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Abstract. Violence was, for a long time, misunderstood and misdiagnosed. This misdiagnosis led to ineffective

and counterproductive treatments and control strategies. Recent advances in neuroscience and epidemiology show

that violence is a contagious disease. In this paper, community violence is treated as an infection that spreads

from person to person through victimization or through witnessing violence. A compartmental model is used for

formulating the spread of cummunity violence as a system of differential equations. The distribution of treated

individuals is considered as a control variable. Our objective is to characterize an optimal control (treatment) that

minimizes the number of individuals who use violence and the cost associated with this treatment. A numerical

simulation analysis is used to confirm the effectiveness of our control.
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1. INTRODUCTION

Violence is the utilization of actual power to harm, misuse, harm, or destroy [1]. Community

violence covers viciousness among colleagues and outsiders, and incorporates youth brutality;

attack by outsiders; violence related with vandalism related misdemeanors; and violence in

working environments and different institutions [2]. There is a solid connection between

degrees of violence and modifiable factors in a society, for example, concentrated poverty,

earning and gender inequality, the destructive utilization of alcohol, and the absence of safe,

stable, and supporting family climate. Moreover, violence frequently has deep rooted ramifications

for physical and emotional wellness and social working and can slow economic and social

development [1]. Violence meets the word reference meaning of a disease, and many studies

currently affirm that violence is contagious [3]. The specific contagion of violence is started by

victimization or visual exposure and intervened by the brain, similarly as the lungs intercede

replication of tuberculosis or the intestines cholera. The brain processes violence exposure into

scripts, or replicated practices, and oblivious social assumptions. This processing can likewise

prompt a few situationally versatile reactions including aggression, impulsivity, depression,

stress, excessive startle reactions, and changes in neurochemistry [4]. [5] used compartmental

model to describe the spread of criminal gang membership, and [6] used compartmental model

for the analysis of domestic violence. But none of them incorporated the spatial diffusion which

plays an important role into the spread of violence. In this paper, we treat community violence

as an infection that multiplies through exposure (victimization or witnessing violence). The

violence is controlled by identifying and helping individuals at the highest risk factors (drugs,

alcohol, poverty, poor education, family structure, . . . [4]) to make them more averse to submit

viciousness by talking in their terms, examining the expenses of utilizing violence, and assisting

them with getting the help and social services (e.g., education, job training, drug treatment)

towards behavior change and changes in life course [7]. The rest of this paper is structured

as follows: In section 2, we show the mathematical model. Section 3 is about the associated

optimal control problem. In section 4 we prove the existence of an optimal solution. Then we

formulate the necessary optimality conditions in section 5. The numerical results are showed in

section 6. Finally, we give the conclusion of the paper in the 7th section.
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2. MATHEMATICAL MODEL

In this work, the total population (T) is divided into three compartments: (S) susceptible

individuals, (H) susceptible individuals with high risk factors to use violence and (V) individuals

who use violence. Let T (t) be the total population at an instant t ∈ [0,τ].

We assume that:

• Violence is contageous,

• An individual can only be infected by violence through contact with violent individuals,

• The population is uniformly mixed,

• The population tend to move to regions,

• The densities depend on time and position in space since the population tend to move to

regions (leading to the notations S(t,x), H(t,x) and V (t,x)).

Let us define some parameters used in this model:

µ: Natural birth rate

d : Natural death rate

α1: Rate of becoming (H) individual (some (S) individuals move to the (H) compartment)

α2: Transmission rate for (S) individuals

α3: Transmission rate for (H) individuals (α3 > α2)

r : Recovery rate (recovering from violence)

β : Rehabilitation rate (from (V) to (S)) (some individuals who recover from violence return

to the (S) compartment)

c : Rehabilitation rate (from (H) to (S)) (some (H) individuals return to the (S) compartment)

The susceptible individuals can become violent at a rate α2
V S
T . The rate at which susceptible

individuals with high risk factors become violent is α3
V H
T . Some violent individuals return

to the previous states at a rate rV and the proportion of those who become susceptible with

high risk factors is (1−β ). Some susceptible individuals with high risk factors return to the

susceptible state at a rate cH (without the intervention seen above) and in the other direction the

rate at which a susceptible individual move to the second state is α1S.
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We obtain the following system of reaction-diffusion equations as a spatiotemporal SHV

model for the spread of community violence:

(1)



∂S
∂ t = λ1∆S+µR−α1S−α2

V S
T + cH +β rV −dS

∂H
∂ t = λ2∆H− cH +α1S−α3

V H
T +(1−β )rV −dH

∂V
∂ t = λ3∆V +α2

V S
T +α3

V H
T − rV −dV , (t,x) ∈ Q = [0,τ]×Ω

with the homogeneous Neumann boundary conditions

(2)
∂S
∂η

=
∂H
∂η

=
∂V
∂η

= 0, (t,x) ∈ [0,τ]×∂Ω

where Ω is a fixed and bounded domain in R2 with smooth boundary ∂Ω , the time t belongs to

a finite interval [0,τ], while x varies in Ω .

