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Abstract. Currently, many databases contain missing values, especially in medical data. Statistical and data

mining approaches often require complete data conditions, where these two approaches will not provide adequate

performance if the data contains missing values. Several techniques have been made to overcome missing values,

one of which is by deleting data containing missing values. However, this approach will omit a lot of information

if the data found includes many missing values. This study used an imputation approach (filling in the missing

attributes) with a clustering approach. One of the most common clustering approaches is K-Means Clustering.

In K-means clustering, the value of the centroid gets from the closest observed value. In this study, we propose

updating the centroid value based on the harmonic average of the distance across all observations per centroid.

This method is known as K-Harmonic Means Clustering (KHM). We proposed a new program approach for a

mixed dataset on three scenarios for missing values of 10%, 20%, and 30%. From the experiments conducted on

experimental data sets containing missing values, we get a small proportion of missing values (10%) with a small

number of clusters or K, which gives a smaller RMSE value compared to other scenarios.
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1. INTRODUCTION

Data mining is the process of discovering interesting patterns that consist of but not limited

to interesting anomalous situations, trends, patterns, and sequences within the given dataset

[1]. Intelligent data analysis techniques are useful for better exploring real-world data sets.

However, the real-world data sets almost always suffer from missing data value which defined

as a condition in which there is no value for an observation that can result in loss of information

and statistical power, this makes the general method for data analysis inappropriate or difficult

to apply, and can lead to biased results in estimates derived from statistical models that also

becomes a major threat affecting data processing quality [2, 3, 4]. Research conducted by [5]

mentioned that in order to ensure that data mining results useful and valuable. It is mandatory to

ensure the quality of the collected data because no quality data means no quality mining results.

The missing value data set problem occurs in a wide range of datasets, such as microarray

and gene expression data [6], mobile phone data [7], and software project data [8]. Therefore,

the presence of missing values in the dataset needs to be addressed before processing data

[9, 10, 11].

One of the solutions used to solve the imputation of missing values is divided into two fun-

damental solutions:

• Removes observations that contain missing values. Deleting observations that contain

missing values is one possible solution to overcome the missing value problem but note

that removing observations allows the dataset to suffer from observational shortages or

loss of information.

• Change the value of the observation attribute that contains missing values. One of the

step that can be taken to overcome the problem of missing values is to replace missing

values with specific values, such as the mean of the attribute [12]. Using mean value

as the imputation method has several drawbacks; mean value may reduce the variance

of numerical data and means imputation may distort the relationship between variables

because of mean value sensitive to extreme values [13].

Based on the weaknesses of the two approaches that have been mentioned, in this study, we

propose an approach to impute missing values. Our proposed method that instead of deleting
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each observation, we replace the observed value with a method that eschews the extreme. This

research’s main contribution is the proposed k-harmonic means method for missing value im-

putation using mixed data (both numerical and categorical). The K-Harmonic Mean algorithm

allows us to fill in the missing value with the centroid value of one cluster because the centroid

value has a characteristic value that is similar to all observations (members) of a cluster.

2. MISSING VALUES IMPUTATION

2.1. Missing Values. Missing values is a condition where the observation value of specific

attributes in a dataset is not available. Missing values not only result in loss of information and

the power of statistical analysis, causing general data analysis methods to be inappropriate or

difficult to apply but can also lead to biased results in estimates derived from statistical models

[2].

Based on the probability of the existence of missing values, there are three types of missing

values, namely missing completely at random (MCAR), missing at random (MAR), and miss-

ing not at random (MNAR) [14]. MCAR is a condition where the existence of missing value

does not depend on the values of other variables and also does not depend on the existence of

the missing value of other variables. Unlike MCAR, the existence of missing value in MAR

depends on the value observed in other variables but does not depend on the presence of missing

value from other variables. Missing value depends on the value observed in other variables and

also depends on the presence of missing values of other variables included in the MNAR cate-

gory. The handling of missing values in the three mechanisms is influenced by other variables

outside the given dataset [15]. In this study, the MCAR mechanism is used in the process of

data simulation.

2.2. Imputation. Imputation is an estimation process to replace or estimate missing values

with a value that can be estimated using different algorithms or techniques [16]. The imputation

method that can be used can be divided into two types, namely the single imputation method

and the multiple imputation method [17]. Single imputation is a simple imputation method

where missing values are replaced by logical estimates (one estimate per missing values) before

applying specific methods to filled data (datasets without missing values). Imputation using
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mean mode and imputation approach using clustering is an example of a single imputation

method. Mean imputation can be considered the simplest approach; missing values are replaced

by the average value of each variable in each observation for which the value does not exist as

an estimator. Mean imputation is generally used in social science as a fast alternative to data

deletion; Imputation with the clustering approach is a simple, intuitive method to accommodate

incomplete data [18].

Imputation using mean and mode values can be called rough imputation and is a fast and

straightforward imputation approach because it directly uses the mean or mode value of the

entire data on the variable to be imputed. The mean is used for the imputation of numerical

variables, while the mode is used for imputation for categorical variables. This rough impu-

tation not only does not consider the value of variance but also does not pay attention to the

relationship between variables and can produce estimates that are not appropriate. The rough

imputation method can only be used if there are only a few missing values and are not intended

for general use [19]. Imputation with the clustering approach can be used for more general use.

This study uses a single imputation method.

