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Abstract. With deteriorating infrastructure in many countries on the African continent and declining funding for

infrastructure development, diseases such as typhoid fever are a problem. In many of these countries, the disease

occurs periodically. This disease, which is caused by Salmonella Typhi bacteria, is associated with poor hygiene,

poor waste disposal systems and seasonal rains. Recently in Zimbabwe, the infection has been found to exist

due to dilapidated infrastructure. The existence of the infection remains a huge public health problem. In this

paper, we study the typhoid fever transmission dynamics with fear in periodic environments. We formulate a non-

linear system of differential equations in which the infection rate is time dependent. The model’s steady states are

determined and the stability analysis carried out. Numerical simulations are carried out to determine the impact

of the vital parameters on the course of the disease. Sensitivity analysis is also done to determine parameters

that influence disease progression the most. The role of fear and seasonality are discussed and the public health

implications of the results are articulated.
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1. INTRODUCTION

Typhoid Fever is a life-threatening bacterial infection caused by Salmonella Typhi [37]. The

transmission mode of typhoid is identical to that of cholera—that is, direct transmission (human-

human) and indirect transmission (environment-human). This disease adversely affects the

Recticuloendothelical system, the gall bladder and the intestinal lymphoid [23]. Known es-

timates of the incubation period for the typhoid fever disease range from ten to fourteen days

[23]. The case fatality rate of typhoid fever was 10−20% before the advent of treatment, whilst,

with prompt treatment, the case fatality rate was reduced to less than 1% [13]. It was observed

that the number of deaths caused by typhoid fever in the year 1990 was 181 000 [1]; in the year

2000, it was 217 000 [8]; and in the year 2013, it was 161 000 [1]. In the Democratic Republic

of Congo, more than 42 000 people contracted the typhoid fever disease during the years 2004

and 2005 [43].

For a number of incurable communicable diseases, modellers typically make the assumption

of homogeneous mixing of susceptible and infected individuals in a given population [11].

This assumption is reasonable for most non-lethal infections, such as influenza and chickenpox.

However, for lethal infections such as COVID-19, typhoid, cholera and HIV/AIDS this assump-

tion is debatable. In the case of HIV/AIDS, examples of partner preferences can be seen when

individuals reduce the number of sexual partners they have, and through stigmatization of those

who are already infected [33, 39]. During a cholera, typhoid or COVID-19 outbreak, fear drives

individuals to self-isolate and improve personal hygiene in order to reduce the contact rate of

these diseases [12, 31, 41]. Indeed, a reduced contact rate, due to fear, has a huge bearing on

the dynamics of a lethal infection. The role of fear has been considered in mathematical models

with interacting species, see [9, 11, 42]. Recently, the role of fear has been modelled for Ebola

virus disease [17]. Very few mathematical models have considered fear as an essential compo-

nent in human response to infection.

Mathematical models with seasonality have been considered by a number of authors. In [7], a

malaria model with seasonality is considered in which a system of differential equations is anal-

ysed. A model for malaria was also considered in [38] in with climatic factors where considered
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to influence the biting rate. Other infections in which seasonality was considered include bru-

cellosis [26], clostridium difficile [20], schistosomiasis [19], respiratory syncytial virus [21],

buruli ulcer [3] and cholera [28]. In these models, seasonality is modelled by incorporating a

trigonometric function in the force of infection. It is also common to come across mathematical

models for diarrhoeal diseases such as cholera, typhoid and many others that assume a con-

stant rate of infection. The primary reason of making such an assumption is that it makes for

relatively easy analysis, in that, it produces models that contain systems of autonomous ordi-

nary differential equations [30]. To this end, there are numerous tools for analysing systems of

autonomous ordinary differential equations in the literature [15, 36]. The major drawback of

assuming a constant infection rate for a seasonal disease is that the accuracy of the model might

be compromised, thus compromising model predictions. Empirically, it has been shown that

typhoid fever is highly seasonal and it peaks during the rainy seasons [32], hence a seasonal

mathematical model is befitting to study such a disease.

To the best of our knowledge, the dynamics of typhoid fever’s seasonality coupled with a be-

havioural change in the population due to the fear of infection has not been investigated. A

comparison of a seasonal mathematical model of typhoid fever and one where the assumption

of seasonality is relaxed is carried out. We seek to understand the effects of seasonality on the

basic reproduction number, the number of steady states, the stability of these steady states and

to carry out the stability analysis of the steady states.

The paper is arranged as follows; in Section 2, we formulate and establish the basic properties

of the model. The model is analysed for stability in Section 3. In Section 4, we carry out some

numerical simulations. Parameter estimation and numerical results are also presented in this

section. The paper is concluded in Section 5.

2. METHODOLOGY

2.1. Model Formulation. The typhoid infection model classifies the total human population

at time t, denoted by N(t), into susceptible individuals S(t), typhoid infected individuals I(t),

individuals who recovered from typhoid R(t). Thus, N(t) = S(t)+I(t)+R(t). The model has an

additional compartment B(t) which represents the Salmonella Typhi concentration in the envi-

ronment. The dynamics of the model developed in this paper follows from the model developed
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by Mushanyu et al. [22].