The initial distribution of the three populations is supposed to be:

(3) S(0,x) = S0 > 0, H(0,x) = H0 > 0 and V (0,x) =V0 > 0, x ∈Ω

3. OPTIMAL CONTROL PROBLEM

In this paper, the community violence is controlled by identifying and helping susceptible

individuals with high risk factors to obtain the support and social services, so we include a

control u in model (1) where u(t,x) represents the density of beneficiaries per time unit and

space, and we assume that they are transfered directly and immediatly to the susceptible class.

The controlled system is given by:

(4)



∂S
∂ t = λ1∆S+µR−α1S−α2

V S
T + cH +β rV −dS+uH

∂H
∂ t = λ2∆H− cH +α1S−α3

V H
T +(1−β )rV −dH−uH

∂V
∂ t = λ3∆V +α2

V S
T +α3

V H
T − rV −dV , (t,x) ∈ Q = [0,τ]×Ω

(5)
∂S
∂η

=
∂H
∂η

=
∂V
∂η

= 0, (t,x) ∈ [0,τ]×∂Ω
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(6) S(0,x) = S0 > 0, H(0,x) = H0 > 0 and V (0,x) =V0 > 0, x ∈Ω

In this current work, we want to minimize the density of the violent individuals and the cost of

treating susceptible individuals. The objective functional can be given by:

(7) J(S,H,V,u) =
1
2
‖V‖2

L2(Q)+
1
2
‖V (τ, .)‖2

L2(Ω)+
α

2
‖u‖2

L2(Q)

where u belongs to the set Uad of admissible controls

(8) Uad =
{

u ∈U ; ‖u‖L∞(Q) ≤ umax

}
with Uad =

{
u ∈U ; ||u||L∞(Q) 6 umax

}
is a given positive constant and

U =
{

u ∈ L∞(Q); ‖u‖L∞(Q) < 1 and u≥ 0
}

4. EXISTENCE OF GLOBAL SOLUTION

In this section, we will prove the existence of a global strong solution of the problem (4)–(6).

We denote :

H(Ω) =
(
L2(Ω)

)3 and L(τ,Ω) = L2 (0,τ;H2(Ω)
)
∩L∞

(
0,τ;H1(Ω)

)
y = (y1,y2,y3) = (S,H,V ) with y0 = (y0

1,y
0
2,y

0
3) = (S0,H0,V0)

and let A be the linear operator defined as follows:

(9)

A : D(A)⊂ H(Ω)→ H(Ω)

Ay = (λ1∆y1,λ2∆y2,λ3∆y3) ∈ D(A)

∀y = (y1,y2,y3) ∈ D(A)

(10) D(A) =
{

y = (y1,y2,y3) ∈
(
H2(Ω)

)3
,
∂y1

∂η
=

∂y2

∂η
=

∂y3

∂η
= 0,a.e x ∈ ∂Ω

}
If we consider the function f defined by :

f (y(t)) = ( f1(y(t)), f2(y(t)), f3(y(t)))
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with

(11)



f1(y(t)) = µ(y1 + y2 + y3)−α2
y1y3

T +β ry3− (α1 +d)y1 +(c+u)y2

f2(y(t)) = α1y1−α3
y2y3

T +(1−β )ry3− (d + c+u)y2

f3(y(t)) = α2
y1y3

T +α3
y2y3

T − (r+d)y3

then the problem (4)–(6) can be written in the space H(Ω) under the form:

(12)


∂y
∂ t = Ay(t)+ f (y(t))

y(0) = y0

, t ∈ [0,τ]

Theorem 1. Let Ω be a bounded domain from R2, with the boundary of class Cλ , λ > 2. If

α1, α2, α3, r, c, µ, d > 0, 0 < β < 1, u ∈U, y0 ∈ D(A) and y0
i ≥ 0 on Ω f or i = 1,2,3, then

the problem (4)–(6) has a unique (global) strong solution such that: y ∈W 1,2(0,τ;H(Ω)) , yi ∈

L(τ,Ω)∩L∞(Q)and yi ≥ 0 on Q f or i = 1,2,3.

