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Abstract: In this paper, a mathematical model for the transmission dynamics of lymphatic filariasis is presented by
incorporating the infected without symptom, the infected with symptom and treatment compartments. The model is
shown to have two equilibrium states: the disease-free equilibrium (DFE) and the endemic equilibrium states. An
explicit formula for the effective reproduction number was obtained in terms of the demographic and epidemiological
parameters of the model. Using the method of linearization, the disease-free equilibrium state was found to be locally
asymptotically stable if the basic reproduction number is less than unity. By constructing a suitable Lyapunov function,
the disease-free equilibrium state was found to be globally asymptotically stable. This means that lymphatic filariasis
could be put under control in a population when the effective reproduction number is less than one. The endemic
equilibrium state was found to be locally asymptotically stable. By constructing yet another Lyapunov function, the
endemic equilibrium state was found to be globally asymptotically stable under certain conditions. Sensitivity analysis
was carried out on the effective reproduction number, the most sensitive parameters were the treatment rate of human

population and the infected rate of human population. Results from the simulation carried out showed that treatment
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level coverage of human population should target a success rate of 75% for LF to be under control in the population.
Keywords: lymphatic filariasis; reproduction number; stability; sensitivity analysis.

2010 AMS Subiject Classification: 62A07.

1. INTRODUCTION

Lymphatic filariasis, commonly known as elephantiasis, is a neglected tropical disease that has a
major social and economic effect in Asia, Africa, the Western Pacific and parts of the United States
[1]. It is one of the number one cause of long-term and constant disability [2]. About one billion
people are known to be at risk of this disease in 86 countries [3-4]. In 73 endemic countries, the
disease affects approximately 120 million people globally and is a weakening disease and one of
the most frequent yet most neglected tropical conditions that has severe economic and social
impact [5]. Women, men and children of all ages are affected by lymphatic filariasis. It is a
moustache disease caused by Brugia Malayi, Brugia Timori and Wuchereria banrofti tissue
dwelling nematodes [6-7].

In order to manage and control and LF, many studies have described and studied mathematical
models to achieve new insight into the dynamics of the disease. [8], developed a mathematical
model for the transmission and application of lymphatic filariasis. The authours built a
Wuchereria-induced stochastic transmission model for LF and evaluate its incidence using
computational models. The main objective of their research was to evaluate the impact of vector
control in the Pondicherry (India) context and, in particular, the constant effect of the post-control
period. A mathematical model was formulated for investigation of the long-lasting medical
effects in Indonesia of lymph filariasis. [9-10] developed a mathematical model for lymphatic
filariases transmission and prevention, with therapy only for those with elephantiasis symptoms.
[11-12] formulated lymphatic filariasis models with age structure and transmission. Lymphatic
filariosis has also been seen in many mathematics and non-mathematical studies [13-19]. In view
of the work of the above-mentioned researchers, the work of the above authors is complemented
by incorporating relevant features such as, the classes undergoing treatment, vector control (using
bed-net and insecticide) and drug administration to both the infected class with symptoms and
without symptoms.

The present paper is organized as follows: section 2 deals with the formulation of the model and

definitions of the model parameters and variables, in section 3, the model analysis is carried out
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section 4 deals with the major findings, section 5 deals with discussion of results and section 6

deals with some concluding remarks about major findings in the present study.

2. MATERIALS AND METHODS

2.1 Model formulation

We propose a deterministic model to examine lymphatic filariais transmission dynamics with
specific features such as treatment classes, vectors (bed-net and insecticide use) and medication in

a susceptible class, an infected class with and without symptoms. The total human population

represented by N, (t) is divided into six classes, susceptible human in the absence of treatment
S,(t), treatment of susceptible human beings S, (t), human infected but without symptoms of
elephantiasis |, (t) , infected humans with exhibiting signs of elephantiasis |, (t) , humans
receiving care with infected humans (not displaying symptoms of elephantiasis) T,(t) and
humans receiving treatment with infected humans with symptoms of elephantiasis T,(t) .
Mosquitoes and human beings are recruited at rates A, and A, respectively into their

v

susceptible corresponding populations. Mosquitoes suffer natural death at a rate g, and
insecticide death at arate 6. In the same vein, people are subjected in proportion to each human

class, to natural death at a g, rate. The mosquito absorbs microfilaria when a person with

filariasis (elephantiasis that causes nematodes) is bitten at a rate [, by infection force

£,(6,1,(1) +1,(1))
N, (1)

where £, is the average rate of mosquito bites that cause infected humans to

susceptible mosquito transmission of disease and 6, € (0,1) represents less microfilariasis in the
bloodstream of people infected but with no symptoms of elephantiasis. When the vector
(mosquitos) is infected, it enters V, (t) carrier-class. Microfilariae transfer into the hemocoel and
advance into filariform juveniles through the mosquito gut. Filariform juveniles escape from

mosquitoes when an insect feeds and then enter a human's injury system at the rate S, with an
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BV, (1)
)