We assume that susceptible individuals acquire typhoid fever either through person-to-person

transmission or by ingesting Salmonella Typhi from contaminated aquatic reservoirs at the rates

λ1 =
βt1I

1+ kI
, λ2 =

βt2B
κt +B

(
1+θ sin

(
2πt
365

))
,

respectively. The parameter βt1 denotes the person-to-person typhoid transmission rate of sus-

ceptibles and is defined as the product of the probability of typhoid transmission per contact

and the effective contact rate for typhoid transmission to occur. The parameter βt2 denotes the

environment-to-humans per capita contact rate for susceptibles and the Salmonella Typhi in the

contaminated environment and κt denotes the half saturation constant relative to the Salmonella

Typhi. Here, we assume that individuals under treatment are infectious but cannot infect sus-

ceptible individuals since they will be confined to a certain place and separated from the general

population where they will be released upon successful treatment or due to mortality (natural or

disease related).

Infected individuals in class I experience disease related death at a rate given by δ . Individuals

in the infectious state I excrete Salmonella Typhi bacteria into the environment at rate α . In-

dividuals in the recovered class R are temporarily immune to typhoid infection, and immunity

wanes at a rate given by ρ , leading to the individuals being susceptible again.

The Salmonella Typhi bacteria population is generated at a rate gbB and its growth is enhanced

by individuals in the infectious state I. We assume that the Salmonella Typhi bacteria in the

environment becomes non-infectious at a rate µb. The constant recruitment into the susceptible

population is represented by Λ, while the natural death rate for the general population is repre-

sented by µh. We assume that individuals in each compartment are indistinguishable and there

is homogeneous mixing.
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Figure 1. The typhoid compartmental model, where g = gbB
(

1− B
kt

)(
1+ξ sin

(
2πt
365

))
+αI.

The schematic diagram for the model to be analysed in this work is given below.

Given the schematic diagram in Fig 1 and the given model assumptions, we formulate the

typhoid fever model as follows

dS
dt

= Λ− (λ1 +λ2)S−µhS+ρR,

dI
dt

= (λ1 +λ2)S−qI,

dR
dt

= εI− (µh +ρ)R,(1)

dB
dt

= gbB
(

1− B
kt

)(
1+ξ sin

(
2πt
365

))
+αI−µbB,

where q = µh +δ + ε, with initial conditions

S(0) = S0 > 0, B(0) = B0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

2.2. Non-seasonal Typhoid Model. Applying the time-average function, [ f (t)]=
1
ω

∫
ω

0
f (t)dt,

to each component of the typhoid model (1) gives the following auxiliary system
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dS
dt

= Λ− (λ1 +[λ2])S−µhS+ρR,

dI
dt

= (λ1 +[λ2])S−qI,

dR
dt

= εI− (µh +ρ)R,(2)

dB
dt

= gbB
(

1− B
kt

)
+αI−µbB,

with initial conditions

S(0) = S0 > 0, B(0) = B0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

Here [λ2] =
βt2B
κt+B .

2.2.1. Non-negative Trajectories and Boundedness. We show that all the trajectories of the

dynamical system are non-negative. The approach outlined in Yang et al. [44] to show that all

the solutions are bounded below by zeros is used in this case.

It is clear that

dS
dt

∣∣∣∣∣
S=0

= Λ+ρR > 0,
dI
dt

∣∣∣∣∣
I=0

= [λ2]S≥ 0,
dR
dt

∣∣∣∣∣
R=0

= εI ≥ 0,
dB
dt

∣∣∣∣∣
B=0

= αI ≥ 0.

Using Lemma 2 of Yang et al. [44], it follows that the trajectories of model (2) are all non-

negative. The time derivative of the human population is given by

dN
dt

= Λ−µhN−δ I ≤ Λ−µhN,

This separable differential inequality can be integrated to get the following upper bound for

N(t)

N ≤ Λ−M exp(−µht)
µh

≤ Λ

µh
.

This implies that each class containing humans is also bounded above by Λ/µh. Since I ≤ N ≤

Λ/µh, the bacterial class produces the following differential inequality

dB
dt

= gbB
(

1− B
kt

)
+αI−µbB≤ gbB

(
1− B

kt

)
+α

Λ

µh
−µbB.(3)
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From inequality (3), if

B≥ α
Λ

µh
,(4)

then

dB
dt
≤ (gb−µb)B−

gb

kt
B2 +B = (gb−µb +1)B

(
1− gbB

kt(gb−µb +1)

)
.(5)

Note that the differential inequality (5) is a derivative of the logistic growth model with carrying

capacity

kt(gb−µb +1)
gb

.(6)

On the other hand, if condition (4) is false, then B is bounded above by the constant αΛ/µh for

some t ≥ 0. For the rest of the time points in the domain of B, condition (4) is true, and hence

the upper bound for B is (6). Thus, in both cases,

B≤max
{

kt(gb−µb +1)
gb

,α
Λ

µh

}
.

The results on positivity and boundedness of the solutions to the typhoid model (2) can be

summarized within the feasible region Ω⊆Ωc, where

Ωc =

{
(S, I,R,B) ∈ R4

∣∣∣∣ 0≤ S, I,R≤ Λ

µh
, 0≤ B≤max

{
kt(gb−µb +1)

gb
,α

Λ

µh

}}
.

Theorem 1. All solutions of the typhoid model (2) are positively invariant and bounded within

Ω.