In addition , there exists C > 0 independant of u such that for all t ∈ [0,τ]:

(13)
∥∥∥∥∂yi

∂ t

∥∥∥∥
L2(Q)

+‖yi‖L2(0,τ;H2(Ω))+‖yi‖H1(Ω)+‖yi‖L∞(Q) ≤C f or i = 1,2,3

Proof. The function f is Lipschitz continuous in y = (y1, y2, y3) uniformly with respect to

t ∈ [0,τ]. Since the operator A is self-adjoint and dissipative on H(Ω), it follows that the

problem (4)–(6) admits a unique strong solution y ∈W 1,2(0,τ;H(Ω)) with yi ∈ L2(0,τ;H2(Ω))

for i = 1,2,3.

Let us prove that yi ∈ L∞(Q) for i = 1,2,3.

We denote Mi = max
{
‖ fi‖L∞(Ω),

∥∥y0
i

∥∥
L∞(Ω)

}
for i = 1,2,3.

Let {Si(t), t ≥ 0} be the C0−semi-group generated by the operator Bi defined as follows:

Bi : D(Bi)⊂ L2(Ω)→ L2(Ω)

Biz = λi∆z

D(Bi) =
{

z ∈ H2(Ω), ∂ z
∂η

= 0, a.e in ∂Ω

}
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It is easy to see that, for x ∈ Ω , the function gi(t,x) = yi−Mit −
∥∥y0

i

∥∥
L∞(Ω)

satisfies the

Cauchy problem :

(14)


∂gi
∂ t (t,x) = λi∆gi + fi(y(t))−Mi

gi(0,x) = y0
i −
∥∥y0

i

∥∥
L∞(Ω)

, t ∈ [0,τ]

and the function defined by hi(t,x) = yi +Mit +
∥∥y0

i

∥∥
L∞(Ω)

satisfies the Cauchy problem :

(15)


∂hi
∂ t (t,x) = λi∆hi + fi(y(t))+Mi

hi(0,x) = y0
i +
∥∥y0

i

∥∥
L∞(Ω)

, t ∈ [0,τ]

then gi(t,x) = Si(t)
(

y0
i −
∥∥y0

i

∥∥
L∞(Ω)

)
+
∫ t

0 Si(t− s)( fi(y(t))−Mi)ds and

hi(t,x) = Si(t)
(

y0
i +
∥∥y0

i

∥∥
L∞(Ω)

)
+
∫ t

0 Si(t− s)( fi(y(t))+Mi)ds

Since y0
i −
∥∥y0

i

∥∥
L∞(Ω)

≤ 0 , fi(y(t))−Mi≤ 0 , y+
∥∥y0

i

∥∥
L∞(Ω)

≥ 0 , fi(y(t))+Mi≥ 0 , it follows

that: (∀(t,x) ∈ Q) , gi(t,x)≤ 0 and (∀(t,x) ∈ Q) , hi(t,x)≥ 0 . Then: (∀(t,x) ∈ Q) , |yi(t,x)| ≤

Mt +
∥∥y0

i

∥∥
L∞(Ω)

. Thus we have proved that, for i = 1,2,3, yi ∈ L∞(Q).

By the system (4), we know that :

(16)



∂y1
∂ t = λ1∆y1 + f1(y1,y2,y3)

∂y2
∂ t = λ2∆y2 + f2(y1,y2,y3), (t,x) ∈ Q

∂y3
∂ t = λ3∆y3 + f3(y1,y2,y3)

Since the functions f1(y1,y2,y3), f2(y1,y2,y3) and f3(y1,y2,y3) are continuously differentiable

satisfying, for all y1,y2,y3 ≥ 0, f1(0,y2,y3) = µ(y2+y3)+β ry3+(c+u)y2 ≥ 0, f2(y1,0,y3) =

α1y1 +(1−β )ry3 ≥ 0 and f3(y1,y2,0) = 0, we deduce (see [[8]]) that y1(t,x)≥ 0, y2(t,x)≥ 0

and y3(t,x)≥ 0.