Imputation with the clustering approach is a method that replaces missing values with the

values contained in the cluster, through grouping a dataset and grouping observations that have

missing values to the data group, and replacing missing values with the average of the same

cluster observations. Observations that contain missing values are grouped into clusters, so the

values obtained for imputation are values that have characteristics similar to actual data. This

study uses a clustering approach with the implementation of the K-Harmonic Means algorithm

as a missing value imputation method.

3. UNSUPERVISED LEARNING

Unsupervised learning includes a clustering algorithm, in which the input dataset that is still

unknown label or target, then partitioned into clusters that meet specific criteria. Unsupervised

learning can also be considered as supervised learning with unknown (class) outcomes. This

introduces the difficulty of designing an objective function given a particular dataset [20]. The

clustering method is a mechanism that can be used in unsupervised learning. Two types of

clustering consist of hard clustering and soft clustering. In hard clustering, one data point can



MISSING VALUE IMPUTATION TOWARDS MIXED DATASETS 5

only be assigned to one cluster, but in soft clustering, one data point may be a member of more

than one cluster [21]. The K-Harmonic means method used in this study is a hard clustering

method.

3.1. K-Means Clustering. K-Means clustering, which is one example of hard clustering, has

a cost function or function that must be minimized [22] as follows:

(1) ζ = Σ
n
i=1{min||di−C j||2| j = 1, ...,k}

(2) C( j,z) =
1
n j

Σ
n j
i=1di

According to 1 di denotes observationi, C j is the centroid at cluster j, i serving as observation

index (1, ...,n), and ‖di−C j‖2 is the Euclidean distance between di and C j which produce

smallest possible value.

K-Means clustering is then performed using the following steps [23]:

• define the number of cluster (k).

• insert the observation into cluster k based on the closest centroid and perform new cen-

troid computation using 2.

• repeat steps two and three until the difference of two consecutive iterations on cost

function value less than the threshold value.

The calculation of the cost function in K-Means clustering only considers the distance with

the smallest value, while the cost function on K-Harmonic mean clustering uses the harmonic

mean value from the distance of each observation to each centroid in each cluster. The value of

the cost function that must be minimized is in line with the nature of the harmonic mean when

compared to the two other mean values as given on 6.

(3) An(x) =
1
n

Σ
n
i=1xi



6 SISWANTINING, ANWAR, SARWINDA, AL-ASH

(4) Gn(x) =
√

Πn
i=1xi

(5) Hn(x) =
n

Σn
i=1

1
xi

(6) An(x)≥ Gn(x)≥ Hn(x)

For positive numerical value x = (x1,x2, ...,xn), the value of arithmetic, geometry, and har-

monic are given on 3,4,5, respectively. The inequality on 6 shows that the harmonic mean value

always generates the smallest value compare to arithmetic and geometry mean value.

4. HARMONIC MEANS CLUSTERING

4.1. Normalization. Normalization is a technique to change the scale at which a new range

can be obtained from the range of existing data. Normalization is usually done so that the scale

of each variable is the same and has no unit value. In this study, normalization is done because

there is a distance calculation that requires numerical data values to be between 0 and 1. This

study uses the z-score normalization [24]. The results of the min-max normalization have values

between 0 to 1, while the Z-score normalization has negative results. The normalization method

used in this study is the min-max normalization. Min-max normalization can be done with the

following equation:

(7) dzi =
xzi− xz,min

xz,max− xz,min

According to 7 dzi is the normalization result on variable z. xzi min is the minimum value

or the smallest value on the variable z and xzmax is the maximum value or the most significant

value on the z variable.
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4.2. K-Harmonic Means Clustering. K-Harmonic Means (KHM) and KM are the center-

based clustering algorithm, but the KHM algorithm is the result of further studies of the KM

algorithm. The main difference between the two algorithms lies in the calculation of the cost

function and centroid update calculation; KM only considers the closest observation to the cen-

troid while the KHM uses the harmonic average of the distance of all observations per centroid

[22].

(8) ζ = Σ
n
i=1

K
ΣK

j=1
1

‖di−C j‖2

(9) αi =
1

(Σk
j=1

1
‖di−C j‖2 )

2

(10) qi, j =
αi

‖di−C j‖4

(11) q j = Σ
i=1
i=1qi, j

(12) pi, j =
qi, j

q j

(13) C j,z = Σ
n
i=1 pi, jdi,z

The distance between observations and centroids commonly used in the KHM for numerical

data i.e., the Euclidean distance that given in 7 with the following steps:

• Determine the number of cluster and perform random centroid value initialization.

• Compute cost function using 7, where ζ is the harmonic mean, K is the number of clus-

ter, di is the observationi, C j is the centroid on cluster j and ‖di−C j‖2 is the Euclidean

distance.
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• Compute new centroid using 8, 9, 10, 11 and 12 where αi is the observation distance

function at index i, qi, j is the membership function of observationi on cluster j, pi, j is

the observationi weight forming centroid on cluster j, C j,z is the centroid on cluster j,

variablez and di,z are the observationi and variablez.

• Enter the observation into the cluster with the closest centroid distance.

• Repeat step two until step four until the difference of the cost function is less than

predefined threshold value or exceed the maximum allowed iteration.

5. K-HARMONIC CLUSTERING IMPLEMENTATION METHODOLOGY

FIGURE 1. Imputation Method Flowchart using K-Harmonic Mean Algorithm

Figure 1 contains the research methodology written in this paper. The KHM approach to the

imputation of mixed data (both numerical and categorical data) is represented in 1. Based on 1,

the KHM imputation stage starts with normalizing min-max followed by the separation of mixed

datasets that still contain missing values into two datasets consisting of complete observations
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(without missing values) and observations that contain missing values. A complete observation

dataset is used to form clusters.