2.2.2. Disease Free Equilibrium and Time Average Reproduction Number, ([R]0). The dis-

ease free equilibrium for system (2) is

x0 = (S, I,R,B) =
(

Λ

µh
,0,0,0

)
.(7)

The basic reproduction number, [R0], is defined as the spectral radius of the next generation

matrix [10] or given a completely susceptible population, an alternative definition of the basic

reproduction number is the average number of secondary infections that arise out of an average

primary case [18].
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The new infections vector [F ], transmission vector [V ], and their respective Jacobians [F ] and
[V ] are

[F ] =

 (λ1 +λ2)S

0

 , [V ] =

 qI

µbB−gbB
(

1− B
kt

)
−αI

 , [F ] =

 Λβt1
µh

Λβt2
µhκt

0 0

 , [V ] =

 q 0

−α µb−gb

 ,

since the time average of

(
1+θ sin

(
2πt
365

))
is one. Thus the spectral radius of the matrix

[F ][V ]−1 =


Λβt1
qµh

+
βt2αΛ

qκt µh(µb−gb)

βt2Λ

κt µh(µb−gb)

0 0


is

[R0] =
Λβt1
qµh

+
βt2αΛ

qκt µh(µb−gb)
,

where [R0] is the so-called time-averaged basic reproduction number for the typhoid model (2).

It follows that µb > gb implies [R0]> 0.

2.2.3. Local Stability Analysis of the Disease Free Equilibrium. We begin by analysing the

stability of the solutions of model (2) at the disease free equilibrium x0. We apply the Routh-

Hurwitz criterion [14] in order to find the nature of the eigenvalues.

Theorem 2. The disease free equilibrium, x0, for system (2) is locally asymptotically stable

whenever µb > gb and [R0]< 1. It is unstable otherwise.

Proof. The Jacobian of system (2) at the disease free equilibrium is

J(x0) =


−µh −Λβt1

µh
ρ −Λβt2

µhκt

0
Λβt1
µh
−q 0

Λβt2
µhκt

0 ε −(µh +ρ) 0

0 α 0 gb−µb


.

By inspection, it is clear that the two eigenvalues, −µh and −(µh +ρ), of J(x0) lie in the left

open half plane. The properties of the remaining two eigenvalues will be obtained from the
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following sub-matrix

J̄(x0) =

 Λβt1
µh
−q

Λβt2
µhκt

α gb−µb

 .

The characteristic polynomial associated with matrix J̄(x0) is λ 2− tr(J̄(x0))λ + det(J̄(x0)).

The Routh-Hurwitz criterion states that the roots of J̄(x0) lie in the left open half plane if and

only if tr(J̄(x0))< 0 and det(J̄(x0))> 0. Indeed,

tr(J̄(x0)) =
Λβt1
µh
−q+gb−µb = q

(
Λβt1
µhq
−1+

gb−µb

q

)
,

det(J̄(x0)) =q(gb−µb)

(
Λβt1
µhq
−1+

αΛβt2
µhκtq(µb−gb)

)
= q(µb−gb)(1− [R0]).

We observe that tr(J̄(x0)) < 0 if µb > gb and
Λβt1
µhq < 1, whilst det(J̄(x0)) > 0 if µb > gb and

[R0] < 1. It is also worth noting that [R0] < 1 implies
Λβt1
µhq < 1. Thus tr(J̄(x0)) < 0 and

det(J̄(x0))> 0 whenever µb > gb and [R0]< 1. Therefore, it follows from the Routh-Hurwitz

criterion that µb > gb and [R0]< 1 implies that all four eigenvalues of J(x0) lie in the left open

half plane. �

2.2.4. Global Stability Analysis of the Disease Free Equilibrium. Following Bhunu et al. [4],

we study the global stability of the system by casting the system into the following form

dX
dt

= F(X,Y),
dY
dt

= G(X,Y), G(X∗,0) = 0,

where X = (S,R) and Y = (I,B). The disease free equilibrium is then written in the form

U0 = (X∗,0), X∗ =
(

Λ

µh
,0
)
.

The conditions that must be met in order for the system to be globally asymptotically stable are:

(H1)
dX
dt

= F(X∗,0), X∗ is globally asympototically stable,

(H2) G(X,Y) = AY− Ĝ(X,Y), Ĝ(X,Y)≥ 0 for (X,Y) ∈Ω,

where A = DY G(X∗,0) is a Metzler matrix, and Ω is the region of biological significance.

Theorem 3. ([6], p. 19) The fixed point U0 = (X∗,0) is a globally asymptotically stable equi-

librium of a system provided that [R0]< 1, and conditions (H1) and (H2) are satisfied.
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We establish the global stability of system (2) following Theorem (3).

Theorem 4. The disease free equilibrium of the typhoid model (2) is globally asymptotically

stable if [R0]< 1.

Proof. Applying condition (H1) to the system gives

dX
dt

= F(X∗,0) =

 Λ−µhS+ρR

−(µh +ρ)R

 .(8)

The Jacobian of equation (8) is

DX F(X∗,0) =

 −µh ρ

0 −(µh +ρ)

 .

We conclude that the fixed point X∗ is a globally asymptotically stable equilibrium point of

system (8) since the system is linear, and all the eigenvalues of the Jacobian are negative and

real. Alternatively, the solution for system (8) is

X = c1 exp(−ut)e1 + c2 exp(−(u+ρ)t)(e1− e2)+
Λ

µh
e1,

where {e1,e2} is the standard basis in E2. Thus, limt→∞ X = X∗.