Finally, let us prove that y1 ∈ L∞(0,τ;H1(Ω)). By the first equation of (4), we obtain :∫ t
0
∫

Ω

∣∣∣∂y1
∂ s

∣∣∣2dsdx+λ 2
1
∫ t

0
∫

Ω
|∆y1|2dsdx−2λ1

∫ t
0
∫

Ω

∂y1
∂ s ∆y1dsdx

=
∫ t

0
∫

Ω
(µ(y1 + y2 + y3)−α1y1−α2

y1y3
T +β ry3−dy1 +(c+u)y2)

2dsdx

Using the Green’s formula and knowing that , we have :
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0
∫

Ω

∂y1
∂ s ∆y1dsdx =−1

2
∫

Ω

(
|∇y1|2−

∣∣∇y0
1

∣∣2)dx

then∫ t
0
∫

Ω

∣∣∣∂y1
∂ s

∣∣∣2dsdx+λ 2
1
∫ t

0
∫

Ω
|∆y1|2dsdx+λ1

∫
Ω
|∇y1|2dx−λ1

∫
Ω

∣∣∇y0
1

∣∣2dx

=
∫ t

0
∫

Ω
(µ(y1 + y2 + y3)−α1y1−α2

y1y3
R +β ry3−dy1 +(c+u)y2)

2dsdx

It follows that :

λ1
∫

Ω
|∇y1|2dx≤

∫ t
0
∫

Ω
(µR−α1y1−α2

y1y3
R +β ry3−dy1 +(c+u)y2)

2dsdx

+λ1
∫

Ω

∣∣∇y0
1

∣∣2dx

and since y0
1 ∈ H2(Ω) and y1,y2,y3 ∈ L∞(Q) (with y1,y2,y3 bounded independently of u), we

deduce that y1 ∈ L∞(0,τ;H1(Ω)).We can prove similarly that y2,y3 ∈ L∞(0,τ;H1(Ω)). Thus

the inequality (13) holds for i = 1, 2, 3.
�

5. EXISTENCE OF OPTIMAL SOLUTION

In this section, we will prove the existence of an optimal solution of the problem (4)-(8).

Theorem 2. Let Ω be a bounded domain from R2, with the boundary of class Cλ , λ > 2. If

α1, α2, α3, r, c, µ, d > 0, 0< β < 1, y0 ∈D(A) and y0
i ≥ 0 on Ω f or i= 1,2,3, then the problem

(4)–(8) has an optimal solution (y∗, u∗).

Proof. For every u ∈Uad , there exists a unique solution y to the problem (4)–(6) (see Theorem

1).

Let

(17) J∗ = inf
u∈Uad

{J(y,u)}

Since J∗ is finite, there exists a sequence (yn, un) such that, for all n≥ 1:

(18) un ∈Uad , yn ∈W 1,2(0,τ;H(Ω)) , J∗ ≤ J(yn,un)≤ J∗+
1
n
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and

(19)



∂yn
1

∂ t = λ1∆yn
1 +µ(yn

1 + yn
2 + yn

3)−α2
yn

1yn
3

yn
1+yn

2+yn
3
+β ryn

3− (α1 +d)yn
1

+(c+un)yn
2

∂yn
2

∂ t = λ2∆yn
2 +α1yn

1−α3
yn

2yn
3

yn
1+yn

2+yn
3
+(1−β )ryn

3− (d + c+un)yn
2

∂yn
3

∂ t = λ3∆yn
3 +α2

yn
1yn

3
yn

1+yn
2+yn

3
+α3

yn
2yn

3
yn

1+yn
2+yn

3
− (r+d)yn

3 , (t,x) ∈ Q

(20)
∂yn

1
∂η

=
∂yn

2
∂η

=
∂yn

3
∂η

= 0 , (t,x) ∈ [0,τ]×∂Ω

(21) yn
1(0,x) = y0

1 > 0,yn
2(0,x) = y0

2 > 0andyn
3(0,x) = y0

3 > 0 , x ∈Ω

We know that H1(Ω) is compactly embedded in L2(Ω), then, for all t ∈ [0,τ],
{

yn
1(t) , n≥ 1

}
is relatively compact in L2(Ω) for all t ∈ [0,τ]. Let us prove that

{
yn

1 , n≥ 1
}

is equicontinuous

at each t ∈ [0,τ]. From the first equation of (19), we obtain, for all t ∈ [0,τ]:

(22)

∫ t
0
∫

Ω

∂yn
1

∂ t yn
1dxds =

∫ t
0
∫

Ω

[
λ1(∆yn

1)y
n
1 +µ(yn

1 + yn
2 + yn

3)y
n
1

−α2
(yn

1)
2yn

3
yn

1+yn
2+yn

3
+β ryn

1yn
3− (α1 +d)(yn

1)
2 +(c+un)yn

1yn
2

]
dxds

then

(23)

