
_____________ 

*Corresponding author 

E-mail address: dipankar.sadhukhan2@gmail.com 

Received January 3, 2021 

1 

  

          Available online at http://scik.org 

          Commun. Math. Biol. Neurosci. 2021, 2021:18 

https://doi.org/10.28919/cmbn/5382 

ISSN: 2052-2541 

 

 

A PREY-PREDATOR MODEL WITH HOLLING TYPE IV RESPONSE 

FUNCTION UNDER DETERMINISTIC AND STOCHASTIC ENVIRONMENT 

DIPANKAR SADHUKHAN* 

Department of Mathematics, Haldia Government College, Haldia-721657, Purba Medinipur, West Bengal, India 

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: In this paper, both deterministic and stochastic behaviors of a general prey-predator model have been 

studied with Holling type-IV response function. For the deterministic model, uniform boundedness and persistence of 

the system have been discussed under the certain condition of the parameter. For local stability and bifurcation 

analysis, we arrive at the Hopf bifurcation and derived the symbolic condition for Hopf bifurcation. After that, the 

model has been illustrated with some numerical examples. In the second phase, the system has been perturbed by 

independent Gaussian white noises for the stochastic environment and the stability of the system have been studied 

by statistical linearization technique. Finally, a comparison has been made between the stability conditions in 

deterministic and stochastic cases.  
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1. NOTATIONS  

𝑥 & 𝑦: size of the prey and predator populations respectively at time 𝑡.  
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𝑘: environmental carrying capacity of prey. 

𝑟: intrinsic growth rate of prey. 

𝑎: half saturation constant.  

𝑏: efficiency at which the predator converts the consumed prey in to the new predators.  

𝑐: maximum per capita predation (consumption) rate. 

𝑖: direct measure of the tolerance of the prey. 

𝑑: the food independent death rate of predator.  

 

2. INTRODUCTION 

Prey-predator relation is a very complex phenomena, which exists in every ecological system such 

as pond, sea, forest etc. The pioneering work to model this prey-predator relation has been done 

first by Lotka[2] and Volterra[3],which is known to us as Lotka-Volterra model. Also there are 

several different types of prey-predator models such as Gauss type prey-predator model etc. These 

kinds of deterministic models have been made on the relationship in which one species is a part of 

the food supply for another species. Therefore a functional response works to change the prey 

density per unit time per predator as a function of prey or both prey and predator. The curve defined 

by Lotka-Volterra response function was a straight line through the origin and was unbounded. 

Abrams and Ginzburg[4] formulated analyzed a prey-predator model using a linear prey-

dependant response function called Holling type-I function. For more reasonable response function 

in 1913, Michaelis and Menten proposed the response function which was of the form. 

𝑔(𝑥) =
𝜉𝑥

𝜂+𝑥
 , to study the enzyamatic reactions, where 𝜉(> 0) denotes the maximal growth rate of 

the species and 𝜂(>  0) is the half saturation constant[5]. In 1959, Holling[6] also used this 

function as one of the predator functional responses. It is now referred to as a Michaelis-Menten 

function or a Holling type-II function. The function 𝑔(𝑥)is also called a prey-dependant response 

function since it depends solely on prey density.  

Arditi et al.[7], Arditi and Saiah [8], Gutierrez[9]and Kuang and Beretta[10]are considered the 

response function based on both prey and predator. In recent time Maiti and Samanta[11,12], Maiti 
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et al.[29] and Maiti and Pathak[30] have studied the pre-predator model under deterministic and 

stochastic environments with Michaelis-Menten defined ratio dependent response functions (i.e. 

Holling type-II).  

In the literature, there is also a prey-predator relation of the type 𝑔(𝑥) =
𝜉𝑥2

𝜂+𝑥2
 , called Halling type-

III response function which is again prey dependant of second order.  

Also many researchers studied the prey-predator model under stochastic environment such as 

Maiti and Samanta [11-13], Samanta[14-20], Baishya and Chakrabarti[21], as in the present world 

due to global warming and other causes, environmental fluctuation is a very important random 

phenomena. But till now no comparison study has been made for the model with Holling type-IV 

response function in deterministic and stochastic environments.  

The model for this section is described by  

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) − 𝜙(𝑥)𝑦

𝑑𝑦

𝑑𝑡
=  −𝑑𝑦 + 𝑏̂𝜙(𝑥)𝑦       

                                                                                                     (1) 

which was proposed by Freedman and Wolkowicz [32]. It is similar in appearance to the 

Rosenzweig- MacArthur system[33].  

With Holling type-IV response function 𝜙(𝑥) =
𝑐̂𝑥

𝑎̂+𝑥+
𝑥2

𝑖

 [31], a prey-predator model is of the form 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝑐𝑥𝑦

1+𝑎𝑥+𝑏𝑥2  

𝑑𝑦

𝑑𝑡
=  𝑦 (−𝑑 +

𝑓𝑥

1+𝑎𝑥+𝑏𝑥2)       
                                                                                                (2) 

Where, 𝑐 =
𝑐̂

𝑎̂
, 𝑎 =

1

𝑎̂
, 𝑏 =

1

𝑖𝑏̂
 and 𝑓 =

𝑏̂𝑐̂

𝑎̂
 with 𝑥(0 > 0) , 𝑦(0) > 0 . It may be noted that the 

denominator of the above system (𝑖. 𝑒. 1 +  𝑎𝑥 +  𝑏𝑥2) does not vanish for 𝑥.  

This kind of model with reaction diffusion has been studied earlier by Zhang et al.[22], but they 

did not make any comparative study of the model in both deterministic and stochastic 

environments.  
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This kind of model with reaction diffusion has been studied earlier by Zhang, Wang, Xue and 

Jin[22],but they did not make any comparative study of the model in both deterministic and 

stochastic environments.  