Applying condition (H2) to the system yields

[A] =


Λ

µh
βt1−q

βt2Λ

κt µh

α gb−µb

 , [Ĝ] =

 βt1I
(

Λ

µh
− S

1+ kI

)
+βt2B

(
Λ

κt µh
− S

B+κt

)
gb

κt
B2

 .

Since 1/(1+kI)≤ 1 and S≤Λ/µh, it follows that S/(1+kI)≤Λ/µh or Λ/µh−S/(1+kI)≥ 0.

Also, since B/(B+ κt) ≤ 1/κt , because B > 0, and S ≤ Λ/µh, it follows that S/(B+ κt) ≤

Λ/µhκt or Λ/µhκt−S/(B+κt)≥ 0. We conclude that Ĝ(X,Y)≥ 0 in the biologically feasible

region Ω. Since system (2) satisfies conditions (H1) and (H2), it follows from Theorem (3)

that [R0]< 1 implies that the disease free equilibrium for system (2) is globally asymptotically

stable. �
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2.2.5. Endemic Equilibrium. The endemic equilibrium for the typhoid model (2) is given by

setting the time derivative for each class to zero.

Λ− (λ ∗1 +λ
∗
2 )S
∗−µhS∗+ρR∗ = 0, (λ ∗1 +λ

∗
2 )S
∗−qI∗ = 0,

εI∗− (µh +ρ)R∗ = 0, gbB∗
(

1− B∗

kt

)
+αI∗−µbB∗ = 0.

We isolate R∗ and S∗ from εI∗− (µh +ρ)R∗ = 0 and (λ ∗1 +λ ∗2 )S
∗−qI∗ = 0, respectively. We

then substitute those expressions for R∗ = εI∗/(µh+ρ) and S∗ = qI∗/(λ ∗1 +λ ∗2 ) into Λ− (λ ∗1 +

λ ∗2 )S
∗−µhS∗+ρR∗ = 0 to produce

Λ−qI∗− µhqI∗

λ ∗1 +λ ∗2
+

ρεI∗

µh +ρ
= Λ+

(
(λ ∗1 +λ ∗2 )ρε−q(µh +ρ)(λ ∗1 +λ ∗2 +µh)

(µh +ρ)(λ ∗1 +λ ∗2 )

)
I∗ = 0.

Isolation of I∗ gives

I∗ =
Λ(µh +ρ)(λ ∗1 +λ ∗2 )

(λ ∗1 +λ ∗2 )
(
ρ (µh +δ )+µhq

)
+µhq(µh +ρ)

.(9)

Back substituting equation (9) into R∗ = εI∗/(µh + ρ) and S∗ = qI∗/(λ ∗1 + λ ∗2 ), respectively,

gives

R∗ =
εΛ(λ ∗1 +λ ∗2 )

(λ ∗1 +λ ∗2 )
(
ρ (µh +δ )+µhq

)
+µhq(µh +ρ)

, S∗ =
qΛ(µh +ρ)

(λ ∗1 +λ ∗2 )
(
ρ (µh +δ )+µhq

)
+µhq(µh +ρ)

.

In order to show the existence of the endemic equilibrium for the typhoid model (2), we com-

plete the square on the equation: gbB∗
(

1− B∗

kt

)
+αI∗−µbB∗ = 0, to obtain

(
B∗+

kt(µb−gb)

2gb

)2

=
k2(µb−gb)

2 +4gbktαI∗

4g2
b

.(10)

The two roots for the equation (10) are

B(1) =
−kt(µb−gb)+

√
k2

t (µb−gb)2 +4gbktαI∗

2gb
, B(2) =

−kt(µb−gb)−
√

k2
t (µb−gb)2 +4gbktαI∗

2gb
.

Since k2
t (µb− gb)

2 ≤ k2
t (µb− gb)

2 + 4gbktαI∗, it follows from taking the square root func-

tion on both sides of the inequality that kt |µb−gb| ≤
√

k2
t (µb−gb)2 +4gbktαI∗, therefore

−
√

k2
t (µb−gb)2 +4gbktαI∗ ≤ kt(µb− gb) ≤

√
k2

t (µb−gb)2 +4gbktαI∗. Hence subtracting

kt(µb−gb) from the inequalities and then dividing by 2gb yields B(2) ≤ 0≤ B(1). Clearly, B(2)

must be discarded since it is negative, thus B∗ = B(1).
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2.3. The Seasonal Typhoid Model. We study the full effects of seasonality on the typhoid

model by removing the time-average function, [ f (t)] =
1
ω

∫
ω

f (t)dt, from our analysis. We

apply our analysis on model (1) for the rest of this section. The model with seasonality thus

becomes non-autonomous.

2.3.1. Properties of the non-autonomous model. We show that model (1) is well posed, it

has non-negative trajectories, a unique disease free equilibrium, among others. Setting all the

derivatives of dynamical system (1) to zeros, and setting (I,B) = (0,0), gives a unique disease

free equilibrium
(
S∗, I∗,R∗,B∗

)
=
(
Λ/µh,0,0,0

)
.

Since λ1,λ2 ≥ 0, it follows that λ1 +λ2 ≥ 0. We conclude that the force of infection for model

(1) is non-negative.

