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Abstract. Dengue disease is the most common mosquito-borne viral diseases in the world, especially in Bandung, 

Indonesia. Juvenile age group is important to be considered in dengue management since the number of cases in this 

age group is significantly increasing year by year especially in Bandung, West Java, Indonesia. Another concern to 

pay special attention to this age group is because dengue infection among juveniles shall hinder their growing process 

and influence their academic achievement at schools. Apart from that, it will lower parents’ productivity as they have 

to be absent from work, and they have to spend expenses for medication. One of the effective and efficient strategies 

to prevent the transmission is by analysing the spatial and temporal distribution of dengue disease incidence and its 

trend. In this study, the random effect Generalized Linear Mixed Model (GLMM) is applied and numerical Bayesian 

method through Integrated Nested Laplace Approximation (INLA) is used. The models are applied to dengue disease 

incidence in year 2013 for the juvenile group in Bandung.  
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1. INTRODUCTION 

According to [1], dengue disease is a mosquito tropical disease which most rapidly spreading in 

the world. It can cause death if it is not treated properly. It is estimated that 50 million dengue 

incidences occur annually. This disease is transmitted by Aedes mosquitoes when they bite human 

bodies for their blood meal. The habitat of the mosquitoes is in the tropics having warm 

temperatures, in the regions below 1,000 meters sea level Indonesia. Bandung, especially, lies in 

the region having such suitable criteria for the mosquitoes to live and breed. In addition to this, the 

risk of dengue disease in Bandung becomes higher by the fact that Bandung has high population 

density. From Bandung Health Department, the number of dengue incidences has increased 

dramatically over the last four years. In 2010, there were 3,434 cases and in 2013, it increased to 

5,735 cases. 

Dengue disease is one of the major public health problems in Bandung, Indonesia, mainly 

because there are a lot of dengue disease infecting juvenile age group in Bandung. In 2011, there 

were 1,758 juveniles infected with dengue disease; in 2012, the number increased to 2,284; and in 

2013, it rose up to 2,890 cases. The disease certainly becomes a concern because it disrupts the 

school time and influences the quality of the youth in Indonesia. It also causes financial loss 

because parents cannot work well and there will be cost for medication and treatment. Further loss 

is on productivity due to the unpaid time of caregiver. Therefore, it is important to pay more 

attention to prevent the transmission of the disease within the juvenile age group. 

The spatiotemporal model is indispensable in order to know the stability of the relative risk 

which cannot be evaluated only by the spatial model [2].  Monitoring the spatial spread of a 

disease, particularly for a disease such as dengue disease with a very high diffusion rate, is required 

to identify regions that have great potential to become endemic. Hence, mapping the high-low risk 

distribution of dengue disease cases may help reduce the number of incidences in the future. 

Spatiotemporal disease mapping have been used extensively to determine the temporal change of 

the geographical pattern of mortality/morbidity rate [3,4]. Discrete-space stochastic Susceptible-

Infective-Removed (SIR) is the other alternative method that also usually used for modeling and 
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mapping disease transmission [5].   

Some studies have worked on the analysis of age group related to dengue cases. Several 

publications discussed dengue mapping, concentrating on age group, but none has applied the 

Bayesian [5-8]. Some researches discussing dengue mapping in Bandung region used Bayesian 

approach and focused on age group, however, they used MCMC algorithm [9, 10]. 

The main aim of this study is to estimate the dengue relative risk in Bandung by means 

Bayesian Spatiotemporal model, focus on juvenile age group. The basic model used is Generalized 

Linear Mixed Model (GLMM) dealing with count data and assuming the number of cases that 

follow a Poisson distribution. In this research, the estimated parameter of Spatiotemporal model 

has used the Bayesian method with a new method called Integrated Nested Laplace 

Approximations (INLA). INLA has been used to solve marginal posterior distribution in estimating 

posterior distribution. The computing time of Bayesian Inference is faster than MCMC algorithms 

[3, 11].  

The structure of the paper is structured as follows: in Section 2, Spatiotemporal model is 

estimated with INLA are discussed. A brief review of the INLA method and the resulting analysis 

of dengue disease data in Bandung City are elaborated in Section 3. The paper is closed with a 

conclusion in Section 4. 

 

2. METHOD 

In this Section, the Spatiotemporal models are elaborated and parameters of the model are 

estimated using Bayesian method. INLA technique is explained and applied in Bayesian method 

to estimate the posterior distribution [5]. 