\Y

infection force where f, is the average amount of mosquito bites that cause disease

transmission to humans sensitive per mosquito by the carriers of the parasite (mosquito). Humans

are thus infected at a rate S, to reach exposed class I,(t) following a mosquito bite. I,(t)
individuals move to the stage where they show signs of filariasis |, (t) atarate p . However, some migrate

to 1,(t) due to secondary infection the rate f,. Individuals in S,(t), I,(t)and I,(t)received

treatment at a rate r and progress the classes undergoing treatment. The schematic representation

of the model is given in figure 1. Based on the model development description above and the

schematic diagram in Figure 1, the following model equations are derived:

_p(A-0)
N

v

Sll = A, VoS, = (1, +7)5, + (T, +T,)y + @S,

Slz =15, — (1, +@,)S,

|1' — szsl _Mvzh

\ \

. 1-6
M 1, :%Vzlﬁ'pll_(ﬂh +7)l, + o,T,

'

(g, +r+ o)l + 0T,

Tll =d, —(u, +y+ )T,

Tzl =d, — (i, +7+o,)T,

_ﬂv(9h|l+ IZ)\/l _(,U +5)V1

V, =A
1 v Nh

: 61+ 1
szﬁ( hlil 2)\/1_(,“\/"'5)\/2
h
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/4

i, +38 M, +6

Figure 1: Schematic diagram of the model

Table 1: Notation and definition of variables and parameter

Symbol Description
S, (t) Susceptible individuals who do not take drugs
1
S (t Susceptible individuals subject to therapy
(1)
1,(t) Infected but not exhibiting signs or symptoms of disease
1
1, (t) Infected individuals exhibiting signs or symptoms of disease
2
T, (t) Individuals undergoing treatment from infected individuals with no symptoms
1
T, (t) Individuals undergoing treatment from infected individuals with symptoms
2
Non-carrier vectors (mosquitoes
V, (1) (mosq )

Carrier vectors (mosquitoes
V, (t) (mosq )
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Symbol Description
A Human population recruitment rate
h
A Mosquito population Human population recruitment rate

Hh

Hy

The rate of ingestion by mosquitoes while biting an infected person
Human population infection rate

Mortality rates for population of humans

Mortality rates for mosquito population

Vector (mosquitoes) mortality rate with the application of insecticide
Progression rate of human from 1,(t) to 1,(t)

The portion of vulnerable individuals using mosquito nets and insecticide
Rate of recovery or the rate at which individuals treated lose their immunity
Rate of treatment for individuals undergoing therapy

Rate of microfilariae in the blood system of infected individuals without signs of disease.

Rate at which people in S, (t) and T,(t) quit taking medications

Rate at which people in T, (t) quit taking medications

3. MODEL ANALYSIS

The total human population is
dN, (t) _ ds, (t) N ds, (t) N dl, (t) N dl, (t) N dT, (t) N dT, (t)

dt
Thus,

dt dt dt dt dt

er1 = Ay — 1Ny,

Also, the total mosquito population is
dNv(t) dV(t) N dv, (t)

dt

dt

N\', =A, —(u, +O)N,



CONTROL OF LYMPHATIC FILARIASIS TRANSMISSION DYNAMICS
Let, kK =(u,+7) . K, =(1, +@) , k3 =(u,+t+p) K, =, +y+aw) , ks =(u, +y+w,) ,
k6 = (:uv + 5)

Thus, equation (1) becomes,

1=, - 2240

v

V,S, -k S, + (T, +T,)y +®,S,

S, =, —k,S,
. 1-— 1-
|1:fi%rfﬁmﬁl—fii—fﬁvgl—kgl+wJ;
. B.(1-0)
(2) |2:hN—V2|1+pI1—k1|2+a)2T2
T, =d, kT,
Tz‘ :dz _kst

_ﬂv(ehll + |2)\/l _k6V1

h

Vzl _ ﬁv(‘ghll + IZ)\/l —k,V,

h

V, =A

\

Theorem 1:
(S,,S,,1,,1,,T,,T,)eR’:S,(0)>0,5,(0)>0,1,(0) > 0,1, (0)>0,T,(0)>0,T,(0) >0

R
S, +S, + 1 +1,+T +T, <"

Let Q= a
(V,,V,)eR%:V,(0)>0,V,(0)>0

R
V,+V, <—
k6

then the solutions of {Sl(t),Sz(t), (), 1, (), T, (1), T, (t),V,(1),V, (t)} of system (2) are non-

negative for t>0.
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Proof:
& =A, - £.4-0) V,S, =Kk S, + (T, +T,)7 + @S,
dt N,
ds
d_tl >-k,S,
3) &5, > —k,dt
Sy
LR [t
Sy