The partial derivatives of the force of infection are

∂

∂ I

(
λ1 +λ2

)
=

βt1
(1+ kI)2 ≥ 0,

∂

∂B

(
λ1 +λ2

)
=

βt2κt

(B+κt)2

(
1+θ sin

(
2πt
365

))
≥ 0.

It is clear that the force of infection increases with the number of infected people and the con-

centration of bacteria. The bacterial growth rates are bounded as follows:

∂

∂B

(
dB
dt

)
= gb

(
1−2

B
kt

)(
1+ξ sin

(
2πt
365

))
−µb ≤ 0,

∂

∂ I

(
dB
dt

)
= α ≥ 0,

whenever B ≥ kt/2. The first inequality shows that the bacterial growth rate increases with

the number of infected individuals; the second inequality shows that in the absence of infected

people, there exists a threshold, kt/2, such that if the bacteria exceeds this threshold, then the

bacterial growth rate decreases with the concentration of the bacteria.

We show, geometrically, that the surface that represents the force of infection, λ1 + λ2, lies

below its associated tangent plane at the origin. This means that the remainder term, R1, from

the truncated Taylor expansion of λ1 + λ2 when the degree equals one is non-positive. The

second partial derivatives of the force of infection are

∂ 2

∂ I2

(
λ1 +λ2

)
=
−2βt1k
(1+ kI)3 ≤ 0,

∂ 2

∂B∂ I

(
λ1 +λ2

)
= 0,

∂ 2

∂B2

(
λ1 +λ2

)
=
−2βt2κt

(B+κt)3

(
1+θ sin

(
2πt
365

))
≤ 0.

Consider the matrix

A =


∂ 2

∂ I2

(
λ1 +λ2

)
∂ 2

∂B∂ I

(
λ1 +λ2

)
∂ 2

∂B∂ I

(
λ1 +λ2

)
∂ 2

∂B2

(
λ1 +λ2

)
=


−2βt1k
(1+ kI)3 0

0
−2βt2κt

(B+κt)3

(
1+θ sin

(
2πt
365

))
 .
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Since I

B


T

−2βt1 k
(1+ kI)3 0

0
−2βt2 κt

(B+κt)3

(
1+θ sin

(
2πt
365

))

 I

B

=−2

 βt1 kI2

(1+ kI)3 +
βt2 κtB2

(B+κt)3

(
1+θ sin

(
2πt
365

))≤ 0,

R1 =−

 βt1 kζ 2

(1+ kζ )3 +
βt2 κtη

2

(η +κt)3

(
1+θ sin

(
2πt
365

)) ,

where ζ ∈ (0, I) and η ∈ (0,B), it follows that R1 ≤−

 βt1kI2

(1+ kI)3 +
βt2κtB2

(B+κt)3

(
1+θ sin

(
2πt
365

))≤
0, and that matrix A is negative semi-definite.

It is clear to see that I > 0 implies λ1 + λ2 > 0 and B > 0 implies λ1 + λ2 > 0. The model

shows that in the absence of bacteria, a single infected individual is sufficient for a positive

infection rate; and in the absence of infected individuals, the presence of bacteria is sufficient

for a positive infection rate.

2.3.2. Basic Reproduction Number. We apply the methods outlined in [35, 40] to determine

basic reproduction number.
We show that the system (1) meets the seven assumptions in the article by Wang and Zhao
[40]. Let x = (S, I,R,B)T . The disease free equilibrium is x0 = (Λ/µh,0,0,0)T and the new
infections vector and transfer vectors are as follows

F =



(λ1 +λ2)S

0

0

0


, V − =



qI

µbB

(λ1 +λ2)S+µhS

(µh +ρ)R


, V + =



0

gbB
(

1− B
κt

)(
1+ξ sin

(
2πt
365

))
+αI

Λ+ρR

εI


.

The Jacobians of the input rate of new infections and the transfer rate of infections are

F(t) =


Λ

µh
βt1

Λβt2
µhkt

(
1+θ sin

(
2πt
365

))
0 0

 , V (t) =


q 0

−α µb−gb

(
1+ξ sin

(
2πt
365

))
 .

Define f = F −V , V = V −−V +, and ρ(J) as the spectral radius of matrix J.

Lemma 1. ([45], Lemma 2.1.) Let A(t) be a continuous, cooperative, irreducible, and ω-

periodic k× k matrix function and let p = 1
ω

ln(ρ(ΦA(ω))). Then

dx(t)
dt

= A(t)x(t),(11)



14 MATSEBULA, NYABADZA, MUSHANYU

gives a solution x(t) = eptv(t) for some ω-periodic function v(t). ΦA(ω) denotes the mon-

odromy matrix of system (11).

The next infection operator is defined by [40] as follows

(Lφ) =
∫

∞

0
Y (t, t− s)F(t− s)φ(t− s)ds,(12)

where Y (t,s) is the evolution operator for the system dy/dt = −V (t)y and φ(t) is the initial

distribution function of the infected. The spectral radius of L gives the basic reproduction

number

R0 = ρ(L).