2.1. Spatiotemporal Modeling 

This study proposes a Spatiotemporal GLMM involving spatially correlated and temporally auto-

correlated random effects [12]. Let {𝑦𝑖𝑡: 𝑖 = 1, … , and 𝑡 = 1, … , 𝑇}  be the number of dengue 

disease data collected from district i at time point t. Next, 𝐸𝑖𝑡 is defined as the expected number 

of case for district i at time point t. In this case, 𝐸𝑖𝑡 is computed using indirect standardization 
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with total population as the reference. 𝑦𝑖𝑡 is modelled as conditional to 𝐸𝑖𝑡 and 𝜃𝑖𝑡 as a standard 

Poisson distribution [5]: 

𝑦𝑖𝑡|𝐸𝑖𝑡, 𝜃𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖𝑡𝜃𝑖𝑡),                             (1) 

and, 

𝜃𝑖𝑡 = exp(𝑋𝑖𝑡
′ 𝛽𝑖𝑡 + 𝑓(𝑧𝑖𝑡)),                              (2) 

where 𝜃𝑖𝑡 is the parameter of the relative risk at region i and time t and 𝑋𝑖𝑡
′ = (1, 𝑋𝑖𝑡1, … , 𝑋𝑖𝑡𝑃 )′ 

denotes the design vector of P covariates including vector one of district i at time t, 𝜷𝑖𝑡 = (𝛽𝑖𝑡0,

𝛽𝑖𝑡1, … , 𝛽𝑖𝑡𝑃)′ denotes the corresponding coefficient vector and 𝑓(𝑧𝑖𝑡) denotes the latent function 

that accommodates the Spatiotemporal dependencies, with 𝑧𝑖𝑡  describes the unobserved latent 

variable. 

Spatiotemporal disease mapping models have been introduced in the literature, most of them based 

on Conditional Autoregressive (CAR) and combined with convolution prior which well-known as 

BYM model [3]. Several models can be defined, depending on the specification of 𝜂𝑖𝑡 = log(𝜃𝑖𝑡). 

2.2. Linear Time Trend Model 

The most common way to estimate the relative risk of disease mapping which has a temporal 

dimension is to account a number of cases of disease within small regions available for a sequence 

of 𝑇 time periods. The some models have been developed to accommodate the spatial and time 

effects simultaneously in which both region specific intercept and temporal trend are modeled as 

a random effect [13]. The model is developed from the BYM spatial model with an additional 

nonparametric dynamic time trend for each small region. The extension of standard disease 

mapping model which accommodates the temporal component as [4],  

𝜂𝑖𝑡 = 𝑏0 + 𝑢𝑖 + 𝑣𝑖 + 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙, 𝑡 = 1, … , 𝑇,               (3) 

where 𝑏0 accounts the log of the global risk, 𝑢𝑖 is structured spatial effect in region i. The model 

usually used to present the structured spatial effect is BYM model ([14]): 

𝜋(𝑢|𝜅𝑢) ∝ 𝜅𝑢

𝑛−1

2 exp (−
𝜅𝑢

2
∑ (𝑢𝑖 − 𝑢𝑗)

2
𝑖~𝑗 ),                 (4) 

where 𝜅𝑢 is called precision parameter. Two districts 𝑖 and 𝑗 are defined to be neighbours, and 

𝑖~𝑗 , if they are neighbouring. Further, 𝒖  are independent zero mean normal with unknown 
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precision parameter 𝜅𝜐. The component 𝑣𝑖 describes the unstructured one, where 𝑣𝑖~𝑁(0,1/𝜅𝑣). 

Temporal term accommodates the parametric or nonparametric structure which is enumerated 

below. 

(1) Model 1: Parametric Trend 

In this model, the temporal component in Equation (3) accommodates the parametric trend with 

the linear predictor [13]: 

𝜂𝑖𝑡 = 𝑏0 + 𝑢𝑖 + 𝑣𝑖 + (𝛽 + 𝛿𝑖) × 𝑡.                 (5) 

where 𝛽 denotes an overall linear time trend and 𝛿𝑖 accounts the interaction between the linear 

time trend and spatial effect 𝑢𝑖.  

