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Abstract. This paper studied the optimal control for the spread of the type SIR COVID-19 in Indonesia. Optimal 

control provided by prevention of COVID-19 with Large-Scale Social Restrictions in the Framework of Accelerated 

Handling COVID-19 (𝑢1
∗) and COVID-19 treatment efforts (𝑢2

∗). Data obtained from COVID-19.go.id from July 

1-September 30, 2020. The increase in COVID-19 cases can be seen from the basic reproduction number (R0) 

greater than one, which means that the number of active cases of COVID-19 in Indonesia continues to increase. The 

Indonesian government has made efforts to overcome the spread of COVID-19 but the number of active cases of 

COVID-19 is still increasing. Optimal control 𝑢1
∗ and 𝑢2

∗  can significantly reduce the number of active COVID-19 

individuals compared without control. Optimal control 𝑢2
∗  significantly can increase the number of individuals who 

recovered COVID-19 compared without control. 
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1. INTRODUCTION 

In 1918, a significance proportion of the deaths were from pneumonia followed by influenza 

disease. The COVID-19 pandemic brushed across the world, initially starting in Wuhan China at 

the end of 2019. Nearly 2020 it began to spread to other countries including Indonesia starting on 

March 2, 2020 [1].   

Mathematics plays a role in predicting, analyzing, evaluating, and monitoring the spread of 

COVID-19 cases. Several researchers have reviewed the model of the spread of COVID-19, 

among others [2, 3, 4, 5, 6, 7]. Dynamics model of the COVID-19 outbreak and efficacy of 

Government interferences is found in [2]. Modeling analysis and simulation of COVID-19 with 

morbidity data in Anhui, China has been studied in [3].  The COVID-19 epidemic control model 

in terms of the latent subpopulation was established in [4, 5].  The spreading of the COVID-19 

in Wuhan with the reflection of individual interactive and governmental behavior, e.g., travel 

constraint, and hospital was reported in [6]. Analysis of the control of COVID-19 with the 

contact of policy interventions and meteorological determinants has been discussed in [7]. The 

authors in [7] have been planning detailed vaccination ideas for COVID-19 in dissimilar 

countermeasures form and show the efficacy of vaccination.  

The optimal prevention strategy of avian influenza pandemic has been devoted in [8] for the 

control of the epidemic influenza to analysis prevention control, which is connected with relieve 

and quarantine policy, including its execution cost. Really, cost affects the optimal of 

countermeasures principles and the control of the virus transmission. This paper reviewed the 

optimal control of the COVID-19 spread model in Indonesia. 

The paper is consists of: Section 2 describes the COVID-19 transmission model with control 

terms. Application of the COVID-19 model in Section 3. The analysis of optimal controls and 

includes some numerical studies of the optimal controls is given in Section 4 and discuss our 

results. 
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2. SPREAD MODEL OF THE SIR-TYPE COVID-19 IN INDONESIA 

Epidemic spread models are studied in this paper by using a logistic differential equation form. 

The number of initial cases of infection, spread and recovered were obtained from COVID-19 

data go.id. Suppose the initial number of infected cases in a population is P0, and the rate of 

spread of infected cases is r > 0. Then number of epidemic growth at time t can be expressed as 

𝑑𝑃

𝑑𝑡
= 𝑟𝑃, 

Solution of exponential growth, for time t = 0 is 

𝑃(𝑡) = 𝑃0𝑒𝑟𝑡 

where P(0) = P0. The epidemic growth dynamics as [9] is given by 

𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃

𝑀
),              (1) 

with P is the cumulative number infected, and M > 0 maximum population size that the 

environment could carry, while 
𝑑𝑃

𝑑𝑡
 is the growth rate of infected cases, r and M are constants. 

Logistic growth increases starting from the initial time, but decreases at the end time. When 

infections reach a certain proportion, epidemic growth shows an exponential trend, after being 

given epidemic prevention, the epidemic situation gradually slows down the rate of spread. If 

P(0) = P0 > 0, represents the initial number of infected cases, then solving the equation (1) is 

𝑃 =
𝑀

1+𝐶𝑒−𝑟𝑡, 

with  𝐶 =
𝐾−𝑃0

𝑃0
. 