∫
Ω
(yn

1)
2(t,x)dx =

∫
Ω
(y0

1)
2
(x)dx+2

∫ t
0
∫

Ω

[
λ1(∆yn

1)y
n
1 +µ(yn

1 + yn
2 + yn

3)y
n
1

−α2
(yn

1)
2yn

3
yn

1+yn
2+yn

3
+β ryn

1yn
3− (α1 +d)(yn

1)
2 +(c+un)yn

1yn
2

]
dxds, ∀t ∈ [0,τ]

and by Theorem 1, there exists a constant C > 0 independant of u such that for all n ≥ 1 and

t ∈ [0,τ]:

(24)
∥∥∥∥∂yn

i
∂ t

∥∥∥∥
L2(Q)

≤C , ‖yn
i ‖L2(0,τ;H2(Ω)) ≤C , ‖yn

i ‖H1(Ω) ≤C f or i = 1,2,3
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It follows that, for all n≥ 1 and t ∈ [0,τ]:

(25)
∣∣∣∣∫

Ω

(yn
1)

2(t,x)dx−
∫

Ω

(yn
1)

2(s,x)dx
∣∣∣∣≤ K |t− s|

We deduce that
{

yn
1 , n≥ 1

}
is equicontinuous at each t ∈ [0,τ]. The Ascoli-Arzela Theorem

(see [[9]]) implies that
{

yn
1 , n≥ 1

}
is relatively compact in C

(
[0,τ] ;L2(Ω)

)
. Hence, selecting

further sequences, if necessary, we have :

yn
1→ y∗1 in L2(Ω) uniformly with respect to t, and analogously:

yn
i → y∗i in L2(Ω) uniformly with respect to t for i = 2,3.

Since the sequence ∆yn
i is bounded in L2(Q) then it has a weakly convergent subsequence,

denoted again ∆yn
i , in L2(Q). For all distribution ϕ ,

(26)
∫

Q
ϕ∆yn

i =
∫

Q
yn

i ∆ϕ →
∫

Q
y∗i ∆ϕ=

∫
Q

ϕ∆y∗i

then

∆yn
i → ∆y∗i weakly in L2(Q) for i = 1,2,3.

From (24) and Theorem 1, we see that :

∂yn
i

∂ t →
∂y∗i
∂ t weakly in L2(Q) for i = 1,2,3

yn
i → y∗i weakly in L2(0,τ;H2(Ω)) for i = 1,2,3

yn
i → y∗i weakly in L∞(0,τ;H1(Ω)) for i = 1,2,3.

Since un is bounded in L2(Q) then it has a weakly convergent subsequence, denoted again un ,

so un→ u∗ weakly in L2(Q) and unyn
2→ u∗y∗2 weakly in L2(Q).

We also know that Uad is a closed and convex set in L2(Q). It follows that Uad is weakly closed,

so u∗ ∈Uad .
By passing to the limit in L2(Q) as n→ ∞ in (18)-(21), we deduce that y∗ is the solution of (1)

–(3) corresponding to u∗. And since J(y∗,u∗)≤ inf
u∈Uad

J(y,u), then (y∗, u∗) minimizes (7).

�

6. NECESSARY OPTIMALITY CONDITIONS

Let us prove first, that the mapping u→ y(u) is Gateaux sifferentiable with respect to u∗ (

where y(u) is the corresponding solution of (1) –(3) corresponding to u).
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Let (y∗, u∗) be an optimal pair, u ∈U and uε = u∗+ εu ∈U (ε > 0). From Theorem 1, the

problem (1) –(3) admits a unique solution yε = y(uε) corresponding to uε . Let zε = 1
ε
(yε − y∗)

and put, for i, j ∈ {1,2,3}:

(27)

Λ(y1,y2,y3) =
y1y2

y1+y2+y3


Mε

i j =
Λ(yε

i ,y
ε
j ,y

ε
k)−Λ(y∗i ,y

ε
j ,y

ε
k)

yε
i −y∗i

; i < j and k 6= i, j

Mε
i j =

Λ(yε
i ,y
∗
j ,y

ε
k)−Λ(y∗i ,y

∗
j ,y
∗
k)

yε
i −y∗i

; i > j and k 6= i, j

We get, by subtracting the corresponding system (1) – (3) to u∗ from the corresponding system

(1) – (3) to uε :

(28)