(2)  Model 2:  Nonparametric Dynamic Trend  

In Knorr-Held (2000) [15], the temporal component in Equation (3) is elaborated as, 

𝜂𝑖𝑡 = 𝑏0 + 𝑢𝑖 + 𝑣𝑖 + 𝛾𝑡 + 𝜙𝑡,                  (6) 

with 𝛾𝑡|𝛾𝑡−1, 𝛾𝑡−2~𝑁𝑜𝑟𝑚𝑎𝑙(2𝛾𝑡−1 + 𝛾𝑡−2, 𝜎2). 𝛾𝑡 is the temporally structured effect and 

𝜙𝑡is means of a Gaussian exchangeable prior and distributed 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1
𝜅𝜙

⁄ ). 

(3) Model Interaction:  Space-Time Interaction  

In this model, expanded Model 2 to consider the space-time interaction accommodated in 𝛿𝑖𝑡 term 

as below [15], 

𝜂𝑖𝑡 = 𝑏0 + 𝑢𝑖 + 𝑣𝑖 + 𝛾𝑡 + 𝜙𝑡 + 𝛿𝑖𝑡.              (7) 

where 𝛿𝑖𝑡 in Equation (7) can be extended to define the structure matrix, elaborated in [4] as 

figured out in Table 1. 

Table 1. Interaction types 

Model Parameter Interacting Rank 

Model 3 𝑣𝑖  and 𝜙𝑡 𝑛𝑇 

Model 4 𝑣𝑖  and 𝛾𝑡 𝑛(𝑇 − 2)𝑓𝑜𝑟 𝑅𝑊2 

Model 5 𝜙𝑡  and 𝑢𝑖 (𝑛 − 1)𝑇 

Model 6 𝑢𝑖  and 𝛾𝑡 (𝑛 − 1)(𝑇 − 2)𝑓𝑜𝑟 𝑅𝑊2 
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For Models (4) and (6), this study only considers the random walk of order 2 (RW 2). In this 

research, those six models are compared to find the best model for the analysis. 

2.3. Integrated Nested Laplace Approximation (INLA) 

INLA is designed as the alternative of MCMC approaches of the Bayesian inference to solve 

marginal posterior distribution in estimating posterior distribution. This method is applicable in 

spatial, Spatiotemporal models, epidemiology, ecology, and environmental risk assessment [3, 5, 

11].  

A Bayesian hierarchical with three stages is used to estimate the Spatiotemporal models. The first 

stage is the likelihood model 𝝅(𝒚|𝚽); the second stage is the latent Gaussian Markov Random 

field (GMRF), 𝝅(𝚽|𝝍)~𝑁(𝝁𝝍, 𝑸𝝍
−1) , and the third stage is the hyperparameter 𝝅(𝝍) 

controlling parameters model. Here, y denotes the number of dengue disease incidence and 𝚽 =

(α, 𝒇)′ denotes the random vector consisting of all terms of the structured additive predictors 

which have Gaussian priors; and 𝑸𝝍 = 𝚺−1  denotes the precision matrix. To complete the 

Bayesian model, the following prior distributions are specified as under [5]: 

𝑏0~𝑁(0, 106) 

𝜅𝑖, 𝜅𝑢, 𝜅𝑣, 𝜅𝛾, 𝜅𝜙, 𝜅𝛿~Gamma (1,0.0005) 

The prior distributions defined on those parameters are weakly informative and independent 

so that the estimation and inference for these parameters are based mainly on the data. Gamma 

distribution is used for hyperparameter due to Gamma distribution is a conjugate hyperprior. The 

advantage of conjugate distribution the advantage of conjugate prior is speeding up computational 

time and relatively narrow credible intervals. Hal-Cauchy, Penalized Complexity, and Uniform 

priors are the other priors that can be a good alternative for Gamma distribution in case to avoid 

the sensitivity problem of Gamma hyperprior. 

Finally, the relative risk (𝜃𝑖𝑡) estimates are calculated from the exponent of 𝜂̂𝑖𝑡 with 𝜂̂𝑖𝑡 obtained 

from one of the Equations (5) - (7) depending on model selection. Generally, it can be written as 

the following [5]: 
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𝜃𝑖𝑡 = exp(𝜂̂𝑖𝑡) ; 𝑖 = 1, . . , 𝑁, 𝑡 = 1,2, … , 𝑇.  (8) 

2.4. Model Selection 

There are several criteria of the model selections, Deviance Information Criterion (DIC) and 

coefficient determination R2. DIC = D̅ + pD where 𝐷̅ is the posterior of the mean deviance and 

measure model fit; and 𝑝𝐷  is the effective number of model parameters and measures model 

complexity [5]. The coefficient determination R2 =
∑ (𝑦̂𝑗−𝑦̅)

2𝑚
𝑗=1

∑ (𝑦𝑗−𝑦̅)
2𝑚

𝑗=1

 for j=1,2,..,m denotes the index 

of the observation. The best model has smallest DIC and highest R2 [16-19]. 