The COVID-19 model is grouped into three sub-populations, namely the suspected, actively 

infected, and recovered sub-populations. The model COVID-19  is based on the Kermack 

McKendrick model [10]. Suspect individual (S) is a person who has symptoms of a cold cough, 

fever or sore throat who has a  chronicle of travel to the area of the spread of COVID-19 or 

have a history of contact with people with COVID-19.  Suspect phase (S)  can change status to 

become infected, if you have direct contact with a person who is positive for the corona virus, 

but if you have been infected with COVID-19 is not included in the subpopulation of suspects. In 

the infectious phase (I), the medical team works hard to treat the infected individuals so that the 
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rate of recovery is optimal. The Government of the Republic of Indonesia has provided a special 

hospital to handle corona virus patients so that the virus does not spread to other patients. A 

quarantine building was also built to accommodate and treat the symptomatic and infected to 

reduce the rate of contact between those who were still symptomatic and infected with people 

who were still healthy. Even with these efforts, there were still many victims who died, with a 

fairly high mortality rate. If an infected individual becomes cured of COVID-19 then that 

individual is not included in the infected subpopulation. The third phase, namely recovered 

population (R). In this phase, people who are declared cured, after recovering, need to be 

recovered so they do not get infected with the coronavirus again.  

The model assumption is given as follows.  

(i) The population is closed because the time is short.  

(ii) Pay attention to deaths from COVID-19.  

(iii) Individual S who has swab tests, confirmed positive and actively enters 

compartment I.  

(iv) Individuals who recover or die from COVID-19 are not included in the infected 

sub-population I.  

(v) Individuals recovering from COVID-19 enter compartment R.   

The schematic diagram of the model studied is shown in Figure 1: 
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Figure 1. Schematic diagram of the COVID-19 type SIR 
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The model studied is a SIR-type epidemic spread model as follows : 

   
𝑑𝑆

𝑑𝑡
= 𝛼𝑆 (1 −

𝑆

𝐾
) − 

𝛽𝑆𝐼

𝑁
                (2) 

   
𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− (𝛾 + 𝑑)𝐼                (3)

   
𝑑𝑅

𝑑𝑡
= 𝛾𝐼,                  (4) 

with N(t) = S(t) + I(t) + R(t), parameters  is the growth rate of the individual suspect 

compartments, parameters  is the transmission rate from the individual suspected compartment 

to active COVID-19,  is transfer rate from actively infected to recovered individual 

compartments, and d is death rate due to COVID-19. K is suspected carrying capacity.  

Carrying capacity K, parameters , ,  and d, are estimated from COVID-19.go.id data by using 

the Ordinary Least Square method (OLS) with minimal error. 

 

3. APPLICATION OF THE SIR-TYPE COVID-19 SPREAD MODEL IN INDONESIA 

The COVID-19 data used is July 1- September 30, 2020 in Indonesia. The reason of the data 

was taken started Juli 1, 2020 because the data is complete for the subpopulation of suspected 

and active COVID-19 in Indonesia. Based on COVID-19.go.id data [1], the initial population is 

S(0) = 58488, I(0) = 29241, R(0) = 25595, with each carrying capacity K = 20.000.000, 

parameters  = 0,047 ,  = 0,154,  = 0,036, and d = 0,002 . The comparison of the spread of 

the suspected COVID-19 based on COVID-19 go.id data and the model can be seen in Figure 2.  

 

Figure 2. Number of suspected COVID-19, Juli 1- September 30, 2020 in Indonesia from 

COVID-19.go.id data and the model  

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14
x 10

4

Day

N
u

m
b

e
r 

o
f 
s
u

s
p

e
c
te

d
 c

o
m

p
a

rt
m

e
n

t

 

 

Data of COVID-19.go.id

By model



6 

JONNER NAINGGOLAN, FATMAWATI 

Based on Figure 2,  from early July, 2nd week of August and end of September 2020, the 

number of COVID-19 suspects from the COVID-19.go.id data and models is still almost the 

same, while at other times the number of suspected COVID-19 from COVID-19.go.id data with 

the model is rather different. 

The dynamic of active cases of COVID-19, 1 June-31 August 2020 in Indonesia based on 

COVID-19.go.id data and the model studied can be seen as in Figure 3 below: 

 

Figure 3. Number of active COVID-19, July 1-September 30, 2020 in Indonesia from 

COVID-19.go.id data with model  studied 

Based on Figure 3, early July, the fourth week of July, and the end of September 2020, the 

number of active COVID-19 cases in Indonesia from COVID-19.go.id data with the model is 

almost the same, while the other time the active number of COVID-19 was from the 

COVID-19.go.id data with the model is rather different.  

 

Figure 4. The number of recovered from COVID-19, July 1- September 30, 2020 in Indonesia 

from COVID-19.go.id data with the model studied 
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The spread of recovery from COVID-19, 1 July 1- September 30, 2020, in Indonesia based on 

COVID-19.go.id data and the model can be seen as in Figure 4. Based on Figure 4, the week to 

July 1-2 and at the end of September 2020 cases recovered from COVID-19 in Indonesia based 

on COVID-19.go.id data and almost the similar with the model, whereas July 13 - September 28, 

2020, the number of recovered from COVID-19 in Indonesia was based on COVID-19.go.id 

data and models studied is rather different. 