FIGURE 2. Imputation Method Flowchart using K-Harmonic Mean Algorithm

A detailed explanation of cluster formation using the KHM algorithm [25] is given in 2. The

formation of clusters by the KHM clustering method begins with the discretization of numerical

data that has been normalized so that a categorical form is obtained from numerical data using

the Equal Width Discretization (EWD) method [26]. The distance between categorical levels

can be calculated if all numeric datums have been converted to categorical datums. The distance

between categorical levels computes the occurrence with a categorical level variable with other

variables as given on 14.

(14) δ
zl(x,y) = P(v|x)+P(¬v|y)−1

(15) δ (x,y) =
1

m−1 ∑
l=1...m,z 6=1

δ
zl(x,y)

(16) δ (x,y) =
1

m−1 ∑
l=1...m,z 6=1

δ
zl(x,y)

(17) wz =
S−1

∑
r=1

S

∑
s>r

δ (u[r],u[s])
S(S−1)

2
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(18) ϑ(di,C j) =
mr

∑
z=1

(wz(dr
iz)−Cr

jz)
2 +

mc

∑
z=1

(Ω(dc
iz,C

c
jz))

2

(19)

q j =
n

∑
i=1

qi, j

qi, j =
αi

ϑ(di,C j)4

αi =
1

(∑m
j=1

1
ϑ(di,C j)2 )2

(20) C j,z =
n

∑
i=1

pi, jdi,z

(21) Θz,t, j =
n

∑
i=1

ηi(xt,z,C j)

According to 14 δ zl(x,y) states the categoric level x and y on variable z considering categoric

level co-occurrence variable l, z denotes variablez, l denotes variablel , x and y are categoric

level on variablez, v denotes categoric level subset on variablev, ¬v denotes complement subset

of v, P(v|x) is the conditional probability where x value on variablez occurred together with v

value on variablel . The categorical level that is part of v is chosen to maximize the value of

δ zl(x,y).

6. EXPERIMENTS

6.1. Data. The data we use are primary data from dr. Cipto Mangunkusumo Hospital. This

primary data has received ethical approval issued by the medical faculty of Universitas Indone-

sia [27]. The data used in this study are atrial fibrillation data without missing values. For

simulation purposes, some values in the dataset are intentionally omitted. The dataset used con-

sisted of 15 variables, and 145 observations are given in Table 1. Variables ”Name,” ”W” and

”H” are not included in data processing because the variables ”W” and ”H” are used to calculate

”BMI,” so the variable ”BMI” is included in the data processing.

ethical approval no: 0377/UN2.F1/ETIK/2018
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TABLE 1. Dataset Attributes

No. Feature Description

1. Name Patient Name

2. Age Year

3. Sex 0 = M, 1 = F

4. Weight (W) Kilogram

5. Height (H) Meter

6. Body Mass Index (BMI) W
H

7. Waist Size (WS) Centimeter

8. Neck Size (NS) Centimeter

9. Hypertension 2 = HS 2, 1 = HS 1, 0 = NBP

10. Smoking 0=No, 1=Yes

11. Alcohol 0=No, 1=Yes

12. CHF 0=No, 1=Yes

13. CHD 0=No, 1=Yes

14. Stroke 0=No, 1=Yes

15. Atrial Fibrillation (AF) 0=No, 1=Yes

There are 4 numerical variables included in data processing, namely ”Age”, ”BMI”, ”WS”,

and ”NS” and 8 categorical variables, namely ”Sex”, ”Hypertension”, ”Smoking”, ”Alcohol”,

”CHF” (Congestive Heart Failure), ”Stroke”, ”CHD” (Coronary Heart Disease), and ”AF”.

Note that the word ”HS” in description no. 9 in Table 1 means ”Hypertension Stage” where NBP

means ”Normal Blood Pressure”. Descriptive statistics of the data consisting of the average,

minimum, and maximum values of each numerical variable in Table 1 are given in Table 2.

6.2. Observation Imputation. The variable ”Alcohol” has 137 data with a value of 0; how-

ever, only 8 data has a value of 1, and the variable ”Stroke” there are 138 data with a value of

0 while only 7 data have a value of 1. The next calculation phase uses the new column names

(we rename all columns), as given in Table 3.
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TABLE 2. Descriptive Statistic Numeric Variables

No. Measure Age BMI WS NS

1. Average 47.22 26.02 89.88 37.96

2. Minimum 17 11.21 62 27

3. Maximum 83 64.12 167 55

4. Range 66 52.91 99 28

TABLE 3. Features Name

No. Feature Variable

1. Age X1

2. Sex X2

3. Body Mass Index X3

4. Waist Size X4

5. Neck Size X5

6. Hypertension X6

7. Smoking X7

8. Alcohol X8

9. Congestive Heart Failure X9

10. Stroke X10

11. Coronary Heart Disease X11

12. Atrial Fibrilation X12

In this imputation process, a process of manipulating missing values (creating missing val-

ues from a complete dataset without missing values) with the MCAR mechanism is to obtain

random missing values. The proportions of observations made to eliminate this value are 10%,

15%, and 20% of observations. There are 2 to 6 missing values for each observation in the

proposition. Data entered into the proportions of 10%, 15%, and 20%, as well as the number of

missing values in each observation, were randomly determined.
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The K-Harmonic Means (KHM) clustering method is implemented as a method of the impu-

tation of missing values on data that already contains missing values using the MCAR mecha-

nism. Twenty-one times imputation is done with a number of different clusters, from 2 clusters

to 8 clusters with the proportion of missing values of 10%, 15%, and 20%. Observations that

already have missing values from data that contain missing values with a proportion of 10% are

shown in Table 5, where missing values are indicated by na. Imputation is done after getting

the optimal cluster after several iterations in forming the cluster. Iteration is carried out in each

cluster formation on complete data that has been separated from data containing the proportion

of missing values of 10%, 15%, and 20% in each cluster (K) selected. Table 5 shows data

containing missing values, with a proportion of 10%.