∂ zε
1

∂ t = λ1∆zε
1 +
(
µ−α1−α2Mε

13−d
)

zε
1 +(µ + c+uε)zε

2

+
(
µ−α2Mε

31 +β r
)

zε
3 +uy∗2

∂ zε
2

∂ t = λ2∆zε
2 +α1zε

1−
(
α3Mε

23 + c+d +uε
)

zε
2 ; (t,x) ∈ Q

+
(
(1−β )r−α3Mε

32
)

zε
3−uy∗2

∂ zε
3

∂ t = λ3∆zε
3 +α2Mε

13zε
1 +α3Mε

23zε
2 +
(
α2Mε

31 +α3Mε
32− r−d

)
zε

3

(29)
∂ zε

1
∂η

=
∂ zε

2
∂η

=
∂ zε

3
∂η

= 0 , (t,x) ∈ [0,τ]×∂Ω

(30) zε
1(0,x) = 0 ,zε

2(0,x) = 0 and zε
3(0,x) = 0 , x ∈Ω

To show that zε
i are bounded in L2(Q) uniformly with respect to ε , we denote:

Eε =


µ−α1−α2Mε

13−d µ + c+uε µ−α2Mε
31 +β r

α1 −α3Mε
23− c−d−uε (1−β )r−α3Mε

32

α2Mε
13 α3Mε

23 α2Mε
31 +α3Mε

32− r−d


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and F =



y∗2

−y∗2

0


then (28) – (30) can be written as:

(31)


∂ zε

∂ t = Azε +Eεzε +Fu

zε(0) = 0

, t ∈ [0,τ]

The solution of this problem is given by:

(32) zε(t) =
∫ t

0
S(t− s)Eε(s)zε(s)ds+

∫ t

0
S(t− s)Fu(s)ds

Since the coefficients of the matrix Eε are bounded uniformly with respect to ε and using

Gronwall’s inequality, we deduce that there exists a constant C1 > 0 such that:

(33) ‖zε
i ‖L2(Q) ≤C1 f or i = 1,2,3

Thus, zε
i are bounded in L2(Q) uniformly with respect to ε .

And since we have:

(34) ‖yε
i − y∗i ‖L2(Q) = ε‖zε

i ‖L2(Q)

then yε
i →

ε→0
y∗i in L2(Q) for i = 1,2,3.

By denoting :

(35) M∗i j =
∂Λ

∂y1

(
y∗i ,y

∗
j ,y
∗
k
)

f or i 6= j , k 6= i and k 6= j
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(36) E =



µ−α1−α2M∗13−d µ + c+u∗ µ−α2M∗31 +β r

α1 −α3M∗23− c−d−u∗ (1−β )r−α3M∗32

α2M∗13 α3M∗23 α2M∗31 +α3M∗32− r−d


the system

(37)


∂ z
∂ t = Az+Ez+Fu

z(0) = 0

,t ∈ [0,τ]

admits a unique solution given by :

(38) z(t) =
∫ t

0
S(t− s)E(s)z(s)ds+

∫ t

0
S(t− s)Fu(s)ds

By subtracting (38) from (32) we obtain :

(39) zε(t)− z(t) =
∫ t

0
S(t− s) [Eε(s)(zε − z)+(Eε(s)−E(s))z(s)]ds

Since all the the elements of the matrix Eε tend to the corresponding elements of the matrix E

in L2(Q) and by using Gronwall’s inequality, it follows that:

(40) zε
i →

ε→0
zi in L2(Q) f or i = 1,2,3

Thus, we have proved the following result:

Proposition 3. The mapping y : U →W 1,2(0,τ;H(Ω)), with the conditions of the theorem 1,

is Gateaux differentiable with respect to u∗. For u ∈U, z = y′(u∗)u is the unique solution in

W 1,2(0,τ;H(Ω)) of the following problem :

(41)


∂ z
∂ t = Az+Ez+Fu

z(0,x) = 0

, t ∈ [0,τ]
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Moreover, the dual system associated to the system (4)-(8) is :

(42)


−∂ p

∂ t −Ap−E∗p = N∗Ny∗

p(τ,x) = N∗Ny∗(τ,x)

, t ∈ [0,τ]

where p = (p1, p2, p3) is the adjoint variable, (y∗,u∗) is the optimal pair, and the matrix is

defined by : N =


0 0 0

0 0 0

0 0 1


Theorem 4. Under hypotheses of Theorem 1, if (y∗,u∗) is an optimal pair, then the system (38)

admits a unique solution p ∈W 1,2(0,τ;H(Ω)) with pi ∈ L(τ,Ω) for i = 1,2,3. Moreover,

(43) u∗ = min
(

umax,max
(

0,
y∗2
α
(p2− p1)

))
Proof. By making the change of variable s = τ− t and the change of functions qi(s,x) = pi(τ−

s,x) = pi(t,x) for (t,x) ∈ Q,we can prove, with the same method used in the proof of Theorem

1, that the system (38) admits a unique solution p ∈W 1,2(0,τ;H(Ω)) with pi ∈ L(τ,Ω) for

i = 1,2,3.