S, (t)>S,(0)e™ >0
Following the same approach above,
S,(t)>S,0)e™ >0, L{)=1,0e"">0, I1,(t)>1,0e™ >0, T(t)>T,(0)e™ >0,
T,(t) > T,(0)e ™ >0, V,(t)>V,(0)e ™ >0, V,(t)>V,(0)e " >0

Hence, {Sl(l), S, (1), 1,(t), 1, (1), T, (1), T, (t),V.(D),V, (t)} of the system (2) are positive forall t>0

3.1 Feasible Region of the Model
Theorem 2: The system (2) has solutions which are contained in the feasible region I".

Proof:
Let T'=(S,,S,,1;,1,,T,,T,) eR® and ¥ =(V,,V,) € R? be any solution of the system with

positive initial conditions, then adding the equations of the system (2) for human population, we

have,

4) Nr; = A, — 1, Ny,
er1 + 4, Ny = A
IF=g*"

N, (e = [Ae"'dt+C

A
N, ()= —h oy Cet
Hy,

By using the initial condition;
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t=0, N,(0) = Nh(O)

A
C:Nh(O)__h

Hy

A A
(5) N(U::—in+(th)—-—lJe%‘
M u

h h

. : . L . . Ay
Applying Birkoff and Rota’s theorem on differential inequality [20], we obtain 0< N, <—as
Hy,

A
t — oo, The total population of human approaches —h.
Hy

also for mosquito population,

dN,
dt

= A, —kN,

dN,
dt

+k¢N, = A,

IF=g¢*
N, (e = [Aefdt+C

N, (t)= %+ Ce™

6
Using the initial condition;

t=0, N,(0) =N,

A, AV
(6) Nv(t):k__'_[Nv(O)_k_]e o

6 6

A
Following the same approach in (5) we obtain 0< N, < k_v as T —oo. The total population of
6
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vector approaches k_v :
6

Thus, the examine the region for the system (2),

(5,,S,, 1, 1,,T,,T,) eR®:(S, +S, + I, + |2+T1+T2)sﬁ,
My

(7) Q=T'x¥=4{$,>0,5,>0,1,>0,1,>0,T,>0,T,>0

A
V,,V,) e R2:V, +V, sk—V, V,>0,V,>0

6
The vector field points to the interior of  on the part of the boundary when

A A
(S, +S,+ 1, +1,+T,+T,)=—"and(V, +V,) = k_v then, it is positively invariant.
Hy, 6

Hence, it has been shown that all the solutions of equation (2) are in R° and R’ respectively

provided that the initial conditions are positive. Our feasible solution set of the model therefore
enters the region I'. Our model is epidemiologically relevant and mathematically well described

in this field.

3.2 Disease free equilibrium
Disease free equilibrium states, where there is no infection, are equilibrium solutions. All infected
classes will therefore be zero, and susceptible individuals and susceptible vectors will be included

in the entire population. Thus, the DFE from (2) is given as,

101010101 _V 10

Ak AT A
SO,SO,IO,IO,TO,T()yVO;VO — h™2 , h
(1 AR RV ERS TR EAS 2) ((klkz—w)l) (klkz_ra)l) e J

3.3. Effective Reproduction Number, R

One of the important aspects of mathematical biology is to identify threshold conditions that decide
when the disease is introduced into the population, an infection can spread to a susceptible
population. The effective number of secondary infections caused by a typical infected person
during the entire period of infectiousness is described as basic reproduction number. Following the

approach of [21-22], we obtain,
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i fr@-0)S; |
0 0 00 %
0 0 00 0
() F= 0 0 00 0 ,
0 . 0 . 00 0
ﬂvzhg/l ﬂlilvol 00 0
h h i
Kk, ~w, 0 O] b, b, 0 0]
-p k 0 -o, O b, b, b b, O
(8) V=l-r 0 Kk, 0 0| ,V*=|b b, 0 O
0 -z 0 ks 0 by b, by b, 0
0 0 0 0 k| 10 0 0 0 by
where,
b = K, b= “ b — PR Kg
Yokk,—tw, 0 Kk, -, (kek, — 7y, koK — 7,)
b = Ks b, = PR, b, = @,
4= v U5 = v Dg =
(klkS ~1,) (k3k4 — 7, J kK — Twz) (klkS - m)z)
b= b _ ko b, = Pk,
7 1 1
(ksky —70,) kky — 700, (k3k4 — 0, )(klkS - m’z)
bm:; b. = PO b ok b _1

(klks_Twz), . (k3k4_7w1)(k1k5_m)z), . (klks_fwz)’ . K

0 0 0
9 Fv ° ° °
©) B 0 0 0
0 0 0

(ﬂvehbl+ﬂvb3) ﬂvb4 (ﬂvehb2+ﬁvb5) IBvbG

From (9), we calculate the eigenvalues to determine the effective reproduction number R, by

taking the spectral radius (dominant eigenvalue) of the matrix FV . Computing|A — /1I| =0, we

have
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(10) R :\/'Bhﬂvb13(1_9)(9hbl+b3)slo

Ny
R, 1s the average number of secondary infectious cases that an infectious individual with lymphatic

filariasis would produce in a totally susceptible population.