Based on Table 4, the number of iterations in the proportion of missing values (MV) of 10%

and 15% tends to rise quite high when K is equal to 6, but the opposite occurs in the proportion

of missing values of 20% where the number of iterations when K equals 6 has the smallest value.

This phenomenon can occur because the number of iterations is influenced by the initial centroid

formed from the initialization of randomly selected cluster members. After the optimal cluster

is obtained, the centroid in the cluster is the centroid used in the imputation process. Table 6 is

an illustration of the centroid value of the optimal cluster formed in the clustering process using

complete data that has been separated from data containing missing values with a proportion of

missing values of 20% and using 2 clusters.

TABLE 4. Total Iteration On Each Cluster

Variables MV Proportion

2 3 4 5 6 7 8

4 9 8 8 15 27 13 10%

4 6 7 9 23 17 12 20%

10 9 10 10 6 11 20 30%

The centroid value of the numerical variable obtained is still in the normal form so that it

can be used as the value of the imputation of missing values on the numeric variable, that is

the centroid value that has been returned to its original form before normalization, and the
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TABLE 5. The Proportion Of 10% Observation Contains Missing Values

Datum X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

9 69 1 32 99 40 2 na na 1 0 na na

14 77 0 na na 32 2 na 0 0 1 1 na

26 na 1 22 75 35 0 0 0 na 1 na na

52 65 0 26 80 na na 1 na na 0 1 0

56 na 0 na na na 1 1 0 na 0 na 1

57 68 na na 122 na 1 na 0 na 0 na 1

64 42 0 18 75 na 2 1 na 0 na 0 1

70 48 0 21 72 35 na 1 0 na 0 0 1

79 na na na 81 35 0 0 0 na 0 0 na

111 70 0 22 100 38 0 1 na 1 na na na

112 na na 23 92 38 na na na 0 na 0 0

126 27 1 na 72 37 2 1 0 na 0 na na

128 35 0 na 125 45 na 1 na 1 na 1 na

132 54 na 17 na na 0 na 0 1 0 na 0

value used for imputation on the categorical variable is the categorical level that has the greatest

centroid value. After observations containing missing values have determined the membership

of the cluster, then the value becomes the value of imputation. The results of imputation carried

out on data containing missing values with a proportion of 10% using 2 clusters are given in

Table 7.

The results of the imputation value are shown in bold as given in Table 7. Imputation is

carried out to obtain 21 datasets of imputation results from a process that uses several different

clusters, namely as many as 2 clusters to 8 clusters and the proportion of different missing

values, namely 10%, 15%, and 20%. The dataset of imputation results is then evaluated by

looking at the RMSE on numeric variables and the level of accuracy of imputation values on

categorical variables.
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The results of the imputation of the KHM method on data containing missing values are

evaluated by looking at the Root Mean Square Error (RMSE) on numeric variables and the

level of accuracy of the imputation values on categorical variables. RMSE is calculated by

looking at the results of imputation on each numerical variable compared to the initial value

before the mechanism of the missing value is then performed an average RMSE calculation on

each variable.

TABLE 6. Centroids In The Proportion Of Missing Values 10% Using K = 2

Variable Cluster 1 Centroid Cluster 2 Centroid

X1 0.28018 0.65098

X2 < 0.60000,0.33800 > < 0.66153,0.41952 >

X3 0.23825 0.35535

X4 0.19543 0.38043

X5 0.34153 0.46918

X6 < 0.40000,0.21538,0.20888 > < 0.33846,0.21538,0.72748 >

X7 < 0.50769,0.47589 > < 0.49230,0.52382 >

X8 < 0.95384,0.05925 > < 0.92307,0.05393 >

X9 < 0.66153,0.16683 > < 0.60000,0.64206 >

X10 < 0.98461,0.02469 > < 0.95384,0.02409 >

X11 < 0.73846,0.11499 > < 0.73846,0.42761 >

X12 < 0.73846,0.20199 > < 0.66153,0.38189 >

6.3. Algorithm Simulation. The data sample taken in Table 8 is atrial fibrillation data. x1 is

gender, x2 is smoking history, and x3 is height. Note that x1 and x2 are categorical variables,

while x3 are numeric variables. Each categoric variable has two categorical levels. Categorical

levels for gender are male (M) and female (F). Categorical levels for smoking history were yes

(Y) and no (N).



