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Abstract. We propose a spatiotemporal model with optimal control to investigate the current of the coronavirus

epidemic in Wuhan. Our model formulated as a system of parabolic partial differential equations. Immunity

is forced through vaccine distribution considered a control variable. Our objective is to prove the existence of

solutions to the state system and also the existence of optimal control.
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1. INTRODUCTION

A severe outbreak of respiratory illness started in Wuhan, a city of 11 million people in central

China, in December 2019. The virus is believed to have a zoonotic origin. This is the third

zoonotic human coronavirus emerging in the current century, after the severe acute respiratory
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syndrome coronavirus (SARS-CoV) in 2002 that spread to 37 countries and the Middle East

respiratory syndrome coronavirus (MERS-CoV) in 2012 that spread to 27 countries.

To give a full account on mathematical study of diseases would require a book in itself.

However, an interesting overview on the use of mathematical models in epidemi- ology, can be

found in Baily et al. [1], Anderson et al. [2], Hethcote [3], Brauer and Castillo-Chavez [4],

Keeling and Rohani [5] and Huppert and Katriel [6].

The COVID-19 outbreak is currently on-going and the number of infections has been fast

growing since the onset of the epidemic. As a bold effort to contain the epidemic, the Chinese

government ordered to lock down Wuhan on January 23 and at least 15 other cities in the

following days, effectively restricting the movement of more than 50 million people in central

China, which is considered as the largest quarantine in human history.

A number of modeling studies have already been performed for the COVID-19 epidemic.

Chayu Yang and Jin Wang [7] presented a new mathematical model for COVID-19 that

incorporates multiple transmission pathways, including both the environment-to-human and

human-to-human routes. In particular, they introduce an environmental compartment that

represents the pathogen concentration in the environmental reservoir. A susceptible individual

may contract the disease through the interaction with the contaminated environment, with an

infectious but asymptomatic individual, or with an infectious and symptomatic individual.

Meanwhile, the transmission rates in this model depend on the epidemiological status and

environmental conditions which change with time. In particular, when the infection level is

high, people would be motivated to take necessary action to reduce the contact with the infected

individuals and contaminated environment so as to protect themselves and their families,

leading to a reduction of the average transmission rates.

In the present paper, we propose another extention of the model presented by Chayu Yang

and Jin Wang, in which we incorporate the spatial behavior of populations and a term of

control, we assume that the direct, human-to-human transmission rates are constants. An

interesting overview on the use of mathematical models in epidemiology, are incorporate the

spatial behavior of populations and a term of control( see [8-11]).
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Recently, in modern population dynamics, the use of reaction-diffusion is the simplest

mechanism used to model the spread of the population. Reaction-diffusion model is a typical

spatially extended model. It involves time, space and consists of several interaction species

which can diffuse within the spatial domain [12]. Examples of the use of reaction-diffusion

models can be seen in many ecologi- cal and epidemiological contexts. For example, in ecology,

Guin and Mandal [12,13] proposed an interesting analysis on a diffusive predator-prey model.

In mathematical epidemiology, a few extensions of the basic SIR model that involve reaction-

diffusion mechanism have been formulated and mathematically analyzed. Web [14] analyzed

a one dimensional SIR model which included constant diffusive movement of all individuals

as well as no-flux boundary conditions. Milner and Zhao [15] proposed and analyzed an SIR

model based on hyperbolic partial differential equations, in which susceptible individuals move

away from foci of infection, and all individuals move away from overcrowded regions.

The remaining parts of this paper are organized as follows: Section 2 is devoted to the

mathematical model of the novel coronavirus and the associated optimal control problem. In

Section 3, we prove the existence of a global strong solution for our system. In Section 4, we

prove the existence of an optimal solution. Finally, we conclude the paper in Section 5.

