𝑖, 𝜇𝑖 , 𝜑) = 𝜇𝑖 

(7)          𝑉𝑎𝑟(𝑦𝑖, 𝜇𝑖, 𝜑) = 𝜇𝑖 +
𝜇𝑖

𝜑
 

The coefficients of the Negative Binomial (NB) regression model are estimated by taking the 

first-order conditions and making them equal to zero.  
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3. MAIN RESULTS 

In this section we describe theoretically the estimation of negative binomial nonparametric 

regression model using local linear estimator if it is applied to data of the number of speed 

violations on toll roads. 

Firstly, given paired data ( ),i iyx  where 1,2,...,i n=  and n is the number of observations, 

( )1 2i i i ipx x x=x are predictor variables that are factors causing speed violations on toll 

roads, and p is the number of predictor variables, 
iy  is response variable that is a discrete type 

random variable assumed to has a negative binomial distribution representing the number of speed 

violations on toll roads. To estimate model of the number of speed violations on toll roads affected 

by factors causing speed violations on toll roads, we use maximum local likelihood maximization 

method for estimating the model parameters because the distribution of response variable has been 

known, namely negative binomial distribution, and the regression function of the model is 

estimated by using local linear estimator of the nonparametric regression. Then, we use Newton 

Raphson method, to obtain the estimated model of the number of speed violations on toll roads. 

Finally, the estimated model that we has obtained can be used for estimating the number of speed 

violations on toll roads. 

Next, suppose that x and y were a pair of data ( ),i iyx , 1,2,...,i n=  and 

( )1 2i i i ipx x x=x , 
iy  is a discrete type random variable assumed to have a negative 

binomial distribution as follows: 

(8)         ( )
( )

( )

( )

11

1
|

1 1 1
!

iy
i

i

i

y

f y

y

 

 



  
 +       =       + +  

 

       
  

i

i

i i

μ x
x

μ x μ x
 

where ( )iμ x depends on the variable through a function in the following equation:  

(9)           ( ) ( )| exp( )iE y= = =ii ix m(x )μ x y   

Next, by substituting equation (9) into equation (8) we have the following equation: 
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(10)       ( )

1

exp( )

exp( ) exp(

1

1 )

1

|
1 1

!

iyi

i

i

y

f y

y

 

 



  
 +       =    

+ +        
  

i

i

i i

m(x )
x

m(x ) m(x )
 

where 
im(x )  is an unknown function or is not bound to the assumption of a particular function. 

The function is approached by nonparametric regression based on a linear local estimator that is 

defined as: 

(11)            ( )0 0 1 0 0 0 0

1 1

( ) ( ) ( )( ) , ,
p p

ij j j j j ij j ij j j

j j

m x x x x x x x h x h 
= =

= + −  − +   

Hence, we can write equation (11) in matrix notation as follows:  

(12)                     =im(x ) Xβ  

Furthermore, by substituting equation (12) into equation (10) we have the following equation: 

(13)        
( )

( )

( )

1

exp

exp ex

1

1
( | )

1 1 p1
!

iy
i

i

i

y

f y

y

 

 



 
 +      

=       + +      
 

Xβ
X

Xβ Xβ
 

Then, for estimating parameter β  in equation (13) we use the maximum local likelihood 

maximization method. For that purpose and based on equation (13) we have the weighted local 

likelihood function with the multi-predictor kernel function as follows: 

(14)       ( )
1

0

1

0

1 1
ln, , ( ) ln ! lnj h

pn

j ij j i i

i j

x K x yx y
 = =


= −

   
 + − −  +   

  


 
β  

                    ( )( ) ( )exp
1

ln 1 lni iy y 


− + + +Xβ Xβ ( )( )ln 1 expiy  − + Xβ . 