16 SISWANTINING, ANWAR, SARWINDA, AL-ASH

TABLE 7. Imputation Result With 10% Missing Value Proportion

Datum X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

9 69 1 32.42 99 40 2 0 0 1 0 0 0

14 77 0 23.82 82.52 32 2 0 0 0 1 1 0

26 59.96 1 22.03 75 35 0 0 0 1 1 0 0

52 65 0 26.81 80 40.13 2 1 0 1 0 1 0

56 59.96 0 30.01 101.94 40.13 1 1 0 1 0 0 1

57 68 0 30.01 122 40.13 1 1 0 1 0 0 1

64 42 0 18.73 75 40.13 2 1 0 0 0 0 1

70 48 0 21.48 72 35 2 1 0 1 0 0 1

79 35.49 0 23.82 81 35 0 0 0 0 0 0 0

105 83 0 24.44 72 32 0 0 0 0 0 1 1

111 70 0 22.60 100 38 0 1 0 1 0 0 0

112 59.96 0 23.04 92 38 2 1 0 0 0 0 0

126 27 1 30.01 72 37 2 1 0 1 0 0 0

128 35 0 30.01 125 45 2 1 0 1 0 1 0

132 54 0 17.66 82.52 36.56 0 0 0 1 0 0 0

We deliberately bring up missing values in Table 9. In Table 9, missing values occur in

the last three observations. We create missing values by deleting one observed value for one

variable for each observation. The NA (not available) values in Table 9 are the missing values.

Then we normalized the numerical data using min-max normalization, with the results, as

shown in Table 10. We used ten baseline data that did not contain missing values with x3

due to normalization to form clusters. Then, we do the x3 discretization using the equal width

discretization method by changing the data with a value less than equal 0.5 to ”a” and data that

is more than 0.5 to ”b.” Calculate the distances a and b to find the weights, starting by finding

the conditional probabilities in the following calculations:
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TABLE 8. Sample Dataset Without Missing Values

No. x1 x2 x3

1 F N 1.58

2 M Y 1.6

3 M Y 1.7

4 F N 1.6

5 F N 1.6

6 F N 1.62

7 F N 1.6

8 M Y 1.69

9 M Y 1.62

10 M Y 1.5

11 F N 1.61

12 F N 1.51

13 M Y 1.7

P(P|a) = 4
6

P(L|a) = 2
6

P(P|b) = 1
4

P(L|b) = 3
4

P(T |a) = 4
6

P(Y |a) = 2
6

P(T |b) = 1
4

P(Y |b) = 3
4

The calculation of the distance concerning other variables uses equation 14. Then, the calcu-

lation of the distance between ”a” and ”b” employs equation 15.
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TABLE 9. Sample Dataset With Missing Values

No. x1 x2 x3

1 F N 1.58

2 M Y 1.6

3 M Y 1.7

4 F N 1.6

5 F N 1.6

6 F N 1.62

7 F N 1.6

8 M Y 1.69

9 M Y 1.62

10 M Y 1.5

11 F N NA

12 F NA 1.51

13 NA Y 1.7

δ
3,1(a,b) = 0.41667

δ
3,2(a,b) = 0.41667

δ (a,b) = 0.41667

Equation 16 is used to obtain the weight of x3:

w3 = 0.41667

The next step is to calculate the distance F to M and N to Y with equation 14 with the

following calculations:
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TABLE 10. Sample Dataset with x3 Normalization

No. x1 x2 x3

1 F N 0.4

2 M Y 0.5

3 M Y 1

4 F N 0.5

5 F N 0.5

6 F N 0.6

7 F N 0.5

8 M Y 0.95

9 M Y 0.6

10 M Y 0

11 F N NA

12 F NA 0.05

13 NA Y 1

δ
1,2(F,M) = 1

δ
1,3(F,M) = 0.4

δ
2,1(N,Y ) = 1

δ
2,3(N,Y ) = 0.4

Equation 14 is used to get delta (F, M) = 0.7 and delta (N, Y) = 0.7. Then we randomly split

the complete dataset into two clusters. The clusters are given in Table 3.6 for cluster 1 and Table

3.7 for cluster 2.

Next, we determine the initial centroid based on the cluster formed randomly in Table 12 and

Table 13, representing the value of the centroid in the categorical variable representing the value

¡F,M¿ for centroid x1 and ¡N,Y¿ for the centroid of x2 according to the order of the categorical

levels that appear on data. The categoric variable centroid’s value is the proportion of each

categoric level in each cluster, while the centroid in the numeric variable is the average of all
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TABLE 11. Sample Dataset after Discretization

No. x1 x2 x3

1 F N a

2 M Y a

3 M Y b

4 F N a

5 F N a

6 F N b

7 F N a

8 M Y b

9 M Y b

10 M Y a

11 F N NA

12 F NA 0.05

13 NA Y 1

TABLE 12. Randomly Cluster 1

No. x1 x2 x3

1 F N 0.4

2 M Y 0.5

5 F N 0.5

8 M Y 0.95

9 M Y 0.6

observations in that variable in each cluster. The initial centroids are given in Table 14. The

next step is to update the initial centroid starting by calculating each observation’s distance to

each centroid in Table 14, which is calculated by equation 18, the distance is shown in Table

15.