In the present work, we have considered Holling type-IV response function. Firstly we have 

studied the boundedness, persistence, Hopf bifurcation (Murrey) [23] and stability analysis in 

deterministic environment. After that we perturbed the system with independent white noise due 

to environmental fluctuation and derived the stability condition using statistical linearization 

method of Valsakumar et al.[1] and Routh-Whoriatz criteria.  

 

3. STEADY STATE AND DYNAMICAL BEHAVIOUR 

The steady states of the system (2) in the positive quadrant are at (0, 0) (total extinct), (𝑘, 0) and 

interior equilibrium 𝐸(𝑥∗, 𝑦∗) (cf. Zhang et al[22]).  

When  (𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑟, 𝑘) ∈ 𝐸1, 

Where, 𝐸1 = {
(𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑟, 𝑘): 𝑓 > 𝑎𝑑, (𝑓 − 𝑎𝑑)2 > 𝑏𝑑2, √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2 >

−𝑓2−𝑎2𝑑2+2𝑓𝑎𝑑+𝑓𝑏𝑑𝑘−𝑎𝑏𝑑2𝑘+2𝑏𝑑2

𝑏𝑑𝑘+𝑎𝑑−𝑓
> 0,

𝑎

𝑏
−

𝑓

𝑏𝑑
+ 𝑘 < 0

} , there 

exists a unique stationary coexistent state at (𝑥1
∗, 𝑦1

∗). 

With 𝑥1
∗ =

(𝑓−𝑎𝑑)−√(𝑓−𝑎𝑑)2−4𝑏𝑑2

2𝑏𝑑
  and  𝑦1

∗ =
𝑟𝑓{(𝑏𝑑𝑘+𝑎𝑑−𝑓)𝑥1

∗+𝑑}

𝑏𝑐𝑑2𝑘
. 

Again when (𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑟, 𝑘) ∈ 𝐸2, 

Where, 𝐸2 = {
(𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑟, 𝑘): 𝑓 > 𝑎𝑑, (𝑓 − 𝑎𝑑)2 > 𝑏𝑑2, √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2 >

−
−𝑓2−𝑎2𝑑2+2𝑓𝑎𝑑+𝑓𝑏𝑑𝑘−𝑎𝑏𝑑2𝑘+2𝑏𝑑2

𝑏𝑑𝑘+𝑎𝑑−𝑓
> 0,

𝑎

𝑏
−

𝑓

𝑏𝑑
+ 𝑘 > 0

} , there 

exists another equilibrium point at (𝑥2
∗, 𝑦2

∗). 

Where  𝑥2
∗ =

(𝑓−𝑎𝑑)+√(𝑓−𝑎𝑑)2−4𝑏𝑑2

2𝑏𝑑
  and  𝑦2

∗ =
𝑟𝑓{(𝑏𝑑𝑘+𝑎𝑑−𝑓)𝑥2

∗+𝑑}

𝑏𝑐𝑑2𝑘
. 

In our present investigation, we consider the equilibrium point (𝑥∗, 𝑦∗) of the region 𝐸1 . The 

analysis of the equilibrium point (𝑥2
∗, 𝑦2

∗) of the region 𝐸2 can be done similarly.  

Theorem 1. All the solutions of system (2) which exist in ℜ+
2

 are uniformly bounded.  

Proof: Let  (𝑥(𝑡), 𝑦(𝑡)) be any solution of (2) with positive initial conditions.  
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As 
𝑑𝑥

𝑑𝑡
≤ 𝑟𝑥 (1 −

𝑥

𝑘
), therefore from standard comparison test, we have 

lim
𝑡→∞

sup 𝑥(𝑡) ≤ 𝜇, where 𝜇 = max{𝑥(0), 𝑘}. 

Considering 𝑊 = 𝑓𝑥 + 𝑐𝑦 and using (2), we have 

𝑑𝑊

𝑑𝑡
= 𝑓𝑟𝑥 (1 −

𝑥

𝑘
) − 𝑐𝑑𝑦.                

≤ 𝑓𝑟𝑥 − 𝑐𝑑𝑦 = 2𝑓𝑟𝑥 − 𝑓𝑟𝑥 − 𝑐𝑑𝑦
≤ 2𝑟𝑓𝜇 − 𝛿𝑊.                                     

  

Where 𝛿 = 𝑚𝑖𝑛(𝑟, 𝑑) 

Therefore,    
𝑑𝑊

𝑑𝑡
+ 𝛿𝑊 ≤ 2𝑟𝑓𝜇                                                                                           (3) 

Now using the Theorem of Birkhoff and Rota [24] on differential inequalities, we get  

0 ≤ 𝑊(𝑥, 𝑦) ≤
𝑊(𝑥(0),𝑦(0))

𝑒𝛿𝑡 +
2𝑟𝑓𝜇

𝛿
  

Therefore for 𝑡 → ∞, 0 ≤ 𝑊(𝑥, 𝑦) ≤
2𝑟𝑓𝜇

𝛿
 

So, {(𝑥, 𝑦): 0 ≤ 𝑓𝑥 + 𝑐𝑦 ≤
2𝑟𝑓𝜇

𝛿
+ 𝜖, 𝑓𝑜𝑟 𝜖 > 0} = 𝐵 (𝑠𝑎𝑦)                                            (4) 

is the region where all solutions of the system (2) which exists in ℜ+
2 , are uniformly bounded. 

Hence the theorem.  

Theorem 2. If the interior equilibrium point exists then the system (2) is uniformly persistent.  

Proof: From the Theorem-1, it is clear that the solution of the system lies in 𝐵 for sufficiently large 

𝑡.  

Also from the above theorem, we have  

lim
𝑡→∞

sup 𝑥(𝑡) ≤ 𝑘 

So we can take 𝑀 = sup
𝑥∈𝐵

𝑥(𝑡) to be any number larger than 𝑘. 

Let us now define the average Lyapunov function given by 𝜌 (𝑧)  =  𝑥𝑟1𝑦𝑟2
 where 𝑟1, 𝑟2  are 

positive constants to be specified later.  