Substituting the values of b, ,b,,b,;,S’and N{ into (10) gives

(1) R = \/ﬂhﬂvkzk4(1—<9)((klk5 —,)0, + ok
C e (k3k4 ! )(k1k5 — T, )(klkZ —70),)

3.3 Global Stability of Disease-Free Equilibrium (DFE), E,

Theorem 1: The DFE, Ejof system (2) is globally asymptotically stable in R® if R_ <1

Proof:
Using LaSalle’s invariance principle [27], consider the Lyapunov-LaSalle function.

L=p,Q1-0)k,k,u, [(k1k5 _Twz)eh +pk5][|1 +1,+T, +Tz]"’

(12)
Q- 0)(kk, — 7y )(kks — 70, ) (K K, — 700V,

Differentiating (12) with respect to time gives

' di, dI, dT, dT
L :'Bv(l_g)kamuh[(klks_Ta)z)eh+Pk5{d_tl+d_tz+d_tl+d_t2}+

(L-0)(kk, —7,) (K Ks — 7,) (KK, — 70, )V,

(13)

p,(1-0)
Nv

1-0)(kk, — 7@ )(k ks — 7, ) (KK, — Ta)l){ﬂv - H)I\Eehll i IZ)Vl - kevz}

L' = B, (1-0)k,k,u, [(klks — T, )gh + pk5]|: VoS, =y (I +15) = (@, + )T, +T2)} +

(14)

, 1-60)V.S
L'= B,A-0)kk, 1, [(k1k5 i) )eh + Pks]% -B,1-0) k2k4,uﬁ (kiks —7,)6,1;, —

B,L- 6’)k2k4,uhz (kiks —70,)0,1, — B, (L~ 9)k2k4ﬂthk5 (I, +1,)-
B, L=0)kk, u, [(klks —1@,)0, + PKs ](/Uh +r)(T +T,) +

(k.k, — 700, )(K,k, — 70, ) (K ks — 700,) w .
h

1-9)LV,
(k. — )k, —en)( kg — o) P ON
h

(kik, — 70 ) (K, K5 — 70, ) (KK, — 70, ) KV,



13
CONTROL OF LYMPHATIC FILARIASIS TRANSMISSION DYNAMICS

Since S, =N, —(S,+1,+1,+T,+T,) , we have,

L'=B.8,1- 9)2 KK, 44, [(klkS —7,)0, + PKs }‘/2 -
V
BB, 1 9)2 KK, 44, [(klkS —1,)0, + pk5](52 +1L+1,+T +T,) N_Z -

\

N,

B, (A= 0)k K, i? pks (I, +1,) = B, (L= O)k K, [ (K ks — 700,) + ok [ty + )(T, +T,) -
(klkZ - Ta)l)(k3k4 - Ta)l)(klkS - Ta)?_)kevz

(15) B, 1= 0)(kk; —70,)(6,1, + Iz){kzkmur? - (kk, ~73) sk, Ta)l)} -

Therefore,

(16) L'< 8.5, (1_0)2k2k4:uh [(klkS _Ta’z)@h +Pk5}‘/2 +
(kik, — 7@, ) (K Ks — 70, ) (KK, — 7, ) KV,

That is,

' Lhﬁ k2k4(l 6)[(klks 2-C()Z)éh ICkS]luh
17 L' <k, (kk, —7a,) (KK, — 7, ) (K Ks — 700, )V. . 1
(17 o (kak, —ze) sk, =)ok =7, )V (k,k, —7a,) (KK, —70,) (K Ks — 700, )K{

(18) L' < (KK, — 70, )(Ksk, — 70, ) (Ko — 70, )V, [RZ —1]
Thus, L'<0 if an only if R.<1 with L'=0 if and only if V, =1, =1, =T, =T,=0. 1Tt

follows from the LaSalle invariance principle [27] that V,,I,,I,,T,,and T, >0 as t—>o0

that is, the disease dies out.
3.4 Endemic Equilibrium

This is the equilibrium state in the presence of infection, to obtain it, we set the LHS of (1) to zero. Thus,

BK A (A, - kevz**)((klkz ~7@,)0,N," +Ks (ﬂh @-0)V, + pN:*))+
* k627'7/(k2 (kiks — 7, )N, +k, (,Bh L6V, + PN:*))N:*N:*V;

S, =
l LK, (A kVﬂ)((kk IND +k, BV, (k1k5—ra)2)(9hN\:*+
v - — T v X N
a\h —ReVy 112 1 2FnY2 Ks(B,(1-6)V, + pN,

Bz (A, =k, (kk, — 70BN + Ky (8,0 OV, + NI NS +
* kezfzy(kz (kiks —7@,)N," + k4(:3h L-6)V, + pN\T*))N:NTVZH