In most nonlinear systems, the integral in equation (12) is intractable, thus numerical methods

are used to compute R0. Since the basic reproduction number is the maximum eigenvalue of

the operator eigenvalue problem (Lφ)t = λφ(t), the authors of [29] constructed an eigenvalue-

preserving transformation of the above operator eigenvalue problem into a matrix eigenvalue

problem. The spectral radius of the eigenvalue problem is an accurate estimator for the true

basic reproduction number.

Theorem 5. ([40], Theorem 2.2) The following statements are valid for model (1):

1. R0 = 1 ⇐⇒ ρ(Φ f (365)) = 1,

2. R0 < 1 ⇐⇒ ρ(Φ f (365))< 1,

3. R0 > 1 ⇐⇒ ρ(Φ f (365))> 1,

4. R0 < 1 (R0 > 1) =⇒ x0 is locally asymptotically stable (unstable),

whenever,

(B1) The functions F (t,x)≥ 0, V +(t,x)≥ 0, and V −(t,x)≥ 0 are continuous, continuously

differentiable with respect to x on R×R4
+, and each have a period of 365 with respect

to t.

(B2) xi = 0 =⇒ V −i for i = 1,2.

(B3) i > 2 =⇒ Fi = 0.

(B4) Fi(x0) = 0∧V +
i (x0) = 0 for i = 1,2.

(B5) ρ(Φ f (365))< 1, where ρ(Φ f (365)) is the spectral radius of Φ f (365).
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(B6) ρ(Φ−V (365))< 1

We claim that, for model (1), f conditionally satisfies (B1) to (B6). By inspection, we can

see that for each i = 1, . . . ,4, the functions Fi(t,x), V +
i (t,x), and V −i (t,x) are non-negative,

continuous on R×R4
+, continuously differentiable with respect to x, and 365-periodic in t. If

I = 0 (B = 0), then V −1 (t,x) = 0 (V −2 (t,x) = 0). F3(t,x) = F4(t,x) = 0. At the disease free

state, x0, for each i = 1,2, Fi(t,x) = V +
i (t,x) = 0. We define the matrix

M(t) =

[
∂

∂x j

(
fi(t,x0)

)]
3≤i, j≤4

=

 −µh ρ

0 −(µh +ρ)

 ,
where fi(t,x0) =Fi(t,x)−(V −i (t,x)−V +

i (t,x)). The initial value problem, z′=Mz, z(s,s) =

I2×2, can be written component wise to produce the system

dz1

dt
=−µhz1 +ρz3,

dz2

dt
=−µhz2 +ρz4,

dz3

dt
=−(µh +ρ)z3,

dz4

dt
=−(µh +ρ)z4.

The solution and the monodromy matrices to the initial value problem above are, respectively,

z(t,s) =

 exp(µh(s− t)) exp(µh(s− t))− exp((µh +ρ)(s− t))

0 exp((µh +ρ)(s− t))

 ,

z(t,0) = ΦM(t) =

 exp(−µht) exp(−ut)− exp(−(µh +ρ)t)

0 exp(−(µh +ρ)t)

 .(13)

The spectral radius of the monodromy matrix (13) at t = 365 is

ρ(ΦM(365)) = max{exp(−365µh), exp(−365(µh +ρ))}< 1.

The initial value problem Y′ = −V (t)Y, Y(s,s) = I2×2, can be written component wise as

follows

d
dt

(
Y1(t,s)

)
=−qY1(t,s),

d
dt

(
Y2(t,s)

)
=−qY2(t,s),

d
dt

(
Y3(t,s)

)
= αY1(t,s)+

(1+ξ sin
(

2πt
365

))
gb−µb

Y3(t,s),

d
dt

(
Y4(t,s)

)
= αY2(t,s)+

(1+ξ sin
(

2πt
365

))
gb−µb

Y4(t,s).
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Thus a solution to the differential equation

d
dt

(
Y (t,s)

)
=−V (t)Y (t,s), ∀t ≥ s, Y (s,s) = I2×2,(14)

is

Y (t,s) =

 Y1(t,s) Y2(t,s)

Y3(t,s) Y4(t,s)

=


exp(q(s− t)) 0

Y3(t,s) exp

(gb−µb)(t− s)+ξ gb
365
2π

(
cos
(

2πs
365

)
− cos

(
2πt
365

))
 ,

where

Y3(t,s) = α exp

(
qs+(gb−µb)t−

365
2π

ξ gb cos
(

2πt
365

))∫ t

s
exp

(
(µb−gb−q)τ +

365
2π

ξ gb cos
(

2πτ

365

))
dτ.

The monodromy matrix of differential equation (14)) is

Φ−V (t) = Y (t,0) =


exp(−qt) 0

Y3(t,0) exp

(gb−µb)t +ξ gb
365
2π

(
1− cos

(
2πt
365

))
 .

Thus, the spectral radius is ρ(Φ−V (365)) = max{exp(−365q),exp(365(gb−µb))}. It is clear

to see that ρ(Φ−V (365))< 1 whenever gb < µb. We have proven that assumptions (A1)—(A7)

of Wang [40] hold for model (1) if gb < µb.

Corollary 5.1. The following statements are valid for model (1) if gb < µb:

(I) R0 = 1 ⇐⇒ ρ(Φ f (365)) = 1.

(II) R0 < 1 ⇐⇒ ρ(Φ f (365))< 1.

(III) R0 > 1 ⇐⇒ ρ(Φ f (365))> 1.