Next, we take derivation of local likelihood function given in (14) with respect to parameter 

vector β  and parameter   as follows: 
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(15)         

{
 
 

 
 ( )

( )
( )( ) ( )

( )
0

0

1 1 1

, , exp

exp

n
j i i i

hj

p

ij j

i i

i

j

K x x
d

yx

==

+   − 
= −    

 + 


β x β x x

β x β

( )
( )

1 1

0

, , 1 1pn
oj

ih ij j

i j

K x x
x

y


 
  = =

     
= + − +    

   
−




β

 

                           
( )( ) 
( )( )

( )( )2

exp1
ln 1 exp

1 exp

i

i

i

iy


 

 −
 + +
 +
 

x β
x β

x β
 

The maximum value of the local likelihood function in equation (14) will be reached when 

equations in (15) are equal to 0, but because the two equations cannot be solved directly, an 

approach method is needed to get the solution. One of the numerical methods that can be used is 

the Newton Raphson method. In the Newton Raphson method, several components are needed, 

namely the gradient vector and the Hessian. The element of the gradient vector is the first 

derivative of the likelihood function on the parameter β  and dispersion parameter   which 

has been described by equations in (15), while the Hessian matrix is the second derivative of the 

local likelihood function on the parameter β  and parameter  . The second derivative of 

equation in (15) with respect to β  can be determined as follows:  

(16)     
( )

( )
( ) ( ) ( ) ( )( )

( )( )

2

22 0

1 1

0, , exp e. . p

x

.

1

x1

e p

n
j i i i i

hj ij j

i
i

p

j

x
K x x

 

= =

 +
= −−

 +


 +




β x x β x x β

β x β
 

                    
( )( ) ( ) ( )( )

( )( )

( ) ( ) ( )

( )( )
2 2

e . . . .

1

xp exp exp

exp exp1

i i i i i i i

i i

iy 

 

−
+

+ +

x β x x β x x x β x

x β x β
 

                 ( )
( ) ( ) ( ) ( ) ( ) ( )( )

( )( )
0

1
2

1

2
. . .exp exp

ex1 p

.n
i i i i i i

hj ij j

i
i

p

j

K x x


= =

 +
=

+
−



− +



x x β x x x x β

x β
 

                                 
( ) ( ) ( )( )

( )( )

( ) ( ) ( )

( )( )
2 2

2
exp exp

exp exp

. . . .

1 1

ii i i i i i

i i

y 

 

−


+ 

−


+
+

x x x β x x β x

x β x β
   

                ( )
( ) ( ) ( ) ( ) ( ) ( )

( )( )
0 2

1 1

exp ex. . . . .p

e p1 x

n
i i i i i i

hj

p

ij j

i

i

i
j

K x x
y 

= =

−
=

 
 −
 
 

−
+


x x β x x x β x

x β
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                ( )
( ) ( ) ( )( )

( )( )
0 2

1 1

. . 1

1

exp

exp

n
i i i

h

p

j

ji

i

j ij

i

K x x
y 

==

− − 
 −
 


=
+ 


x x β x

x β
 

while the second derivative with respect to   can be determined as follows: 

(17)       
( )

( )
2

2
1 1

0

, , 1 1pn
oj

i

i j

h ij jK x x
x

y


 
  = =

     
 = + − +    

   
−




β
 

                      
( )( ) ( )( ) ( ) ( )( )

( )( )

2

22

exp 1 exp exp exp

1 exp

i i i

i

i iiy y  

 

− − + − +
+

+

x β x β x β x β

x β
 

                      
( )( )

( )

( )( )
3 3

exp 2ln 1 exp

1 exp

i i

i

 

  

+ 
−  

+ 

x β x β

x β
 

Note that in order to maximize the likelihood function in (14), the hessian matrix must be negative 

definite. Matrix A is a negative definite matrix if and only if the quadratic form x Ax  is negative 

for each vector 0x . 

 

4. CONCLUSIONS  

Theoretically, based on equations given in (16) and (17) and by using Newton Raphson method, 

we can obtained the numerical estimated model of the number of speed violations on toll roads 

affected by factors causing speed violations on toll roads which is then can be used for predicting 

the number of speed violations on toll roads. 
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