Now, 𝜓(𝑧) =
𝜌̇(𝑧)

𝜌(𝑧)
= 𝑟𝑟1 − 𝑑𝑟2 + 𝑥 (

𝑟2𝑓

1+𝑎𝑥+𝑏𝑥2 −
𝑟𝑟1

𝑘
)for 𝑧 = (𝑥, 𝑦) ∈ 𝐻2 

Where 𝐻1 = {(𝑥, 𝑦) ∈  ℜ+
2 : 𝑥 = 0} and 𝐻1 = {(𝑥, 𝑦) ∈  ℜ+

2 : 𝑦 = 0} 

So we choose, 𝑟1 = 1, 𝑟2 =
𝑟1(1+𝑎𝑀+𝑏𝑀2)

𝑘𝑓
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guarantee that for 𝑥1 ∈  Ω(𝜕ℜ+
2 ) ∩ 𝐻2, 𝜓 (𝑥2)  ≥  𝑟𝑟1 −  𝑑𝑟2 =  𝜇2 (𝑠𝑎𝑦) , where 𝜕ℜ+

2 =

∪𝑖=1
2 𝐻𝑖 = 𝐵 and Ω(𝜕ℜ+

2 )
 
is the 𝜔 − 𝑙𝑖𝑚𝑖𝑡 set of system (2) in the boundary of the positive cone 

(Gard[26]).  

Since 𝑀 − 𝑘 is arbitrarily small, the persistence condition 𝜇2 > 0 can be written as 𝑓 − 𝑎𝑑 −

𝑏𝑑𝑘 >
𝑑

𝑘
> 0. which is also the condition for existence of the interior equilibrium point (𝑥∗, 𝑦∗). 

 

4. LOCAL STABILITY ANALYSIS 

To perform the stability analysis, we use the variational matrix of the system (2) as  

𝑉(𝑥, 𝑦) = [
−

𝑟𝑥

𝑘
+

𝑎𝑐𝑥𝑦+2𝑏𝑐𝑥2𝑦

(1+𝑎𝑥+𝑏𝑥2)2 −
𝑐𝑥

(1+𝑎𝑥+𝑏𝑥2)

𝑓𝑦(1−𝑏𝑥2)

(1+𝑎𝑥+𝑏𝑥2)2 −𝑑 +
𝑓𝑥

(1+𝑎𝑥+𝑏𝑥2)

]                                                           (5) 

Here we mainly focus on the stability of the interior equilibrium point (𝑥∗, 𝑦∗). Therefore from 

(2), for the interior equilibrium point (𝑥∗, 𝑦∗) we get. 

𝑉(𝑥∗, 𝑦∗) = [
−

𝑟𝑥∗

𝑘
+

𝑎𝑐𝑥∗𝑦∗+2𝑏𝑐𝑥∗2𝑦∗

(1+𝑎𝑥∗+𝑏𝑥∗2)2
−

𝑐𝑥∗

(1+𝑎𝑥∗+𝑏𝑥∗2)

𝑓𝑦∗(1−𝑏𝑥∗2)

(1+𝑎𝑥∗+𝑏𝑥∗2)2 0
]                                                      (6) 

Theorem 3. The interior equilibrium point (𝑥∗, 𝑦∗) is locally asymptotically stable or unstable 

according as  

𝑎𝑏𝑑2𝑘 + {(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2} (𝑏𝑑𝑘 − 𝑓 +
1

2
√(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2) < 𝑜𝑟 > 0 

Proof: From the variational matrix (6) we have  

𝑡𝑟 𝑉(𝑥∗, 𝑦∗) =  −
𝑟𝑥∗

𝑘
+

𝑎𝑐𝑥∗𝑦∗+2𝑏𝑐𝑥∗2𝑦∗

(1+𝑎𝑥∗+𝑏𝑥∗2)2
  

=
𝑟𝑓

2𝑏𝑑𝑥∗𝑘
× [𝑎𝑏𝑑2𝑘 + {(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2} (𝑏𝑑𝑘 − 𝑓 +

1

2
√(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2)]  

           (7) 

And the determinant of the variational matrix (6) is  

det 𝑉(𝑥∗, 𝑦∗) =
𝑓𝑐𝑥∗𝑦∗(1−𝑏𝑥∗2)

(1+𝑎𝑥∗+𝑏𝑥∗2)3  , which is obviously positive as 𝑏 =
1

𝑖𝑏̂
, so 0 < 𝑥∗ <

1

√𝑏
. 
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Therefore the interior equilibrium point. (𝑥∗, 𝑦∗)will be asymptotically stable if  det 𝑉(𝑥∗, 𝑦∗) >

0 and 𝑡𝑟 𝑉(𝑥∗, 𝑦∗) < 0 and unstable if det 𝑉(𝑥∗, 𝑦∗) > 0 and 𝑡𝑟 𝑉(𝑥∗, 𝑦∗) > 0. 

Therefore the interior equilibrium point (𝑥∗, 𝑦∗)   will be asymptotically stable or unstable 

according as 

 𝑡𝑟 𝑉(𝑥∗, 𝑦∗) < 𝑜𝑟 > 0.                                                                                                           (8) 

i.e.,  

𝑎𝑏𝑑2𝑘 + {(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2} (𝑏𝑑𝑘 − 𝑓 +
1

2
√(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2) 

< 𝑜𝑟 > 0                                                                                                                                  (9) 

Hence the theorem. 

Theorem 4. If the interior equilibrium point (𝑥∗, 𝑦∗) exists and  

𝑘∗ =
(𝑓 −

1
2 √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2) {(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2}

𝑎𝑏𝑑2 + 𝑏𝑑{(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2}
 

Then Hopf bifurcation occurs at 𝑘 = 𝑘∗. 