S, =
2 LK (A, —kV )((kk IN, +k, BV (ks =z, N,
’ - —zay)N, + .
4 h 672 172 1 2/-h Y2 ks(ﬂh(l ;)Vz NV
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e k62(k1k5 _m)z)NrTN:\/z**

I, =

Jis (Av - kevzﬁ X(klks —1,) N:k +kg (:Bh - 9)\/2** + pN\:*»

17 = kskez(ﬂh (1_9)V2**+pN:*)NvHV2**
B.(A, =KV, )((klks — W, )Nv +Ks (ﬂh 1-0)V, +pN, »
T - ki7(KKs — 70, )NZV,~

ko3, (A =KV, N(kks —70,)G,N. + ko (8, 1— OV, + pN.7))

- ker(B,@= OV, + pNT NIV,
2 B(A kS ) (kiks —7,)0,NT + K (B, -0V, + oN)

V** _ Av (Av B kGVZ**)
' ks + (A, —koV;)

o A k)
’ kG + (Av - kﬁvl*k)

3.5. Global Stability of Endemic Equilibrium State

Theorem 2. If R>1, then the endemic equilibrium E' of the equation (2) is globally

asymptotically stable if
S,=5,,5,=S,,I, =1;,L, =0, T, =T, ,T,=T,,V,=V,,V, =V, and X <Y unstableR <1.

Proof:-To establish the global stability of EE (E') we use the constructed Lyapunov function

by [28-29], the global stability of the EE is proved.

By defining the Lyapunov function as follows:

S0 ,T;,v:,v;>:(sl mgs—l( s;|og§]+

1 2

(11—1’;—1; IogI—1]+(Iz ~I, log % J
(19) 1 *
T,-T, T, log L T,-T,-T, IogT—
Tl T2
A
(VAR Iog— V, -V, -V, log %
1 V2

By direct calculating the derivative of L along the solution of equation (2)
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We have;
d_(s,-8)dS, (s,-8)ds, (1L-1)dL, (I,
dt s, ) dt s, Jdt L1 Jdt | 1, )adt
(20) . \ .
(n—n )ﬂ{n—n]@ {v -V, ]dv (u]di
T, ) dt T, ) dt Vv, ) dt v, ) dt
dL (S,-S; 1-0 S,-S,
[ £A-9)
_ D | L AV )
Illlj(ﬂ(; H)VS /’7“(; H)VI k311+a)1T1J+[12 IZJ N, 217 P
@0 ' ' ! 2 kI, +o,T,
T_T T-T \VARRVA o1 +1
1T1 : ](Tll—kﬂ-l)-i-( ZTZ : ](dz_kst)"'( 1V1 - j(Av_ﬁV(hN—th)\/l_kevlJ"'
v, Vzl(ﬁ(elﬂ)v kVJ
V2 Nh
Implies that
1-6 . . ) ) .
%_[sl_s;j M= P2, (8, -8 - 8, =S+ =T+ T+ |
dt | S, :

(S, - S;)
Sz _S;

(¢(5,-5)) ~ky(S, -5 +

j( A0 o, vy~ - LEED 0, vy -1 -k, 1)+ 1 -T)

V

] /”1 9)(\/2 V), I:>+p(11—11>—k1<12—I;>+w2(T2—T;>j+

jT(I ~I) -k, (T, -T))+ [TZ_TZ*](T(IZ—IZ)—ks(Tz—Tz*))+

V-V, j( B0, -T)+(,
Nh

_|

1 Tl

2

-1,)) V) K ( —Vf)J N

V, sz[ﬂ(e(l ~1)+(1, IZ)(Vl—Vf)—ka(Vz—Vz*)J

)

15
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aL_ o ASE [(G=SO) By oy By ) [SamSO) | Baye BiOy ),
d " S, s, JN,? ' N, °? S, 20N, ?