The Basic Reproduction Number 

The standard parameters for determining whether the disease is spreading or not i.e. the basic 

reproduction number (R0). If R0 > 1, then the disease spreads or the number of individuals with 

new infections is greater than those who are cured, whereas if R0  1, then the disease decreases 

or the number of new infections is less than cured.  We adopt the method in [11] to determine 

the basic reproduction number by using the next generation matrix. Hence, we obtain:   

    𝑹𝟎 =


𝛾+𝑑
                      (5) 

 

 

Figure 5. The basic reproduction number of COVID-19, Juli 1-September 30, 2020 in Indonesia 

In Figure 5, it can be seen from July 1-September 30, 2020 the average value of the basic 

reproduction number (R0) > 1, meaning that the spread of COVID-19 is increasing. Meanwhile, 

July 19, 22-24, 27-28, 30 and August 1, 5, 12, 18-19, 21-24, 26-27, and September 14, 18, 28, 30, 

2020 R0  1, this means that the spread of COVID-19 in Indonesia has decreased. 
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4. OPTIMAL PREVENTION CONTROL ON COVID-19 IN INDONESIA 

The efforts have been made by the government to protect the spread of COVID-19 by 

providing control include: (i) Control with Government Supervision no. 21 of 2020 about 

Large-Scale Social Restraints (LSSR) in the Context of Quickening the Handling of COVID-19 

(u1(t)). LSSR is boundary on certain activities of population in an area suspect of being infected 

with the COVID-19 to stop its possible spread. Determination LSSR, each area must satisfy the 

following standards: The number of positive cases and the number of deaths from disease 

increases and spread really and rapidly to several areas. There are epidemiological connections 

with identical incidents in other areas or nations. (ii) Control treatment by providing a supply of 

vitamins C, D and E in an effort to accelerate healing of COVID-19 infection (u2(t)).  The 

system of differential equations after given control is as follows: 

   
𝑑𝑆

𝑑𝑡
= 𝛼𝑆 (1 −

𝑆

𝐾
) −  𝛽(1 − 𝑢1)

𝑆𝐼

𝑁
            (6) 

   
𝑑𝐼

𝑑𝑡
= 𝛽(1 − 𝑢1)

𝑆𝐼

𝑁
− 𝛾(1 + 𝑢2)𝐼 − 𝑑𝐼           (7)

   
𝑑𝑅

𝑑𝑡
= 𝛾(1 + 𝑢2)𝐼.               (8) 

Optimal control objective functional which is studied as follows: 

𝐽(𝑢1, 𝑢2) = ∫ (𝐴𝐼(𝑡) + 𝐵1𝑢1
2(𝑡) + 𝐵2𝑢2

2(𝑡))𝑑𝑡
𝑡𝑓

0
,        (9) 

with coefficient  A, B1, and B2  are the weight balance of the number of active COVID-19 

compartments, weights that correspond to the control u1(t), and weights that correspond to the 

control u2(t), respectively. While,  tf  is period end time. Suppose 𝑢1
∗ and 𝑢2

∗  are optimal 

control of the system (6)-(8) and (9), such that it satisfy: 

    𝐽(𝑢1
∗, 𝑢2

∗) = min 𝐽(𝑢1, 𝑢2)                        (10) 

with   = {(𝑢1, 𝑢2)𝜖𝐿1(0, 𝑇)| 0 ≤ 𝑢𝑖 ≤ 1, 𝑖 = 1, 2}.  

Hamiltonian equation of the system (6)-(8) and (9) are as follows [4, 12, 13, 14 ]: 

𝐻 = 𝐴𝐼 + 𝐵1𝑢1
2 + 𝐵2𝑢2

2 + 𝜆1
𝑑𝑆

𝑑𝑡
+ 𝜆2

𝑑𝐼

𝑑𝑡
+𝜆3

𝑑𝑅

𝑑𝑡
.        (11) 

Theorem 1 

Let 𝑆∗(𝑡), 𝐼∗(𝑡), 𝑅∗(𝑡) be optimal state solutions with associated optimal control variables 

𝑢1
∗(𝑡) and 𝑢2

∗(𝑡) for the optimal control problem (6)-(8) and (11). Then there exist adjoin 
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variables λi, i = 1, 2, 3 satisfing 

𝑑𝜆1

𝑑𝑡
= 𝜆1 (

2𝑆

𝐾
− 𝛼) + (𝜆1 − 𝜆2)𝛽(1 − 𝑢1)

𝐼

𝑁
)           (12) 

𝑑𝜆2

𝑑𝑡
= −𝐴 + 𝛽(𝜆1 − 𝜆2)(1 − 𝑢1)

𝑆

𝑁
+ 𝛾(𝜆2 − 𝜆3)(1 + 𝑢2) + 𝜆2𝑑     (13) 

𝑑𝜆3

𝑑𝑡
= 0.                  (14) 

The transversality conditions of are given by 𝜆𝑖(𝑡𝑓) = 0, 𝑖 = 1, 2. Finally, from the optimality 

condition,  we obtain the following optimal controls: 

𝑢1
∗ = min {𝑚𝑎𝑥 {0,

𝛽(𝜆2 − 𝜆1)𝑆𝐼

2𝐵1𝑁
} , 1} 

𝑢2
∗ = min {𝑚𝑎𝑥 {0,

𝛾(𝜆2 − 𝜆3)𝐼

2𝐵2

} , 1}. 