Proof: With the help of the previous Theorem-3, it is clear that  

(i) [𝑡𝑟 𝑉(𝑥∗, 𝑦∗) ]𝑘=𝑘∗ = 0 

(ii) 𝐽 = [𝑑𝑒𝑡 𝑉(𝑥∗, 𝑦∗) ]𝑘=𝑘∗ > 0 

(iii) As 𝐽 >  0, the roots of the characteristic equation 𝜆2 
+  𝐽 =  0 are purely imaginary 

at 𝑘 = 𝑘∗.  

(iv) [
𝑑

𝑑𝑘
𝑡𝑟 𝑉(𝑥∗, 𝑦∗) ]

𝑘=𝑘∗
=

𝑟𝑓

𝑘2 (2𝑓 − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2) ≠ 0.  

Therefore all the conditions of Hopf bifurcation theorem [23] are satisfied and hence the theorem.  

 

5. STOCHASTIC MODEL  

As we are only interested on the dynamics of the system (2) about the interior equilibrium point in 

the first quadrant, so by scaling the system 𝑑𝑡 = (1 + 𝑎𝑥 + 𝑏𝑥2)𝑑𝑇, the transformed system(2) 

takes the form 
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𝑑𝑥

𝑑𝑇
= (𝑟𝑥 −

𝑟

𝑘
𝑥2) (1 + 𝑎𝑥 + 𝑏𝑥2) − 𝑐𝑥𝑦

𝑑𝑦

𝑑𝑇
= −𝑑𝑦(1 + 𝑎𝑥 + 𝑏𝑥2) + 𝑓𝑥𝑦              

                                                                             (10) 

Where 𝑎, 𝑏, 𝑐, 𝑑, 𝑟, 𝑓 & 𝑘 > 0. 

Now the system (2) and the scaled system (10) have the same equilibrium point (𝑥∗, 𝑦∗) in ℜ+
2 . 

Let 𝑋 = 𝑥 −  𝑥∗
 and 𝑌 = 𝑦 − 𝑦∗

 be the perturbed values, then the system of equations (10) in 

terms of deviated variables (𝑋, 𝑌) can be written as 

𝑑𝑋

𝑑𝑇
= 𝑝1𝑋 + 𝑞1𝑋2 + 𝑟1

/
𝑋3 + +𝑠1𝑋4 + 𝑑1𝑌 + 𝑓1𝑋𝑌                                                               (11) 

Where 

𝑝1 = (𝑟 −
2𝑟

𝑘
𝑥∗) (1 + 𝑎𝑥∗ + 𝑏𝑥∗2) + (𝑟𝑥∗ −

𝑟

𝑘
𝑥∗2) (𝑎 + 2𝑏𝑥∗) − 𝑐𝑦∗,    

𝑞1 = −
𝑟

𝑘
 (1 + 𝑎𝑥∗ + 𝑏𝑥∗2) + 𝑏 (𝑟𝑥∗ −

𝑟

𝑘
𝑥∗2) − (𝑟 −

2𝑟

𝑘
𝑥∗) (𝑎 + 2𝑏𝑥∗),

𝑟1
/

= 𝑏 (𝑟 −
2𝑟

𝑘
𝑥∗) −

𝑟

𝑘
(𝑎 + 2𝑏𝑥∗),                                                                      

𝑠1 = −
𝑟

𝑘
𝑏,

𝑑1 = −𝑐𝑥∗,
𝑓1 = −𝑐.    

                                                                                                                   

                         (12) 

And  

𝑑𝑌

𝑑𝑇
= 𝑝2𝑋 + 𝑞2𝑋2 + 𝑑2𝑌 + 𝑓2𝑋𝑌 + 𝑔2𝑋2𝑌.                                                                   (13) 

Where, 

𝑝2 = 𝑓𝑦∗ − 𝑑𝑦∗(𝑎 + 2𝑏𝑥∗),        
𝑞2 = −𝑏𝑑𝑦∗,                                    

𝑑2 = 𝑓𝑥∗ − 𝑑(1 + 𝑎𝑥∗ + 𝑏𝑥∗2),

𝑓2 = 𝑓 − 𝑑(𝑎 + 2𝑏𝑥∗),                
𝑔2 = −𝑏𝑑.                                       

                                                                                           (14) 

These are the basic deterministic ordinary differential equations for determining the behaviour of 

the system about the steady state (𝑥∗, 𝑦∗). The solutions (𝑋(𝑇), 𝑌(𝑇)) of (11) and (13) together 

with the initial value (𝑋(0), 𝑌(0))  represent the status of the system at time 𝑇 >  0 .  

To introduce the randomization of the system, we have to make small changes of the initial value 

system consisting (11) and (13). Here we consider the case when the right hand side of (11) and 

(13) are given a small perturbation. This has been made by using Gaussian white noise, by which 
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the transformed differential equations are mathematically known as 𝐼𝑡𝑜̂ stochastic differential 

equations. This is a very useful concept to model rapidly fluctuating phenomenon. Though white 

noise does not occur in nature, but this noise is a good approximation of the thermal noise in 

electrical resistance, climate fluctuating, etc. Also, it can be proved that the process (𝑋(𝑇), 𝑌(𝑇)), 

a solution of (11) and (13), is a Markovian if and only if the external noise is white. This is a very 

beautiful idealisation of white noise (Horsthemke and Lefever [27]).  