(IV) The disease free equilibrium, x0, is locally asymptotically stable if R0 < 1, and unstable

if R0 > 1.

Proof. Since model (1) satisfies conditions (A1)—(A7) of Wang [40] whenever gb < µb, it

follows from Theorem 2.2 of [40] that gb < µb implies that conditions (I)− (IV ) hold. �
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2.3.3. Global Stability of the Disease Free Equilibrium. In this subsection, we prove that the

disease free equilibrium of model (1) is globally asymptotically stable. We begin with the

following Theorem.

Theorem 6. ([34], Theorem B.1.) Let D⊆Rn be open in Rn. Let f : R×D→Rn be continuous

on R×D such that. Let x(t) be a solution of (B.1) defined on [a,b]. If z(t) is a continuous

function on [a,b] satisfying (B.2) on (a,b) with z(a)≤ x(a), then z(t)≤ x(t) for all t in [a,b]. If

y(t) is continuous on [a,b] satisfying (B.3) on (a,b) with y(a)≥ x(a), then y(t)≥ x(t) for all t

in [a,b].

Limiting our focus to the two infected classes, I and B, the Jacobian of system (1) is

[F(t)−V (t)] =


Λ

µh
βt1−q

Λβt2
µhkt

(
1+θ sin

(
2πt
365

))

α gb

(
1+ξ sin

(
2πt
365

))
−µb

 .
Applying Lemma (1) to z = [Ĩt , B̃t ]

T gives

d
dt

[
Ĩt

B̃t

]
=


Λ

µh
βt1−q

Λβt2
µhkt

(
1+θ sin

(
2πt
365

))

α gb

(
1+ξ sin

(
2πt
365

))
−µb


 Ĩt

B̃t

 =⇒

 Ĩt

B̃t

= ebtv(t).

Since R0 < 1 ⇐⇒ ρ(Φ f (365))< 1 ⇐⇒ b< 0, it follows that R0 < 1 implies limt→∞ ebtv(t)=
[0, 0]T . From applying the Taylor expansion to first order and using the R1 ≤ 0, we obtain the
following differential inequality

d
dt

[
I

B

]
=


(λ1 +λ2)S−qI

gbB
(

1− B
kt

)(
1+ξ sin

(
2πt
365

))
+αI−µbB

 ,

=


Λ

µh
βt1 −q

Λβt2
µhkt

(
1+θ sin

(
2πt
365

))

α gb

(
1+ξ sin

(
2πt
365

))
−µb


 I

B

+


R1

−gb
B2

kt

(
1+ξ sin

(
2πt
365

))
 ,

≤


Λ

µh
βt1 −q

Λβt2
µhkt

(
1+θ sin

(
2πt
365

))

α gb

(
1+ξ sin

(
2πt
365

))
−µb


 I

B

 .
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It follows from Theorem (6) that limt→∞[I, B]T ≤ limt→∞[Ĩt , B̃t ]
T = [0, 0]T , thus limt→∞[I, B]T =

[0, 0]T .

Theorem 7. If R0 < 1, the following statements are valid for model (1):

a) limt→∞ R = 0.

b) limt→∞ S = Λ/µh.

Proof.

a) We want to show that for any υ > 0, there exists γ ∈R+, such that if t > γ , then R < υ .

Assume R0 < 1. Since limt→∞ I = 0, it follows that for any υ > 0, there exists γ1 ∈R+,

such that

t > γ1 =⇒ I(t)<
(µh +ρ)

ε
υ .(15)

Choose γ ≥ γ1. Since Ṙ = εI − (µh + ρ)R, it follows from (15) that t > γ implies

Ṙ < (µh +ρ)(υ −R). The solution to the differential inequality, Ṙ < (µh +ρ)(υ −R),

is R < υ−M exp(−t(µh +ρ)) for some positive constant M. Indeed R < υ .

b) Since N = S+ I+R, it follows from limt→∞ R = 0 and limt→∞ I = 0 that R0 < 1 implies

limt→∞ N = limt→∞ S = Λ/µh.

�

We thus have the following result.

Theorem 8. The disease free equilibrium, x0, of system (1) is globally asymptotically stable

whenever R0 < 1.

3. NUMERICAL RESULTS

In this section, simulation results are carried out through MATLAB. We hypothetically choose

the following initial conditions and the parameter values in Table (1). The initial conditions

used were S(0) = 99980, I(0) = 20, R(0) = 0, B(0) = 40000.

Table (1) shows the parameters of the typhoid model. On the same table, we include a column

that shows the most sensitive parameters in the model. The human birth rate, Λ, has the highest
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sensitivity with sensitivity index equal to one. It is followed by the human natural death rate,

µh, with a sensitivity index of −0.9901.