\ \ NV \
;/T1+7)81Tl +;/T2+751T2 +a)182+_a)131$2 +Tsl+_15182J_
1 1 1 S,
* *T *T * * * S S* S* S _S* 2
7/-|-1+751 1+751 2+]/T2+a)152+151+w122+1512 _k2(2 2) n
S, S, S, S, S,
Bugy  PSVIL BSNG BSVIL B FufBVAL )
N, "2 NI, N, N, I, N, '? NI,
BSVS | BSN, | BSNIL AN, | BEBVST ) (ABN, | BBV
N, N, N, I, N, N, I, N, N, I,
ﬂhsl*vz* +ﬁh6’51*VZII +(Il_II)Z ﬂhe\/z _I_ﬁhvz* _(11_12)2 :Bhvz +ﬂh9\/2* +k
N, N, I, I, N, N, 1, N, N, :
a)lTl_l_a’lTlII +ﬂhIZV2 _I_:BhIII;VZ* _l_,BhIIVz +ﬂhI;V2* +ﬂhIII;V2 +ﬂh€[2V2* N
I, N, N, I, N, N, N, I, N,
ﬂhHIII;VZ _I_ﬂhHIZVZ +ﬁh€III;V2*+pI +pIII;
1t
NvIl Nv Nvll 2
a)T*_I_a)lTlII _{_IBhIZVZ* +ﬂhlzvzlz +ﬂhV2*III; +ﬂhHI2V2 +ﬂhHIII;Vz* +ﬂh9[IV2* N
S N, I, NI, N, NI, N,
BV, +p111; Ll
Nvll IZ
I,-1,)° T,1T, 4,7, . d,T,
kl—( i) +(a)2T2+a)2 22, + 24, + 22 +AV]—
L L 1 2
. oL 4T, . . d,T, T,-T,)° T,-T,)?
(a)z-l-z_l_a’zzz_l_ Ll )+ 22J_k4(1 2) —k5(2 2)_|_
I, 1 2 T T,
(Vl_vl*)z ﬂv9h11+ﬂv1§ _(Vl_vl*)z :Bvehll_l_ﬂvIZ_I_k _
4 Ny Ny A Ny Ny i

*y g Ry gk

V_l*_l_ﬂVHhIIVI +ﬂv0hllvlv2* +ﬂv9hllvl* +ﬂV(9h11V1V2 _I_ﬁvI;Vl +ﬂvIZV1V2*
(22) 'V, N, N,V, N, N,V, N, N,V,
ﬂvIZV; _l_ﬂvIZVl*VZ*
Nh NhVZ
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ﬂvehllvl + ﬂvehll\/lvz* + ﬁvehrl\/l* + ﬂv0h11V2* + ﬂv12vl + .
Nh thz Nh thz Nh _K (Vz —V2 )2
*, * *, * * 6
,Bvlzvl Vz n ﬂvlzvl + ﬂvlzvl\/Z V2
thz Nh thz

Rearranging the positive and negative terms in (22) leads to

dL

23 —=X-Y
(23) pm

where,

A, +;/T1+7/81T1 +yTz+@+w182+

Y . S S

X:[(Sl Sl) ](&Vz "'ﬁ 2}"’ - ' - ' +
% N N G35 s

1

v v 5,5,
1 2

ﬁsv _{_ﬂhslvz*lz_}_ﬂhS;\/Z* -}-ﬂhS;\/ZII+ﬂhesv*+ﬁh981VZII +
N 1%2 NVI]_ N NVI]_ N 1%2 Nvll

v v

\

ﬁheSNZ +:Bhesi\/2*lz + (Il_II)Z ﬂhg\/z +IBhV2* +
N N, I, N N

% Vv Vv
EE

a’lTlII +ﬁhIZV2 +ﬁhIIIZV2 +ﬂh11\/2 +ﬂhI;V2* +ﬂhIII;Vz +ﬂh€[2\/2* +
I N N, N N N, L, N

v \ \

ol +

\

ﬂhHIII;VZ n BV, n ﬁhHIII;VZ* +pl+ pIII;
N,L, N N, L, L

* k *. * *, * * 2 * *
[szz + a)z-lrz I, T, + TI-erl +d; n d_lz_Tz +Av]+ V,-V)) [:Bv‘ghll + ﬂvlzj_l_

2 1 2 Vi N, N,
ﬂthIlvl + ﬂthIl\/lv; + ﬂvehllvl* + ﬁvehllvz* + ﬂvlzvl +
(24) N, N,V, N, NV, N,

ﬂVI;Vl VZ* + ﬂvlzvl* + ﬂVIZVlVZ*
N hVZ N h N hVZ

17
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S _o*\?
Y = {(S SS 1) JL%V2+kl+%V;]+

* * * _ * 2
( 750 7ST L2 49T, + @S, + 75, + w18282+T8182J+k2 (5, =5,) +
Sl 2 SZ SZ
By sv ﬂhS’v LBSVSL BOSN,  BOSVLL )
NI N, NI
ﬂ S*V ﬂhHSVI (Il_II)Z ﬂhvz +,Bh(9\/2*+k3 +
N, NI I, N, N,
- a)TI ,BhIZV B AN ﬁhv*l*l* | BV, ﬂha*l*v* ﬂhef\/
N, I, N, I N, NI N,
+
al V I I x
ﬂh 112 P +pl;
1( I) w,T, + T12+dl+d1T1+rI; a1, +Aj
2 I2 Tl T2
T2 _ T2
(a)ZTZ*_l_a)szIz a,T ) +TI T, j K, M-T,) Ttk M-T,) n
2 1 2 Tl TZ
V=W’ Eﬂﬂhll LBl k6]+
Vl Nh Nh
A V_1*+ ﬂvehll\/l + ﬂthIlVIVZ* + ﬂvehllvl* + ﬂvehll\/l\/Z* + ﬂvlzvl + ﬂvIZVIVZ*
Vl Nh NhV2 Nh NhV2 Nh NhV2
ﬂvlzvl* + ,BVIZV;V;
Nh NhV2
k (Vz _Vz*)2
6 V2