To analyse the fluctuations of the system about the steady state, the system of equations (11) and 

(13) can be extended to the corresponding 𝐼𝑡𝑜̂ type differential equations (non-linear coupled 

bivariate Langevin equations) as:  

𝑑𝑋

𝑑𝑇
= 𝑝1𝑋 + 𝑞1𝑋2 + 𝑟1

/
𝑋3 + 𝑠1𝑋4 + 𝑑1𝑌 + 𝑓1𝑋𝑌 + 𝜂1(𝑇)

𝑑𝑌

𝑑𝑇
= 𝑝2𝑋 + 𝑞2𝑋2 + 𝑑2𝑌 + 𝑓2𝑋𝑌 + 𝑔2𝑋2𝑌 + 𝜂2(𝑇)             

                                                  (15) 

where 𝜂1(𝑇) & 𝜂2(𝑇)   are independent Gaussian white noises with zero mean and correlation:  

〈𝜂𝑖(𝑇)〉 = 0,                                                           

〈𝜂𝑖(𝑇)𝜂𝑖(𝑇/)〉 = 2𝜖𝑖𝛿(𝑇 − 𝑇/), 𝑖 = 1,2.      
                                                                     (16) 

where 𝜖𝑖 is the intensity of the noise and the bracket 〈. 〉 denotes mean value with respect to the 

noise and 𝛿 is the Dirac delta-function. 

 

6. MOMENT EQUATIONS 

After the statistical linearization of the system (15), we get the linear system as  

𝑑𝑋

𝑑𝑇
= 𝛼1𝑋 + 𝛽1𝑌 + 𝑐1 + 𝜂1(𝑇)             

𝑑𝑌

𝑑𝑇
= 𝛼2𝑋 + 𝛽2𝑌 + 𝑐2 + 𝜂2(𝑇)             

                                                                          (17) 

Now the error for above linearization are 

𝐸1 = 𝑝1𝑋 + 𝑞1𝑋2 + 𝑟1
/
𝑋3 + +𝑠1𝑋4 + 𝑑1𝑌 + 𝑓1𝑋𝑌 − 𝛼1𝑋 − 𝛽1𝑌 − 𝑐1

𝐸2 = 𝑝2𝑋 + 𝑞2𝑋2 + 𝑑2𝑌 + 𝑓2𝑋𝑌 + 𝑔2𝑋2𝑌 − 𝛼2𝑋 − 𝛽2𝑌 − 𝑐2              
                        (18) 

The parameters 𝛼𝑖, 𝛽𝑖,  𝑐𝑖 (𝑖 = 1, 2. ) of the equations (18) are determined from (cf. Valsakumar et 

al. [1], Bandyopadhyay and Chakrabarti [25])  

𝜕

𝜕𝛼𝑖
〈𝐸𝑖

2〉 =
𝜕

𝜕𝛽𝑖
〈𝐸𝑖

2〉 =
𝜕

𝜕𝑐𝑖
〈𝐸𝑖

2〉 = 0, (𝑖 = 1, 2. )                                                                 (19) 
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Now using the relations (Valsakumar et al. [1]),  

〈𝑋4〉 = 3〈𝑋2〉2 − 2〈𝑋〉4,                                    

〈𝑋2𝑌2〉 = 〈𝑋2〉〈𝑌2〉 + 2〈𝑋𝑌〉2 − 2〈𝑋〉2〈𝑌〉2,

〈𝑋3𝑌〉 = 3〈𝑋2〉〈𝑋𝑌〉 − 2〈𝑋〉3〈𝑌〉,                    

〈𝑋3〉 = 3〈𝑋〉〈𝑋2〉 − 2〈𝑋〉3,                                

〈𝑌3〉 = 3〈𝑌〉〈𝑌2〉 − 2〈𝑌〉3,                               

〈𝑋2𝑌〉 = 2〈𝑋〉〈𝑋𝑌〉 − 2〈𝑋〉2〈𝑌〉 + 〈𝑋2〉〈𝑌〉,

〈𝑌2𝑋〉 = 2〈𝑌〉〈𝑋𝑌〉 − 2〈𝑌〉2〈𝑋〉 + 〈𝑌2〉〈𝑋〉.

   

                                                                        (20) 

𝛼𝑖, 𝛽𝑖,  𝑐𝑖 (𝑖 = 1, 2. ) can be written as, 

𝛼1 = 𝑝1 + 2𝑞1〈𝑋〉 + 3𝑟1
/〈𝑋2〉 + 4𝑠1〈𝑋3〉 + 𝑓1〈𝑌〉,                   

𝛽1 = 𝑑1 + 𝑓1〈𝑋〉,                                                                              

𝑐1 =  𝑞1(〈𝑋2〉 − 2〈𝑋〉2) + 2𝑟1
/〈𝑋〉3 + 𝑠1(〈𝑋4〉 − 4〈𝑋3〉〈𝑋〉).

  

and 

𝛼2 = 𝑝2 + 2𝑞2〈𝑋〉 + 𝑓2〈𝑌〉 + 𝑔2〈𝑋𝑌〉,                                                           

𝛽2 = 𝑑2 + 𝑓2〈𝑋〉 + 𝑔2〈𝑋2〉,                                                                              

𝑐2 =  𝑞2(〈𝑋2〉 − 2〈𝑋〉2) + 2𝑓1(〈𝑋𝑌〉 − 2〈𝑋〉〈𝑌〉) − 2𝑔2〈𝑋〉2〈𝑌〉.           

  

since coefficients are functions of the parameters involved with the model and also with the 

different moments involving 𝑋  and 𝑌 . Now with the help of (20), we have the system of 

differential equations of first two moments as:  

𝑑〈𝑋〉

𝑑𝑇
= 𝑝1〈𝑋〉 + 𝑞1〈𝑋2〉 + 𝑟1

/〈𝑋3〉 + 𝑠1〈𝑋4〉 + 𝑑1〈𝑌〉 + 𝑓1〈𝑋𝑌〉,

𝑑〈𝑌〉

𝑑𝑇
= 𝑝2〈𝑋〉 + 𝑞2〈𝑋2〉 + 𝑑2〈𝑌〉 + 𝑓2〈𝑋𝑌〉 + 𝑔2〈𝑋2𝑌〉,              

                           