Let us now prove the second part of the theorem. Let (y∗,u∗) be an optimal pair, uε =

u∗+ εh ∈U (ε > 0) and yε = (yε
1,y

ε
2,y

ε
3) the state solution corresponding to uε . Then :

J′(u∗)(h) = lim
ε→0

1
ε
(J(uε)− J(u∗))

= lim
ε→0

1
2ε

(∫
τ

0
∫

Ω

[
(yε

3)
2− (y∗3)

2
]

dxdt +
∫

Ω

[
(yε

3(τ,x))
2− (y∗3(τ,x))

2
]

dx

+α
∫

τ

0
∫

Ω

[
(uε)2− (u∗)2

]
dxdt

)
= lim

ε→0
1
2

(∫
τ

0
∫

Ω

(
yε

3−y∗3
ε

)
(yε

3 + y∗3)dxdt +
∫

Ω

(
yε

3−y∗3
ε

)
(yε

3 + y∗3)(τ,x)dx

+α
∫

τ

0
∫

Ω

(
uε

3−u∗3
ε

)
(uε +u∗)dxdt

)
= lim

ε→0
1
2

(∫
τ

0
∫

Ω

(
zε

3
)
(yε

3 + y∗3)dxdt +
∫

Ω

(
zε

3
)
(yε

3 + y∗3)(τ,x)dx

+α
∫

τ

0
∫

Ω
h(uε +u∗)dxdt

)
=
∫

τ

0 〈Ny∗,Nz〉L2(Ω)dt + 〈Ny∗(τ,x),Nz(τ,x)〉L2(Ω)+
∫

τ

0 〈αu∗,h〉L2(Ω)dt

=
∫

τ

0 〈N∗Ny∗,z〉L2(Ω)dt + 〈Ny∗(τ,x),Nz(τ,x)〉L2(Ω)+
∫

τ

0 〈αu∗,h〉L2(Ω)dt

=
∫

τ

0 〈N∗Ny∗,z〉L2(Ω)dt + 〈N∗Ny∗(τ,x),z(τ,x)〉L2(Ω)+
∫

τ

0 〈αu∗,h〉L2(Ω)dt
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=
∫

τ

0 〈−
∂ p
∂ t −Ap−E∗p,z〉L2(Ω)

dt + 〈p(τ,x),z(τ,x)〉L2(Ω)+
∫

τ

0 〈αu∗,h〉L2(Ω)dt

=
∫

τ

0 〈p, ∂ z
∂ t −Az−Ez〉L2(Ω)

dt +
∫

τ

0 〈αu∗,h〉L2(Ω)dt

=
∫

τ

0 〈p,Fh〉L2(Ω)dt +
∫

τ

0 〈αu∗,h〉L2(Ω)dt

=
∫

τ

0 〈F∗p,h〉L2(Ω)dt +
∫

τ

0 〈αu∗,h〉L2(Ω)dt

=
∫

τ

0 〈F∗p+αu∗,h〉L2(Ω)dt

where zε = (zε
1,z

ε
2,z

ε
3) =

1
ε
(yε − y∗) and z = y′(u∗)h

For h = u−u∗, we obtain:

(44) J′(u∗)(u−u∗) =
∫

τ

0
〈F∗p+αu∗,u−u∗〉L2(Ω)dt

Since J is Gateaux differentiable at u∗, Uad is convex and the minimum of the objective functional

is attained at u∗, we conclude that:

(45)
∫

τ

0
〈F∗p+αu∗,u−u∗〉L2(Ω)dt ≥ 0 ∀u ∈Uad

By standard arguments varying u, wo obtain:

(46) u∗ =− 1
α

F∗p =
y∗2
α
(p2− p1)

then u∗ = min
(

umax,max
(

0, y∗2
α
(p2− p1)

))
�

7. NUMERICAL RESULTS

We used forward-backward sweep method (FBSM) to simulate the state system (4)− (6),

the dual system (42) and the characterization of the control (43). We wrote a code in MAT LAB

where, using a finite difference method, we solved the system (4)− (6) forward in time and the

system (43) backward in time. A 40km × 30km grid Ω represents the population’s habitat. We

start by considering that the population density is 80 per square kilometer at t = 1. We suppose

that violence spread starts from the middle Ω1. We consider two situations: the presence of

intervention and the absence of the intervention where, in both cases, the spread of violence is

displayed over a period of 24 months. Table1, resume the values of the initial conditions and

parameters used in our numerical simulation.
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In Figures 1− 3, the numerical results show that, without any control, community violence

spreads throughout Ω and the number of violent individuals increases quickly to attain its peak

by the day 720.