Hence, if X <Y , then we obtain % <0 . Nothing that % =0 if and only if
S,=5,5,=S,1=0I,L,=0L,T,=T,,T,=T,,V, =V, ,V, =V, .Therefore the largest compact

invariant set {(Sl* S, ,II,I;,T;,TZ*,V;,V;)GF:%=0} is the singleton {El} where E'is the

Endemic equilibrium. Hence, by the LaSalle’s invariant principle [27], it implies that E' is

globally asymptotically stable in " if X <Y .
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Table 1: Values for parameters used for the model

Parameter Value Source
71 Estimated
Hn 0.0189 yr
71 Estimated
My 0.00013 yr
Estimated
A, 3,348,245 yr !
Estimated
A, 384,800 yr '
71 Estimated
N, 177,155,754 yr
71 Assumed
N, 2,960,000,000 yr
30
B, 0.009926 yr ' 130]
30
: 0.000249 yr ' 30]
P 1 [30]
0.00002797 yr
0 1 Assumed
0.0017 yr
Assumed
0, 025yr™
0 (0-1) Varying parameter
Ve . Assumed
0.1667 yr
71 Assumed
o, 0.01yr
71 Assumed
W, 0.0001 yr
T 4 Estimated
0.125 yr

3.6. Sensitivity Analysis

For infectious disease models in particular, the sensitivity analysis of the effective reproduction

number R, withrespect to the model parameters has been performed to determine the importance

of the epidemic model parameters [31]. The sensitivity of the magnitude of R, will be computed

with respect to the model parameter values to determine the relative influence of each parameter
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on the transmission and control of the disease. Sensitivity analysis determines which parameters

and initial conditions (inputs) affect the quantities of interest (outputs) of the models most [32-33].

The normalized sensitivity index of the effective reproduction number R, with respect to a

parameter value X is given by

where

X :{ﬂh,ﬂv,,5,P19a71Taa)1’w2}

Table 2: Sensitivity indices of R. to the model parameters. The parameters are ordered from the

most sensitive to the least.

Parameter Value Sensitivity index
T 0.125 -0.837635142079760
0.009926 0.7650680900
B,
0.000249 0.650547300
By
0 0.5 -0.50000
) 0.0017 -0.4644808743
0.01 0.1625662160
W,
e 0.1667 -0.0197997
P 0.00002797 0.0002869403718
o 0.0001 0.0000001817748297
2

Sensitivity index of the effective reproductive number, R. with respect to each parameter, is

computed as shown in table 2 for the model equation (2). The parameters have both positive and
negative effects on the effective reproduction number and are ordered from the most sensitive to

the least as seen in table 2. The most sensitive parameter is the treatment rate for the population

undergoing treatment (T) , the next important parameter is the rate at which the mosquitoes ingests
microfilariae when bitting a human (ﬁh) The parameters with the least SA are the rate of

progression of human from I,(t)to I,(t) (p) and the rate at which individuals in T,(t) stop
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taking drugs (e, ).

4. NUMERICAL SIMULATION

Graphical simulation was performed to see the effects of the controls. The following initial

conditions are considered. S,(0)=114,315,754, S,(0)=30,000,000, I,(0)=12,000,000, I,(0)

=6,840,000, T,(0)=8,000,000, T,(0)=6,000,000,V, (0)= 2,000,000,000, V,(0)=96,000,000

1.28 x 108
1.26 x 108
1.24 x 1081
1.22 x 108
12 x10%

1.18 x 108

Susceptible Individuals Without Treatment

1.16 x 1084 /-

0 1 2 3 4 5 6 7 8
Time in years

§=025 - 6=05——0=075|

Figure 2: The effect of effective mosquito net on the susceptible individuals not undergoing

treatment S, (t)

12 %107
8.x 10%+
6. 10°
4.%x10%

2.% 105

Agysmptomatic Infected Incividuals Without Treatment

Time in years
[ 8=025----" 8=05 —— 8 =0.75]

Figure 3: The effects of mosquito net on the asymptomatic infected individuals not undergoing

treatment |, (t)
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[

-t - - et -t -t

Agyamptomatic Infected Individuals Without Treatment

0 1 2 3 4 5 6 7
Time in years
| =g R s =05 — — t=0.75]

Figure 4: The effects of treatment on the asymptomatic infected individuals |, (t)

3.x 10%

2.5 % 10%

Carrier Vectors
J
X
2
[=]
]
1

1.5 x 108

1.x 108

Figure 5: The effects of Insecticide on the Carrier vector ¢
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9.6 x 107

9.599999 x 107
9.599998 x 107
9.599997 x 107 1

9.599996 x 107

Carrier Vectors

9.599995 x 107

9.599994 x 107

9.599993 x 107

0 1 2 3 4 5 6 7 8
Time in yvears
| t=025""""" =05 — — t=075]

Figure 6: The effects of treatment on infected individuals with and without symptoms

5. DISCUSSION OF RESULTS

Figure 2 shows the comparison between the effects of using effective mosquito net at any coverage
rate on the susceptible individuals without treatment S, (t) . This shows that as the rate of using

effective mosquito net increases, the susceptible individuals without treatment increases with time.