𝑑〈𝑋2〉

𝑑𝑇
= 2[𝑝1〈𝑋2〉 + 𝑞1〈𝑋3〉 + 𝑟1

/〈𝑋4〉 + 𝑠1〈𝑋5〉 + 𝑑1〈𝑋𝑌〉 + 𝑓1〈𝑋2𝑌〉] + 2𝜖1,

𝑑〈𝑌2〉

𝑑𝑇
= 2[𝑝2〈𝑋𝑌〉 + 𝑞2〈𝑋2𝑌〉 + 𝑑2〈𝑌2〉 + 𝑓2〈𝑋𝑌2〉 + 𝑔2〈𝑋2𝑌2〉] + 2𝜖2,          

𝑑〈𝑋𝑌〉

𝑑𝑇
= 𝑝1〈𝑋𝑌〉 + 𝑞1〈𝑋2𝑌〉 + 𝑟1

/〈𝑋3𝑌〉 + 𝑠1〈𝑋4𝑌〉 + 𝑑1〈𝑌2〉 + 𝑓1〈𝑋𝑌2〉 +

𝑝2〈𝑋2〉 + 𝑞2〈𝑋3〉 + 𝑑2〈𝑋𝑌〉 + 𝑓2〈𝑋2𝑌〉 + 𝑔2〈𝑋3𝑌〉            
      

                     (21) 

where 𝜖1 = 〈𝑋𝜂1〉   and 𝜖2 = 〈𝑌𝜂2〉.  Also we use 〈𝑋𝜂1〉 = 0  and 〈𝑌𝜂2〉 = 0. 

Here we assume that the system size expansion is valid such that the correlations 𝜖1 and  𝜖2  are 

assumed to be the order of inverse population size N (cf. Valsakumar et al. [1], Baishya and 

Chakrabarti [21], Bandopadhyay and Chakrabarti [25])  

𝜖𝑖 ∝ 𝜊 (
1

𝑁
) , 𝑖 = 1, 2.                                                                                                             (22) 



11 

A PREY-PREDATOR MODEL WITH HOLLING TYPE IV RESPONSE FUNCTION 

Now using (21), (22) and taking the lowest order term by replacing the averages 〈𝑋〉 and 〈𝑌〉 by 

their steady state values 〈𝑋〉 = 〈𝑌〉 = 0  (Nicolis and Prigogine [28]), we get the following system 

of equations of second order moments as: 

𝑑〈𝑋2〉

𝑑𝑇
= 2𝑝1〈𝑋2〉 + 2𝑑1〈𝑋𝑌〉                          

𝑑〈𝑌2〉

𝑑𝑇
= 2𝑝2〈𝑋𝑌〉 + 2𝑑2〈𝑌2〉                           

𝑑〈𝑋𝑌〉

𝑑𝑇
= (𝑝1 + 𝑑2)〈𝑋𝑌〉 + 𝑝2〈𝑋2〉 + 𝑑1〈𝑌2〉

                                                                         (23) 

 

7. FLUCTUATION AND STABILITY ANALYSIS 

Now eliminating  〈𝑋2〉 and 〈𝑌2〉 from the system (23), we have the following third order equation 

of the form:  

𝑑3〈𝑋𝑌〉

𝑑𝑇3 + 3𝑎1
𝑑2〈𝑋𝑌〉

𝑑𝑇2 + 3𝑎2
𝑑〈𝑋𝑌〉

𝑑𝑇
+ 𝑎3〈𝑋𝑌〉 = 0                                                                       (24) 

The auxiliary equation of the above equation (24) is  

𝜆3 + 3𝑎1𝜆2 + 3𝑎2𝜆 + 𝑎3 = 0                                                                                                (25) 

where 

𝑎1 = −(𝑝1 + 𝑑2) = −𝑝1 = −
𝑓𝑥∗

𝑑
𝑡𝑟 𝑉(𝑥∗, 𝑦∗),                      

𝑎2 =
2

3
((𝑝1 + 𝑑2)2 + 2(𝑝1𝑑2 − 𝑝2𝑑1)) =

2

3
(𝑝1

2 − 2𝑝2𝑑1),

𝑎3 = −4(𝑝1 + 𝑑2)(𝑝1𝑑2 − 𝑝2𝑑1) = 4𝑝1𝑝2𝑑1.                       

                                                 (26) 

Now let 𝐻 = 𝑎1
2 − 𝑎2 =

1

3
𝑝1

2 +
4

3
𝑝2𝑑1. 

Therefore the nature of the roots of (25) will dependant on the behaviour of 𝑎1 and 𝐻 .  Also 

2𝑎1
3 + 3𝑎1𝑎2 + 𝑎3 = 0. 

Case-1.   𝑯 ≤ 𝟎. 

In this case the roots of the auxiliary equation are 𝜆1 = −𝑎1, 𝜆2 = −𝑎1 + 𝑖 √−3𝐻 𝑎𝑛𝑑 𝜆3 =

−𝑎1 − 𝑖 √−3𝐻. 

Therefore the solutions of the system (23) are given by 

〈𝑋𝑌〉 = 𝑒−𝑎1𝑡{𝐴11 + 𝐴12 cos 𝑡√−3𝐻 + 𝐴13 sin 𝑡√−3𝐻},                   

〈𝑋2〉 = 𝑒−𝑎1𝑡{𝐴21 + 𝐴22 cos 𝑡√−3𝐻 + 𝐴23 sin 𝑡√−3𝐻} + 𝐵1𝑒2𝑝1𝑡,

〈𝑌2〉 = 𝑒−𝑎1𝑡{𝐴31 + 𝐴32 cos 𝑡√−3𝐻 + 𝐴33 sin 𝑡√−3𝐻} + 𝐵2𝑒2𝑑2𝑡.