Notations Values Description

S0(x,y)
35 f or (x,y) ∈Ω1

40 f or (x,y) /∈Ω1

Initial susceptible population

H0(x,y)
35 f or (x,y) ∈Ω1

40 f or (x,y) /∈Ω1

Initial susceptible population with high risk factors

V0(x,y)
10 f or (x,y) ∈Ω1

0 f or (x,y) /∈Ω1

Initial violent population

λi , i = 1,2,3 0.5,0.5,0.6 Diffusion coefficients

µ 0.01 Birth rate

d 0.01 Natural death rate

α1 0.03 Rate of becoming H

α2 0.03 Transmission rate (for S)

α3 0.3 Transmission rate (for H)

r 0.01 Recovery rate

β 0.5 Rehabilitation rate (from V to S)

c 0.01 Rehabilitation rate (from H to S)

umax 0.7 Maximal value of admissible controls
TABLE 1. Initial conditions and parameters values
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FIGURE 1. Susceptble behavior within Ω without control

FIGURE 2. Susceptble with high risk factors behavior within Ω without control
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FIGURE 3. Violent behavior within Ω without control
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Figures 4− 6, shows the effect of starting the intervention from the first day. We can see that

violence spreads throughout Ω but the number of violent inviduals remains very low during all

the period. After 24 months the densitiy of violent indivuduals is around 7 per square kilometer

instead of 64 per square kilometer without the intervention. This is mostly due to the high

decrease of the number of susceptible individuals with high risk factors from the 4th month

to the 8th month as we can see in Figure 5, which prove the effectiveness of our intervention

strategy.

FIGURE 4. Susceptble behavior within Ω without control. The intervention

starts from the first day
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FIGURE 5. Susceptble with high risk factors behavior within Ω without control.

The intervention starts from the first day

FIGURE 6. Violent behavior within Ω with control . The intervention starts

from the first day
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To confirm this effectiveness, we simulate the spread of community violence in the second case

where the intervention starts after 6 months. In Figures 7− 9, we see clearly that again, the

number of violent inviduals remains low, and the density of violent inviduals is around 12 per

square kilometer.

FIGURE 7. Susceptible behavior within Ω with control. The intervention starts

after 180 days
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FIGURE 8. Susceptible with high risk factors behavior within Ω with control.

The intervention starts after 180 days

FIGURE 9. Violent behavior within Ω with control. The intervention starts after

180 days
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Finally, let us consider a third case where the intervention starts after 16 months. Figure 12

shows that the number number of violent individuals decreases significantly and immediately

after the the intervention and the density goes down from 60 per square kilometer at the

beginning of the intervention (16th month) to 49 per square kilometer by the end of the

simulation which is still high. This relative high number of violent individuals can be explained

by Figure 11 where we see that the number of susceptible individuals with high risk factors

reaches its peak by the 4th month and that at the start of the intervention (16th month) the vast

majority of those individuals beacame already violent. We conclude that, to eliminate violence

by using only this intervention method, we need to intervene in the first months. In the other

case other intervention methods are needed ( social norms, prison, ...).

FIGURE 10. Susceptible behavior within Ω with control. The intervention starts

after 480 days
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FIGURE 11. Susceptible with high risk factors behavior within Ω with control.

The intervention starts after 480 days

FIGURE 12. Violent behavior within Ω with control. The intervention starts

after 480 days
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8. CONCLUSION

In this paper, we presented a model (SHV ) for treating community violence described by a

system of partial differential equations. We treated community violence as an epidemic disease

controlled by identifying and helping individuals at the highest risk. To this purpose, we used

optimal control theory and we proved the existence and characterization of the optimal control.

The numerical results show that the spread of community violence is quick in absence of any

intervention. Our simulation proved that the control strategy used in this work is highly effective

at stopping community violence from spreading and that we can eliminate violence if we start

the intervention in the first months.
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