The distance calculation results obtained in Table 15 are used to calculate the pi, j using

equation 19. The obtained pi, j is given in Table 16. Then calculate the new centroid for numeric



MISSING VALUE IMPUTATION TOWARDS MIXED DATASETS 21

TABLE 13. Randomly Cluster 2

No. x1 x2 x3

3 M Y 1

4 F N 0.5

6 F N 0.6

7 F N 0.5

10 M Y 0

TABLE 14. The Initial Centroid

Centroid x1 x2 x3

C0,1 <0.4 , 0.6 > <0.4 , 0.6 > 0.59

C0,2 <0.6 , 0.4 > <0.6 , 0.4 > 0.52

TABLE 15. Distance between Observation and Initial Centroid

i ϑ(di,C0,1) ϑ(di,C0,2)

1. 0.359067361 0.1593

2. 0.15820625 0.352869444

3. 0.185984028 0.3928

4. 0.35420625 0.156869444

5. 0.35420625 0.156869444

6. 0.352817361 0.157911111

7. 0.35420625 0.156869444

8. 0.1793 0.384900694

9. 0.156817361 0.353911111

10. 0.217234028 0.399744444

variables with equation 20 and new centroids for categorical variables with a shape like the

one in equation 21. The new centroids obtained are given in Table 17. After getting the new

centroid, recalculate each observation’s distance to the centroid in Table 17 with equation 18,

which can be seen from the calculation results in Table 18. Then each observation becomes a
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TABLE 16. Value of pi, j

i pi,1 pi,2

1. 0.007803152 0.190681017

2. 0.200022136 0.007650911

3. 0.192520530 0.009159895

4. 0.007757771 0.190899667

5. 0.007757771 0.190899667

6. 0.008035785 0.189571961

7. 0.007757771 0.190899667

8. 0.194800211 0.008683855

9. 0.201588375 0.007356344

10. 0.171956498 0.014197015

TABLE 17. Centroid on Iteration1

Centroid x1 x2 x3

C1,1 <0.03911225, 0.96088775> <0.03911225, 0.96088775> 0.618124212

C1,2 <0.95295198, 0.04704802> <0.95295198, 0.04704802> 0.502013904

cluster member that has a distance from the smallest centroid or can be interpreted as the closest

cluster so that a cluster is formed with cluster members as in Table 19.

The next step is to recalculate the centroid. The results of the new centroids are shown in

Table 20. Recalculate the distance of each observation to the new centroid until the cluster

membership is obtained in iteration2. The results of the distance calculation can be seen in

Table 21. Based on Table 19 and Table 20, the membership in iteration1 and iteration2 has

not changed, so the iteration stops, and the centroid in the iteration is used in the imputation

process of missing values. Data containing missing values are shown in Table 22. Calculate

the distance of data containing missing values to the final centroid (centroid in iteration2). The

results of these calculations are given in Table 23. Observations that are members of the cluster

with the closest centroid are shown in Table 24.

The imputation of missing values is then carried out as follows:



MISSING VALUE IMPUTATION TOWARDS MIXED DATASETS 23

TABLE 18. The Distance between Observation and Iteration1

i ϑ(di,C1,1) ϑ(di,C1,2)

1 0.913099262 0.003975988

2 0.003921626 0.889955831

3 0.026816728 0.933008973

4 0.907261615 0.00216995

5 0.907261615 0.00216995

6 0.904896191 0.003836134

7 0.907261615 0.00216995

8 0.020620968 0.924797409

9 0.001556202 0.891622015

10 0.067832079 0.933708245

TABLE 19. Member of Iteration1

Cluster1 Cluster2

Observation2 Observation1

Observation3 Observation4

Observation8 Observation5

Observation9 Observation6

Observation10 Observation7

TABLE 20. Centroid on Iteration2

Centroid x1 x2 x3

C2,1 ¡1.5654×10−10, 1¿ ¡1.5654×10−10, 1¿ 0.611085085

C2,2 ¡0.999994302, 5.69839×10−06¿ ¡0.999994302, 5.69839×10−06¿ 0.499997374

• observation11 contains missing values in the numeric variable x3, so the imputation uses

the centroid value from cluster2, 0.499997374.

• observation12 imputed using the categorical level with the largest Θ value on variable

x2 within cluster 2, which is N.
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TABLE 21. Member of Iteration2

Cluster1 Cluster2

Observasi2 Observasi1

Observasi3 Observasi4

Observasi8 Observasi5

Observasi9 Observasi6

Observasi10 Observasi7

TABLE 22. Data with Missing Values

No. x1 x2 x3

11 F N ?

12 F ? 0.05

13 ? Y 1

TABLE 23. The Distance between Observation and Iteration2

i ϑ(di,C2,1) ϑ(di,C2,2)

11 0.904839162 0.002169246

12 0.508455192 0.03655625

13 0.026067142 0.488031409

TABLE 24. Membership Observation containing Missing Values

Cluster1 Cluster2

Observation13
Observation11

Observation12

TABLE 25. Imputation Results

No. x1 x2 x3

11 F N 0.499997374

12 F N 0.05

13 M Y 1
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• observation13 imputed using categorical level that has the largest Θ value on variable x1

within cluster 1, which is M.

The results of imputation on the last three observations are given in Table 25. Return the

normalization value carried out by min-max normalization, so that the imputation value of

observation11 is equal to 1.599999475 where the actual observation is 1.61. The imputation

results on numerical variables were evaluated using the root mean square error (RMSE) to see

the distance between the imputation results and the true value (actual observed value). In this

example, there is only one value that is taken into account, which is observation11, and the

RMSE value is obtained by equation (2.10), which yield

RMSE =
√

(1.61−1.599999475)2 = 0.010000525

Imputation on categoric variables is evaluated by looking at the imputation’s accuracy com-

pared to the actual data. The imputation of observation12 and observation13 is in accordance

with the original observation so that the imputation accuracy rate is 2/2 or 100% because there

are only two categorical values that are imputed, and both are correct.