                                 (27) 
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where 𝐴𝑖𝑗 (𝑖, 𝑗 =  1, 2, 3. ), 𝐵1 & 𝐵2   are constants. So if 𝑝1 < 0, then 𝑎1 > 0,  consequently from 

the above system each of〈𝑋2〉
 
and 〈𝑋𝑌〉 decreases to zero as time advances and 〈𝑌2〉

 
approaches 

to a constant  value since 𝑑2 = 0. So from the stability criteria of second order moments, the 

interior equilibrium point (𝑥∗, 𝑦∗) is stable for 𝑝1 < 0,  which is also the stability condition for 

deterministic case. Again when 𝑝1 > 0,  i.e. 𝑎1 < 0   then in stochastic case (𝑥∗, 𝑦∗) is unstable 

as the second order moments diverges with time. So when 𝑝1 < 0, the deterministic stability 

criteria  

𝑎𝑏𝑑2𝑘 + {(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2} (𝑏𝑑𝑘 − 𝑓 +
1

2
√(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2) < 0 

is satisfied and which also guarantees the stability of the system (2) under stochastic environment, 

which is also confirmed by Routh-Hurwitz criteria (Appendix). Also if the system is unstable in 

deterministic case, then the system is unstable too in stochastic arena.  

Case-2.   𝑯 > 𝟎. 

In this case the roots of the auxiliary equation are 𝜆1 = −𝑎1, 𝜆2 = −𝑎1 + √3𝐻 𝑎𝑛𝑑 𝜆3 = −𝑎1 −

√3𝐻. Therefore the solutions of the system (23) are given by  

〈𝑋𝑌〉 = 𝑒−𝑎1𝑡{𝑃11 + 𝑃12𝑒𝑡√3𝐻 + 𝑃13𝑒−𝑡√3𝐻},                    

〈𝑋2〉 = 𝑒−𝑎1𝑡{𝑃21 + 𝑃22𝑒𝑡√3𝐻 + 𝑃23𝑒−𝑡√3𝐻} + 𝑄1𝑒2𝑝1𝑡,

〈𝑌2〉 = 𝑒−𝑎1𝑡{𝑃31 + 𝑃32𝑒𝑡√3𝐻 + 𝑃33𝑒−𝑡√3𝐻} + 𝑄2𝑒2𝑑2𝑡.

                                                     (28) 

where 𝑃𝑖𝑗(𝑖, 𝑗 = 1, 2, 3. ), 𝑄1 & 𝑄2  are constants. So if 𝑝1 < 0, then 𝑎1 > 0, so the deterministic 

stability criteria 

 𝑎𝑏𝑑2𝑘 + {(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2} (𝑏𝑑𝑘 − 𝑓 +
1

2
√(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2) < 0   is 

satisfied. With the conditions 𝑝1 < 0, and 𝑎1 > √3𝐻, it is seen that each of the second order 

moments 〈𝑋2〉, 〈𝑌2〉 and 〈𝑋𝑌〉  converges with the increment of time. So in this scenario, the 

stochastic system is stable in the sense of second order moment along with the deterministic (in 

this case only 𝑝1 < 0 is required) one. 

On the other hand when 𝑝1 < 0   with 𝑎1 > √3𝐻, all the second order moments 〈𝑋2〉, 〈𝑌2〉 and 

〈𝑋𝑌〉 diverge with time. Hence stochastic system becomes unstable in this stochastic environment, 
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though the system is stable in deterministic case. For all other cases, the stochastic system will be 

unstable. 

 

8. NUMERICAL EXPERIMENTS 

Example-1.  Here we investigate the model (4.2) for the parametric values 𝑟 = 2.5, 𝑘 = 3, 𝑎 =

0.1, 𝑏 = 0.2, 𝑐 = 0.9, 𝑑 = 0.01 𝑎𝑛𝑑 𝑓 = 0.5 in suitable units. 

With these values of the parameters, the interior equilibrium point is  (𝑥∗, 𝑦∗) =  (1.0008, 231.49) 

and in this case 𝑝1 = −207.3325 < 0, 𝐻 = 13429 > 0 𝑎𝑛𝑑 𝑎1 > √3𝐻. 

Also 𝑎𝑏𝑑2𝑘 + {(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2} (𝑏𝑑𝑘 − 𝑓 +
1

2
√(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2) =

−0.0000136 < 0. 

Corresponding Stable behaviour of the system (2) in the sense of second order moments with 

respect to the above se of parametric values is  

 

Figure-1: Stable behaviour of the system in the sense of second order moments. 

So on the basis of the above inequality, the system is stable in deterministic case. With the same 

parametric values, in stochastic case, the second-order moments from the expressions (23) are 

evaluated and plotted in the Figure-1 which also depicts the stable behaviour of the system.  
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Example-2.  Here to find a numerical solution and verification of the analysis of the deterministic 

model (2), we consider the parametric values of the system as: 𝑟 = 1.5, 𝑘 = 1.5, 𝑎 = 0.1, 𝑏 =

1.1, 𝑐 = 0.5, 𝑑 = 0.15 𝑎𝑛𝑑 𝑓 = 0.4 in suitable units. 

With these values of the parameters, the interior equilibrium point is (𝑥∗, 𝑦∗) =  (0.50, 2.65) and 

𝑎𝑏𝑑2𝑘 + {(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2} (𝑏𝑑𝑘 − 𝑓 +
1

2
√(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2) = −0.0031 <

0. 

 

Figure-2: Stability diagram of the system with 𝑥(0)  =  2 𝑎𝑛𝑑 𝑦 (0)  =  5 . 

Under these conditions, the configurations of 𝑥(𝑡) and 𝑦(𝑡) are presented in Fig.-2. Therefore the 

above interior equilibrium point is locally asymptotically stable. This behaviour has been depicted 

in the Figure-2. With the same parametric values, in stochastic case, the second-order moments 

from the expressions (23) are evaluated and plotted in the Figure-3 which depicts the unstable 

behaviour of the system. This is because 𝑎1 < √3𝐻, instead 𝑎1 > √3𝐻  (as in Case-2. 𝐻 > 0) 

though in this case 𝑝1(=  −1.4172) < 0  and 𝐻 (=  0.6858)  >  0.  