Figure 3: A comparison between the effects of using effective mosquito net at any coverage rate

on the asymptomatic infected individuals without treatment |, (t). This shows that as the rate of

using effective mosquito net increases, the susceptible individuals without treatment increases with
time.

Figure 4: A comparison between the effects of treatment at any coverage rate on asymptomatic
infected individuals I, (t) . This show that the effect of treatment on asymptomatic infected

individuals at any coverage rate will lead to control of lymphatic filariasis but treatment at a high
percentage will better control the disease.

Figure 5: The effect of the different death rate of Mosquitoes 0 due to Insecticide on Carrier Vector
o0 . Itis observed that as the death rate of Mosquitoes due to Insecticide increases, the carrier vector
decreases with time, this shows that the carrier vectors are close to the environment where the

insecticide is applied.

Figure 6: A comparison between the effects of treatmentz on the Carrier vector V (t) population.
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It reveals that the treatment of infected individuals with symptom 1, (t) and infected individuals

without symptoms I, (t) at any coverage rate decreases the carrier vector population.

6. CONCLUSION
The study presents a mathematical model for the transmission dynamics of lymphatic filariasis
incorporating treatment and other control measure parameters. It was shown that the model is

mathematically well-posed in a feasible region and realistic from an epidemiological point of view.

An explicit threshold value for the effective reproduction number (R.) was obtained. The

threshold value was used to obtain conditions for local and global stabilities of the DFE and EE
states. Sensitivity analysis was also conducted on the effective reproduction number and the most
sensitive parameters were identified. The simulation results shown that LF can be put under control
in the population if treatment level coverage should target a success rate of 75% because the
treatment rate is the most sensitive parameter from our analysis.

Some Useful results

Variables and Parameter Estimation

We estimate the parameter value on the basis of available information from the World Health
Organization (WHO), the Central Intelligence Agency (CIA), the Center for Disease Control
(CDC), and prevention and accurate explanatory literature. It is difficult to obtain reliable data. In

the following subsections, the calculations are clearly clarified.

Total human population of Nigeria, N,

The total population of Nigeria is 177,155,7544, according to WHO (2015).

N, =177155,754

Total number of infected human but not showing signs of elephantiasis symptoms in Nigeria, |,

Infected people, who have contacted elephantiasis but are not infective, but are asymptomatic are
not evidence of elephantiasis. About 6.77 percent of the population of Nigerians is actually infected

but asymptomatic (WHO, 2015), so

I, = 6.77 x177,155,754 =12,000,000
100
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Total number of infected with symptoms, (I 2)

According to WHO, (WHO,2015). There are currently 6,840,000 cases of elephantiasis with

symptoms in Nigeria thus; |, =6,840,000

Total number of susceptible individuals not taking drug in Nigeria, (Sl)

Recall N, =S, +S,+1,+1,+T,+T,

S, =N, —(S,+1,+1,+T,+T,)

S, =177,155,754 (30,000,000 + 12,000,000 + 6,840,000 + 8,000,000 + 6,000,0000)
S, =114,315,754 yr*

Natural death rate of humans in Nigeria, (yh )

The death rate is defined as the inverse of life expectancy at birth (Moualenet al., 2013).

The life expectancy at the year 2015 is 53.02 years (CIA, 2016). This gives the natural

Death rate for Nigeria to be g, = 1 0.0189
53.02

Recruitment number of humans due to birth (A,)

According to CIA (2014), the birth rate for Nigeria at the year 2014 is 38.03 birth per year per
38.03

1000 people. This gives the birth rate as =0.03803 . However, the recruitment

Number due to birth in Nigeria was gotten from

A, =N, xu, =177155754 x 0.0189
A, =3348,245

Recruitment number of mosquitoes, (A, )

We assumed a recruitment rate of mosquitoes from (Bhunu and Mushayabasa, 2012) that the
mosquitoes were caught for months and we use the months to get population of the mosquitoes for

a year.

AV =ILIVNV
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A, =0.00013 x 2,960,000,000
A, =384,800

Natural death rate of mosquitoes, (,uv)

An average mosquito lives for 21 days (WHO, 2015). Thus, we have the natural death rate of

mosquitoes as E X 1
21 366

Hence 4, =0.00013 yr ™

Treatment rate (r)

The effective years for treatment for both Infected with symptom and infected without symptom

is 8years.

We therefore assume that 7= % =0.125yr ™
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