Table 1. Parameter Estimation and Sensitivity Analysis

Parameter Range Point Value Source

βt1 0−1 7.5×10−5 Assumed
βt2 0−1 1.97×10−11 [23, 25]
δ 0.001−1 0.06 [23]
ρ 0−1 1.3×10−3 [27]
gb 0−1 0.014 [25]
α 0−20 10 [25]
µb 0−1 0.0345 [25]
Λ 100−467 449.31 [5]
µh 0.019−0.021 0.02 [16]
ε 0−1 0.1 [2, 24]
κt 0−1 0.62 Assumed
k 0.2 Assumed
kt 500000 Assumed

3.1. Sensitivity Analysis. We begin by considering the sensitivity analysis of the model pa-

rameters to the model output. The Latin Hypercube sampling method was used. This method

produced a set of partial rank correlation coefficients (PRCC) between each of the model pa-

rameters and the state variable I. The simulation was carried out over 1000 runs. The human

birth rate, Λ, is the most sensitive parameter relative to the infectious class, and it is positively

correlated to the infectious class. The natural human death rate, µh, is the second most sensitive

parameter relative to the infectious class, and it is negatively correlated to the infectious class.
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Figure 2. The partial rank correlation coefficients (PRCC). The correlation coefficients between

the each of the parameters on Table 1 and the state variable I are shown. Parameters with negative

PRCC values are negatively correlated to I, whilst those with positive PRCC values are positively

correlated to I.

3.2. Plots of the reproduction numbers and the trajectories. The graph of the basic repro-

duction number, R0, superimposed on the graph of the time average basic reproduction number,

[R0], is shown in Fig 3. The time average basic reproduction number was computed by setting

the the direct transmission rate βt1 = 7.5×10(−6). Using the same direct transmission rate and

the method outlined in [29], we numerically computed the basic reproduction number when

ξ = 0. Since the seasonal period of the disease in 365 days, the rate of exponential decay in all

expressions containing the period will be fast. This then means that iterations exceeding five in

such terms will achieve minimal improvement in the accuracy. It is for this reason that we have

set M = 10 and n = 100 as defined in [29].
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Figure 3. A comparison of the basic reproduction number, R0, and the time average basic re-

production number [R0] as a function of the seasonal parameter θ .

We consider the seasonal plots for our models (with and without) seasonality. The trajectories

of all the state variables are shown in Figure 4. This figure shows the trajectories of the: (a), the

susceptible class; (b), the infectious class; (c), the recovered class; and (d) the bacterial class. In

each of the four figures in Figure 4, the trajectories of the seasonal model (1) are superimposed

onto the trajectories of the non-seasonal model (2).
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(a) (b)

(c) (d)

Figure 4. The trajectories of the models. The dotted lines depict the trajectories of the non-

seasonal model (2), whilst the solid lines depict the trajectories of the seasonal model (1). The

trajectories of the susceptibles, (a), the infected, (b), the recovered, (c), and the typhoid bacteria,

(d) are shown.

3.3. Modelling the role of fear. We now consider the potential impact of fear on the model

with and without seasonality. We use the logarithmic scale for clarity of presentation of results.

The manner in which fear affects the prevalence of typhoid is shown in Figure 5. Figure 5(a)

shows this effect on the non-seasonal model (2), whilst Figure 5(b) shows the same effect on

the seasonal model (1). In both cases, the fear constant k is allowed to run through the set

{0.2,0.3,0.4,0.5}.
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(a)

(b)

Figure 5. Typhoid prevalence as a function of fear. The fear constant, k, runs through

{0.2,0.3,0.4,0.5}. The effects of fear on the typhoid prevalence of the non-seasonal model

(2) are shown in (a). The effects of fear on the typhoid prevalence of the seasonal model (1) are

shown in (b).

4. DISCUSSION AND CONCLUSION

Seasonality is a common phenomenon in bacterial infections such as cholera and typhoid in

which the diseases are more prevalent in summer than in winter. The spread of these diseases is

further compounded by poor hygiene and maintenance of sewage disposal infrastructure. The

mechanisms that drive seasonality in typhoid fever are mainly driven by rainfall patterns and

poor sewage disposals system especially during summer. While some work has recently been

done in [32]. The role of fear, which impacts the rate of infection was not considered. Fear
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of infection has the propensity to reduce the infection rate and in this paper, our interest was

on investigating how the seasonality dynamics of typhoid fever are impacted by fear. In this

paper, we propose and analyze a model of typhoid fever that follows the work presented in

[22] in the presence of fear. The model is motivated by the fact that in the presence of poor

health infrastructure, behaviour changes become critical in the reducing the rate of typhoid

fever infection in seasonally fluctuating environments. In addition, we are also motivated by

scenarios in many countries in Sub-Saharan Africa, such as Zimbabwe, where typhoid fever

remains a problem especially in Summer.

The seasonal fluctuations are modelled by the inclusion of a trigonometric function in the trans-

mission rate driven by the bacterial population. The model is considered in cases where there is

no seasonality and in the presence of seasonal fluctuations. In both cases, the basic reproduction

numbers R0 and [R0] are determined.

The stability of the steady states is carried out and we noted that the disease free equilibrium

is globally stable when the basic reproduction number is less than unit. The existence of the

endemic equilibrium is also discussed.

Numerical simulations are carried out following some hypothetical initial conditions and some

chosen parameter values from the literature. Sensitivity analysis is also carried out using the

Latin hyper cube sampling technique and the model is sensitive to the addition of susceptible

individuals and the natural mortality rate of the human population.

It is important to note that the model presented in this paper has a number of limitations, as is

the case with all mathematics models in which various assumptions are used in the construction

of the models. The model is not validated by data. In the presence of data (which was not

readily available in this case) the model would have been more robust, and in this case remains

a theoretical model. This forms the basis of our future work. Despite this short coming, the

model remains of great interest in the investigation of the role of human behaviour, such as fear

in bacterial infections.
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