 

3. RESULT AND DISCUSSION 

3.1. Data Description 

The dengue disease data used in this study were 2013’s data provided by seven reputable hospitals 

in Bandung. The number of juvenile cases is observed weekly since the incubation time of dengue 

disease is 4 – 8 days. Therefore, we have 52 observations from 30 sub-districts and the total number 

of observations is 1,560 observations while the total number of juvenile dengue cases is 2,768 

cases. 

 

Figure 1. Distribution the number of dengue cases for Juvenile in Bandung City in 2013 



8 

JAYA, KRISTIANI, ANDRIYANA, RUCHJANA 

Figure 1 shows the distribution of the total number of dengue cases for Juvenile in a year. 

Dengue cases for juvenile are mostly found in sub-districts located in the south-west region of 

Bandung (e.g., Bandung Kidul, Babakan Ciparay, Bojongloa Kidul); on the other hand, the 

eastern regions usually have a small number of cases (e.g., Gede Bage, Penyileukan, Cinambo, 

and Ujung Berung).  

In epidemiology study, the standardized morbidity ratio (SMR) has been commonly applied. 

SMR is an unbiased estimate of the relative risk but it is unreliable if it is applied to a small region 

as discussed in Tango (2010). The heterogeneity and autocorrelation problems detected in 

previous studies can be accommodated by the spatial and temporal risk information and 

autocorrelation to give a reliable estimate of the risk. Therefore, we propose the Spatiotemporal 

models, i.e. Model 1 – Model 6 mentioned in the previous section to model and estimate the 

relative risk of dengue disease.  We propose six different models for estimating the relative risk 

of dengue disease for the juvenile at 30 sub-districts of Bandung City.  

Table 2. The relative risk interval 

 

Model Interval Mean 
Standard 

deviation 

SMR 0.000 - 17.493 1.244 1.696 

Model 1 0.154 - 5.592 1.239 1.117 

Model 2 0.180 - 4.381 1.232 1.076 

Model 3 0.179 - 4.386 1.232 1.077 

Model 4 0.161 - 8.206 1.251 1.180 

Model 5 0.187 - 4.460 1.237 1.077 

Model 6 0.092 - 9.112 1.254 1.222 

 

Table 2 presents the interval, mean and standard deviation of weekly relative risk estimates 

based on SMR and six different models. SMR estimates the relative risk with high variability of 
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the relative risk estimations from zero to 17.493. This indicates that the SMR provides crude 

estimates due to heterogeneity and autocorrelation problems and this condition is in accordance 

with the elaboration about  SMR drawbacks in [20]. The estimates of the relative risk based on 

SMR estimation needs to be smoothed using the Spatiotemporal model by introducing the random 

effect model to overcome the heterogeneity and autocorrelation problems. We used INLA 

numerical Bayesian approach with R-INLA package to estimate the Spatiotemporal model with 

six different characteristics. Models (1) – (6) present the estimates of the relative risk for Juvenile 

based on Spatiotemporal models. We use R2 and DIC criteria to select the best model for Juvenile. 

 

Table 3. Model selection based on 𝑅2 and DIC 

Model R2 DIC 

Model 1 0.48 4601.39 

Model 2 0.49 4621.04 

Model 3 0.49 4621.04 

Model 4 0.51 4607.51 

Model 5 0.45 4718.40 

Model 6 0.52 4595.84 

The criteria of the best model are the models with the largest R2 value and the smallest DIC. 

Based on these criteria [16, 17], Model (6) can be concluded as the best model.  

3.3. Model Interpretation 

In this section, the relative risks of dengue transmission among juveniles in Bandung are estimated. 

It is important to consider the local estimator of the relative risk of each sub-district in this region. 

There are five random effect parameters which influence the local estimator in this case, i.e.: spatial 

heterogeneity (𝑣𝑖) , spatial autocorrelation (𝑢𝑖) , temporal heterogeneity (𝜙𝑡) , temporal 

autocorrelation (𝛾𝑡) and spatio temporal interaction (𝛿𝑖𝑡) which are explained in Equation (7). 