Also for these values of parameters, we get the bifurcation value of 𝑘 from Theorem-4 as  𝑘∗  
=

 1.6044.  

Now for 𝑘 =  1.605 (>  𝑘∗ 
), the value of   
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𝑎𝑏𝑑2𝑘 + {(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2} (𝑏𝑑𝑘 − 𝑓 +
1

2
√(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2) =

0.000018(> 0). 

and this makes the system (2) unstable (cf. Theorem-3).  

 

Figure-3: Unstable behaviour of the system in the sense of second order moments. 

 

9. CONCLUSION AND ECOLOGICAL IMPLICATION 

In this paper for the first model, we have studied the deterministic and stochastic behaviour of a 

population system with Holling type-IV response function in a region where unique positive 

stationary point exists. In deterministic case we have shown the boundedness of the system 

together with the persistence. Also we have investigated the stability condition of the system, 

which is necessary for the long term existence of species. Again as the carrying capacity is an 

important parameter for any biological species, so with the help of parametric values, we determine 

the critical value of bifurcation parameter 𝑘 . Since in reality the ecological world is very 

fluctuating, so by inducing white noise we investigate the behaviour of the same system in random 

environment and it is very interesting that if a system is stable in deterministic case, then the system 

will also be stable under stochastic case for Case-1. This is evident as the equation (9) under 
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deterministic environment appears in case-1 of stochastic environment. But under the condition in 

Case-2, the system which is stable in deterministic case, may not be so in stochastic case. This is 

because the equation (9) appears in Case-2 along with the some restrictions (𝑎1 > 𝑜𝑟 < √3𝐻). It 

is also quite clear from the examples-1 and-2 with corresponding diagrams (cf. Figs.-1, 2 and 3) 

that for the same parametric values, the system which is stable under deterministic case, may or 

may not be stable under stochastic case. 

In recent days due to over weight of human biomass and their continuous need for better life there 

is a tremendous pressure on natural ecological balance, So we face global warming, draught, flood 

and other uncertain phenomenon of nature which make a direct impact on every ecosystem.  

So, to make any prediction on ecological balance through mathematical modelling now a days it 

is not enough to investigate the behaviour of the system under deterministic analysis only, because 

it does gives sufficient accuracy that is why present day study needs to include more uncertainty. 

Mathematically which is possible by incorporating stochasticity in the model and in this study we 

have checked the relevance of uncertainty by a comparative study of stochastic and deterministic 

cases.  

From these studies, it is conclude that if the system is unstable in deterministic case, it will be 

automatically unstable in stochastic environment. 
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APPENDIX  

The characteristic equation of the above equation (23) is 

|

2𝑝1 − 𝛾 0 2𝑑1

0 2𝑑2 − 𝛾 2𝑝2

𝑝2 𝑑1 𝑝1 + 𝑑2 − 𝛾
| = 0                                                                              (29) 

⇒ 𝛾3 + 3𝑎1𝛾2 + 3𝑎2𝛾 + 𝑎3 = 0                                                                                         (30) 

where  

𝑎1 = −(𝑝1 + 𝑑2),                                                                          

𝑎2 =
2

3
((𝑝1 + 𝑑2)2 + 2(𝑝1𝑑2 − 𝑝2𝑑1)) =

2

3
(𝑝1

2 − 2𝑝2𝑑1)

𝑎3 = −4(𝑝1 + 𝑑2)(𝑝1𝑑2 − 𝑝2𝑑1) = 4𝑝1𝑝2𝑑1                      

                                                (31) 

Now 

(𝑝1 + 𝑑2) =
𝑟𝑓

2𝑏𝑑𝑥∗𝑘
[𝑎𝑏𝑑2𝑘 + {(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2} (𝑏𝑑𝑘 − 𝑓 +

1

2
√(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2)]                                                                                                       (32) 

and 𝑝1𝑑2 − 𝑝2𝑑1 = 𝑐𝑥∗𝑦∗{𝑓 − 𝑑(𝑎 + 2𝑏𝑥∗)}                                                                     (33) 

Also the conditions for the system to be stable i.e. 𝑅𝑒 (𝛾)  <  0, from Routh-Hurwitz criteria, are  

3𝑎1 > 0, 9𝑎1𝑎2 − 𝑎3 > 0 𝑎𝑛𝑑 𝑎3 > 0                                                                                 (34) 

i.e. 𝑎1 > 0, 9𝑎1𝑎2 − 𝑎3 > 0 𝑎𝑛𝑑 𝑎3 > 0                                                                             (35) 

In our study, 𝑝2 > 0, 𝑑1 < 0 𝑎𝑛𝑑 𝑑2 = 0. 

Also 𝑎3 = 4𝑝1𝑝2𝑑1 and 9𝑎1𝑎2 − 𝑎3 = 2𝑝1(−3𝑝1
2 + 4𝑝2𝑑1)

 
. 

Since 4𝑝2𝑑1 < 0  and
 

−3𝑝1
2 + 4𝑝2𝑑1 < 0  so, these three conditions 𝑎1 > 0, 9𝑎1𝑎2 − 𝑎3 >

0 𝑎𝑛𝑑 𝑎3 > 0 now depends only on the sign of 𝑝1. If 𝑝1 < 0,  then all the above conditions hold 

i.e. the system is stable in stochastic case. Also the condition 𝑝1 < 0 implies  

𝑎𝑏𝑑2𝑘 + {(𝑓 − 𝑎𝑑) − √(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2} (𝑏𝑑𝑘 − 𝑓 +
1

2
√(𝑓 − 𝑎𝑑)2 − 4𝑏𝑑2) < 0. 

which is the stability condition of the system for deterministic case also. Therefore if the system 

is stable in deterministic case, then system will also be stable under stochastic case for 𝐻 <  0. 
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