Proof: We use Pontrygain’s Maximum Principle [15] on our model system (11), and the 

Hamiltonian is given by, 

𝐻 = 𝐴𝐼 + 𝐵1𝑢1
2 + 𝐵2𝑢2

2 + 𝜆1(𝛼𝑆(1 −
𝑆

𝐾
) −  𝛽(1 − 𝑢1)

𝑆𝐼

𝑁
) + 𝜆2(𝛽(1 − 𝑢1)

𝑆𝐼

𝑁
− 

           𝛾(1 + 𝑢2)𝐼 − 𝑑𝐼+𝜆3(𝛾(1 + 𝑢2)𝐼 

𝑑𝜆1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆
 

              = 𝜆1 (
2𝑆

𝐾
− 𝛼) + (𝜆1 − 𝜆2)𝛽(1 − 𝑢1)

𝐼

𝑁
) 

𝑑𝜆2

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼
 

           = −𝐴 + 𝛽(𝜆1 − 𝜆2)(1 − 𝑢1)
𝑆

𝑁
+ 𝛾(𝜆2 − 𝜆3)(1 + 𝑢2) + 𝜆2𝑑  

𝑑𝜆3

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅
= 0, 

and must satisfy transversality conditions λ(𝑡𝑓) = 0 for values i = 1, 2, 3. There exist unique 

optimal controls 𝑢1
∗(𝑡)  and  𝑢2

∗(𝑡)  which minimize J over U: The optimality necessary 

conditions that 
𝜕𝐻

𝜕𝑢1
= 0 and  

𝜕𝐻

𝜕𝑢2
= 0, then, by the bounds on the controls, it is easy to obtain 

and in the form 𝑢1
∗(𝑡) =

𝛽(𝜆2−𝜆1)𝑆𝐼

2𝐵1𝑁
 and 𝑢2

∗(𝑡) =
𝛾(𝜆2−𝜆3)𝐼

2𝐵2

. The optimal control of disease, the 

reproduction numbers  declared to be as follows: 
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𝑅0
∗ =

(1−𝑢1)

𝛾(1+𝑢2)+𝑑
. 

To demonstrate the numerical simulation, we assume the weight parameters into account A = 

10, B1 = 20, and B2 = 30, so that control variables can be said to minimize objective functionality. 

We used the fourth order Runge-Kutta method to solve the numerical of the optimal control 

problem [16]. The numerical solution for the COVID-19 in Indonesia for the active infected 

subpopulation is given as follows. 

 

Figure 6. The dynamics of I with 𝑢1
∗  and 𝑢2

∗  controls 

Figure 6 shows the optimal control on COVID-19 using the prevention (𝑢1
∗) and the treatment 

(𝑢2
∗ )  to optimize the objective function J.  The results in Figure 6 show that there is a 

significant difference in the population I with optimal control strategy 𝑢1
∗  and 𝑢2

∗  compared to 

without control. The number of active COVID-19 by using the controls more decreased 

compared to without control. 

 

Figure 7. The dynamics of R with 𝑢2
∗  control 
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Figure 7 display the recovered population (R) with and without control. The results in Figure 

7 show a significant difference in the population R with optimal control strategy 𝑢2
∗  compared to 

without control. We can see in Figure 7 that the number of  recovered population more decrease 

compared to without control. The profile of the optimal  prevention control 𝑢1
∗ and optimal 

treatment control 𝑢2
∗  is depicted in Figure 8. 

 

Figure 8. The profile of the optimal controls 𝑢1
∗ and 𝑢2

∗  

 

5. DISCUSSION AND CONCLUSION 

To date, various efforts have been made by medical personnel in each country, and WHO has 

been trying to find a cure and a vaccine for COVID-19, while the spread of COVID-19 in the 

world has not been controlled. The model studied in this paper discusses the type SIR COVID-19 

model in Indonesia. Based on COVID-19.go.id-data, the number of positive cases of COVID-19 

continues to increase, which can be seen from R0  > 1.  Based on the model studied compared 
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(I) and who are recovered (R) corresponding to COVID-19.go.id data. Optimal control of 
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∗) and COVID-19 treatment efforts (𝑢2
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number of individuals who are active COVID-19 compared with without control. The application 

of optimal control (𝑢2
∗) significantly can increase the number of individuals who recovered 

COVID-19 compared to without control. 
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