The posterior mean of the standard deviation of the hyperparameters displayed in Table 4.  
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Table 4. The posterior mean of the standard deviation of the hyperparameters of the random effect 

componentsa 

Random Effect Parameter Posterior Mean 
Fraction 

variance (%) 

SD of the Spatial Heterogeneity(𝜎𝑣
2)  0.0221 44.654 

SD of the Spatial Autocorrelation (𝜎𝑢
2) 0.0219 43.994 

SD of the Temporal Heterogeneity (𝜎𝜙
2) 0.0049 2.172 

SD of the Temporal Autocorrelation (𝜎𝛾
2) 0.0065 3.853 

SD of the Spatiotemporal Interaction (𝜎𝛿
2) 0.0076 5.326 

 aSD: Standard deviation 

 

Table 4 shows that the spatial heterogeneity and spatial autocorrelation has the largest 

fraction variance followed by spatiotemporal interaction.  It means beside of spatial 

heterogeneity and spatial autocorrelation, the spatiotemporal interaction is the most important 

random effect of Model (6). It indicates that the spread of dengue cases in a juvenile age group 

in Bandung is affected by the interaction between spatial and temporal effect. The analysis of 

these effects is discussed later after the weekly relative risks of each sub-district are determined.  

Further, the weekly relative risks of each sub-district are estimated using SMR model 

and the most suitable model, i.e.: Bayesian Spatiotemporal Model (Model 6). Six selected Sub-

districts are displayed in Figure 2 (the other sub-districts are provided upon by request). The red 

colour line is the relative risk based on SMR and the black colour line is the relative risk based 

on Bayesian Spatiotemporal Model (BST). 
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Figure 2. The Relative Risk Estimations for six selected sub-districts in Bandung City 

 

The BST line clearly shows the smoothing temporal pattern of the relative risk for 

juveniles for six selected sub-districts in Bandung City. This fact is in line with the previous 

studies which emphasized that Bayesian model is better than SMR model because it is smoother 

and has the capability to remove the noise by considering spatial and temporal effects [18, 21, 

22]. Therefore, it can be concluded that this model is more reliable. 

There are five levels of relative risk defined here, i.e. very low (0,0.5], low (0.5,1], 

medium (1,1.5], high (1.5,2], and very high (2, ∞]. From Figure 2, it is obtained from regions 

which have medium until very high risk that dengue disease is estimated to have risk to spread 

relatively within the months around the beginning and end of the year: in the beginning of the 

year is around January – March; while at the end of the year is about October – December.  The 

cause is high rainfall that leaves a lot of puddles of clean water which are the habitat of the 

mosquitoes. Apart from that, the immunity of juveniles in rainy season is decreasing, hence, 

juveniles have a higher risk to be infected by dengue This condition is in accordance with the 

analysis of some previous studies although they were conducted in different regions and used 

different method [9, 23]. 
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4. CONCLUSION 

Juvenile age group is important to be considered in dengue management since the number of cases 

in this age group is significantly increasing year by year especially in Bandung, West Java, 

Indonesia. Another concern to pay special attention to this age group is because dengue infection 

among juveniles shall hinder their growing process and influence their academic achievement at 

schools. Apart from that, it will lower parents’ productivity as they have to be absent from work, 

and they have to spend expenses for medication. The dynamic temporal trend can be used to 

develop etiology hypothesis about high-risk sub-districts and it is important information for 

official health office for developing an early warning system of dengue disease. According to the 

result of this model, it can be concluded that dengue disease is high potential to spread in sub-

districts Coblong, Babakan Ciparay, Bojongloa Kidul; and very high potential to spread in sub-

districts Sukasari, Bojongloa Kaler, Regol, Buah Batu and Rancasari. In addition, it can be 

concluded that juveniles in Bandung are relatively having a high risk to be infected by dengue 

disease during the rainy season around January – March, and October – December. 

For further study, it is suggested to consider other factors, i.e.: the climatology data, environmental, 

economic aspects and social conditions, elevation, to be included into the models to have a better 

picture of the disease transmission [24, 25]. The model can be extend by accommodating the 

varying coefficients for each covariates [26, 27]. Applying the same model to data of the following 

years is also highly recommended to verify the relevance of this study with the real condition in 

the following years.  
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