7. EVALUATION AND ANALYSIS

The level of accuracy of the imputation value on categorical variables can be seen from

how many imputation results that correctly fill the actual value of the data on all categorical

variables. Note that the smaller the RMSE value, the imputation results get closer to the actual

data value, while the higher the level of accuracy, the imputation value actually shows the

imputation results are more in line with the actual data value. The number of missing values

imputed on each variable for each proportion has the sum shown in Table 26. Evaluation is

carried out on the results of imputation using the KHM method with K selected i.e., 2 to 8

clusters, and the proportion of missing values of 10%, 15%, and 20%.

7.1. 10 Percent Missing Value Proportion. Numerical data is evaluated by calculating RMSE

which is calculated from the difference in data derived from complete data and data from im-

putation. Table 27 shows the pair between data derived from the actual value or the initial
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TABLE 26. The Number Of Imputation Value On Each Variable

Variables Missing Value Proportion

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

4 5 6 3 3 5 5 6 7 4 7 7 10%

3 6 6 6 6 7 6 6 8 7 8 6 20%

6 7 9 7 6 10 7 7 13 13 13 12 30%

observation (Obs) and imputation data (Imp) with the proportion of missing values 10% where

K = 2 on numerical variables.

Table 27 shows that there is a difference between the actual values of observations with the

imputation results and the RMSE of these values as given in Table 28 line K = 2. RMSE values

on data containing missing values of 10% for each K selected in numerical variables given in

Table 28. We argue that the resulting RMSE value is not too large when considering the range

of values for each variable. Figure 3 is given to represent the RMSE average value graph for

data containing a 10% missing value. Based on the graph in Figure 3 the average value of

RMSE in data that has a 10% missing values proportion is that the smallest RMSE value occurs

when K is 3, which is 6.415525 and when K is 6, the value of RMSE tends to increase, reaching

8.586522.

Table 30 shows in pairs between data from complete observations (O) and imputation data

(I) with the proportion of missing values of 10% where K = 2 on categorical variables. As can

be seen in Table 30 that there is a difference between the actual value of the observation and

the value of the imputation results, and the number of imputations that exactly match the actual

value of the observations can be seen in line K = 2 in Table 29. The number of imputation

results that exactly match the true value of the observations at each selected K is given in Table

29. Figure 4 illustrates the level of imputation accuracy for each variable and the K value

(number of clusters) that chosen.

Based on the exact number of imputations in Table 29 for the number of missing values

imputed in Table 26, the level of accuracy is equal to 1
5 where K = 2. Figure 4 represents the

level of accuracy 0.2 on the X6 variable not only at K = 2 but for each chosen K. Variable X8
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FIGURE 3. RMSE Average using 10% Proportion Of Missing Values

FIGURE 4. Accuracy of Missing Values Imputation with 10% Proportion of

Missing Values

FIGURE 5. The Average Imputation Accuracy on 10% Missing Values

has the level of imputation accuracy reaching a value equal to 1 for each selected K. The level

of accuracy for the results of imputation in the data of 10% missing values for each K is seen

from the average level of accuracy in each variable as given in Figure 5.

According to Figure 5, the level of imputation accuracy in data with the proportion of missing

values of 10% can be interpreted that the level of imputation accuracy is approximately 0.6 with
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TABLE 27. Actual Value Of Imputation Proportion Towards 10% K = 2 Nu-

merical Variables

X1 X3 X4 X5

Observed Imputed Observed Imputed Observed Imputed Observed Imputed

67 59.96 19.81 23.82 72 82.52 40 40.13

48 59.96 25.51 30.01 94 101.94 40 40.13

27 35.49 31.22 30.01 90 82.52 44 40.13

61 59.96 21.04 23.82 35 40.13

20.02 30.01 35 36.56

38.51 30.01

TABLE 28. RMSE Using 10% Proportion Of Missing Values

Variable Clusters

X1 X3 X4 X5

8.152414 6.020911 8.751425999999999 3.819035 2

7.083157000000001 6.795877000000001 8.642387 3.140678 3

8.474581 7.86795 7.816814999999999 2.864632 4

8.654191 5.924933 7.7450470000000005 4.518288 5

9.947853 9.723507000000001 11.90986 2.764871 6

9.474825 8.702898 11.88722 3.6328699999999996 7

8.116772000000001 7.897187 10.94726 2.557649 8

the highest accuracy level of 0.652174 where K value is equal to 2 and the smallest accuracy

value is 0.586957 where K is equal to 6.

7.2. 15 Percent Missing Value Proportion. RMSE values on data containing missing values

of 15% in each variable for each K selected in the numerical variable are shown in Table 31.

The resulting RMSE is not too large when considering the range of values for each variable.

The average RMSE value for each K chosen in the data containing 15% missing values can

be seen from the graph in Figure 6. The average graph of RMSE as given in Figure 6, values in
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TABLE 29. Total Imputation With 10% Missing Value Proportion, Which Ex-

actly Fills In The Correct Value

Variable Cluster (K)

X2 X6 X7 X8 X9 X10 X11 X12

4 1 4 6 4 3 2 6 2

4 1 1 6 5 3 3 6 3

4 1 3 6 4 3 2 6 4

3 1 2 6 6 3 2 6 5

3 1 2 6 4 3 2 6 6

4 1 2 6 3 3 3 6 7

4 1 2 6 5 3 2 6 8

TABLE 30. Actual Value And Imputation Proportion Of 10% Where K = 2 Cat-

egorical Variables

X2 X6 X7 X8 X9 X10 X11 X12

Obs Imp Obs Imp Obs Imp Obs Imp Obs Imp Obs Imp Obs Imp Obs Imp

0 0 1 2 0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 2 1 0 0 0 0 1 1 0 1 0 0 0

0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0

0 0 0 2 1 1 0 0 1 1 0 0 1 0 0 0

1 0 2 2 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0

data that have a proportion of missing values of 15%, the smallest RMSE value occurs when K

is 5, which is 8.15191 and has the highest RMSE value when K is 6, 10.93973. The results of

categorical data imputation that correctly fill in missing values are given in Table 32.

The number of imputations that correctly fills missing value with the actual values shown

in Table 32 when compared with the number of values imputed in Table 26 yields the level
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TABLE 31. RMSE Using 15% Proportion Of Missing Values

Variable Cluster(K)

X1 X3 X4 X5

6.04 5.85 15.41 5.76 2

6.31 3.49 16.52 5.71 3

5.47 5.77 17.08 5.9 4

4.23 4.23 13.40 6.01 5

4.74 8.18 17.99 6.52 6

6.79 4.92 12.44 7.68 7

7.22 5.44 12.90 6.39 8

TABLE 32. Total Imputation with 15% Missing Value Proportion, which Ex-

actly Fills in The Correct Value

Variable (K)

X2 X6 X7 X8 X9 X10 X11 X12

6 0 4 5 5 7 5 5 2

6 1 2 5 5 7 5 5 3

6 1 1 5 3 7 5 5 4

6 0 4 5 4 7 5 5 5

6 1 3 5 3 7 5 4 6

6 1 2 5 4 7 5 5 7

6 0 2 5 4 7 6 5 8

of accuracy of the imputation results, as shown in Figure 7.Note that in table 32, column K

represents the cluster number. Figure 7 explains the highest level of accuracy in the X2 and X10

variables, which reach 100% and the lowest in the X6 variable when the chosen K are 2, 5, and

8, resulting in a precision level of 0%.
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FIGURE 6. RMSE Average using 15% Proportion Of Missing Values

FIGURE 7. Accuracy of Missing Values Imputation with 15% Proportion of

Missing Values

The accuracy of each variable in Figure 7 is calculated on average to see the accuracy in data

imputation containing missing values with a proportion of 15% for each selected K value given

in Figure 6. From the graph, the accuracy level in the data with the proportion of missing values

of 15% can be seen that the highest level of accuracy when K equals two is 0.68519 and the

smallest when K equals four is 0.61111.

7.3. 20 Percent Missing Value Proportion. The RMSE value in the given dataset containing

missing values of 20% for each K selected in the numerical variable is shown in Table 33. The

resulting RMSE value is not too large when considering the range of values for each variable.

The average RMSE value for each K value (number of clusters) selected in the given dataset

containing missing values of 20% is given in Figure 8.

Based on the graph Figure 10, the average RMSE value in the given data, it has a proportion

of missing values of 20%, the smallest RMSE value occurs where K equals 5 which reaches

11.86424, and the highest RMSE value occurs where K equals 4 which reaches 14.66473.
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TABLE 33. RMSE Using 20% Proportion Of Missing Values

Variable Cluster (K)

X1 X3 X4 X5

19.84 7.42 20.78 3.13 2

19.66 6.94 17.15 4.14 3

27.36 7.36 19.67 4.25 4

18.83 8.10 16.11 4.40 5

18.96 9.30 15.24 4.76 6

19.09 10.21 15.74 5.87 7

19.02 8.24 18.44 5.01 8

FIGURE 8. RMSE Average using 20% Proportion Of Missing Values

FIGURE 9. Accuracy of Missing Values Imputation with 20% Proportion of

Missing Values
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Table 8 shows the results of categorical data imputation based on the number of imputation

results that correctly fill in the missing values. The exact number of imputations filling in

the missing values matches the actual values shown in Table 8 when compared to the number

of values imputed in Table IX, the accuracy of the imputation results is shown in Figure 9.

According to Figure 9, it can be seen that the highest accuracy value on variables X8 and X10

which surprisingly reaches 100% and the lowest accuracy value on variables X6 and X7.

FIGURE 10. The Average Imputation Accuracy on 20% Missing Values

For variable X7, when the chosen K value is 3, 4, 5, and 7, it produces an accuracy of 0%.

The average calculation is applied to the accuracy of each variable given in Figure 9 to see the

accuracy of data imputation containing missing values with a proportion of 20% for each K used

as given in Figure 10. From the graph Figure 10, the level of accuracy in a given dataset with

the proportion of missing values of 20% has the highest accuracy value where K is 6, reaching

0.731707 and the smallest when K is 7, which reaches 0.609756.

8. CONCLUSIONS

Based on the research that has been done, we concluded that the K-Harmonic Means Clus-

tering method could be implemented as a method of the imputation of missing values in mixed

data with a proportion of missing values of 10%, 15%, and 20%. The results of imputation

experiments using the K-Harmonic Means method have the most optimal results on the dataset

with the proportion of missing values of 10% where the selected K (number of clusters) is equal

to 3, RMSE produces 6,415,525, and an accuracy value of 0.630435. We suggest that future

studies be able to use data with a more diverse categorical level and balanced frequency, apply
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the K-Harmonic Means imputation method for imputation of missing values in datasets that

already contain missing values from the start and evaluate the results of imputation using other

methods, and find methods for determining the number of clusters used so that the results of

imputation obtained are optimal.
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