2. MATHEMATICAL MODEL

A mathematical model of Coronavirus transmission is based on the model for the novel

coronavirus epidemic in Wuhan, it categorizes each individual into one of four compartments:

the susceptible (denoted by S), the exposed (denoted by E), the infected (denoted by I), and the

recovered (denoted by R). Individuals in the exposed class are in the incubation period; they do

not show symptoms but are still capable of infecting others. Thus, another interpretation of the

E and I compartment in our model is that they contain asymptomatic infected and symptomatic

infected individuals, respectively. The model takes the following form:



4 KOURRAD, ALABKARI, ADNAOUI, ZAKARY, TABIT, LAAROUSSI, LAHMIDI

∂S
∂ t

= Λ−βESE−βISI−βV SV −µS

∂E
∂ t

= βESE +βISI +βV SV − (α +µ)E

∂ I
∂ t

= αE− (w+ γ +µ)I(1)

∂R
∂ t

= γI−µR

∂V
∂ t

= ξ1E +ξ2I−σV

Where V is the concentration of the coronavirus in the environmental reservoir, the parameter

Λ represents the population influx, µ is the natural death rate of human hosts, α−1 is the

incubation period between the infection and the onset of symptoms, w is the disease-induced

death rate, γ is the rate of recovery from infection, ξ1 and ξ2 are the respective rates of the

exposed and infected individuals contributing the coronavirus to the environmental reservoir,

and σ is the removal rate of the virus from the environment. βE and βI represent the direct,

human-to-human transmission rates between the exposed and susceptible individuals, and

between the infected and susceptible individuals respectively, and βV represents the indirect,

environment-to- human transmission rate. Given that higher values of E, I and V would

motivate stronger control measures that could reduce the transmission rates. Specifically, we

make the following assumption: βE ,βI and βV are all positive

We propose another extension of this model, in which we incorporate the spatial behavior of

the populations and a term of control representing a vaccination program. The main motivation

is to study the effect of a vaccination campaign on the spread of infectious diseases in the context

of a more realistic model that takes into account the spatial diffusion. We chose the vaccination

as strategy of control because it still remains among the powerful tool that prevent and control

the spread of infection. We Assume that the population habitat is a spatially heterogeneous

environment, the populations tend to move to regions and their densities will depend on space.

The subpopulation in all three compartments are thus tracked not only on time t but also on the

spatial location x, leading to the notations S(t,x),E(t,x), I(t,x),and R(t,x) which represent the

densities of the four populations at the time t and the spatial position x. In addition, we assume
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that the spatial diffusion is through space with λ1,λ2,λ3andλ4 are the self-diffusion coefficients

for each class. With the assumptions explained above in mind, we get the following system of

reaction-diffusion equations as a model for the spatial spread of the novel coronavirus:

∂S
∂ t

= λ1∆S+Λ−βESE−βISI−βV SV −µS

∂E
∂ t

= λ2∆E +βESE +βISI +βV SV − (α +µ)E

∂ I
∂ t

= λ3∆I +αE− (w+ γ +µ)(2)

∂R
∂ t

= λ4∆R+ γI−µR

∂V
∂ t

= ξ1E +ξ2I−σV

I(t,x) ∈ Q = [0,T ]×Ω .

With the homogeneous Neumann boundary conditions

∂S
∂η

=
∂E
∂η

=
∂ I
∂η

=
∂R
∂η

=
∂V
∂η

= 0,(t,x) ∈ Σ = [0,T ]×∂Ω

∆= ∂ 2

∂x2 +
∂ 2

∂y2 represents the usual Laplacian operator, Ω is fixed and bounded domain in R2with

smooth boundary ∂Ω is the outward unit normal vector onthe boundary, the time t belongs to a

finite interval [0,T ], while x varies in Ω. Here the homogeneous Neumann boundary condition

implies that the abovesystem is self-contained and there is no emigration across the boundary.

The initial distribution of the foor populations is supposed to be

S(0,x) = S0 > 0,E(0,x) = E0 > 0, I(0,x) = I0 > 0,R(0;x) = R0 > 0 and V (0;x) =V0 > 0

Strategy of control: We chose a vaccination program, so into the model (2) we include a control

u that represents the density of susceptible individuals being vaccinated per timeunit and space.

We assume that all susceptible vaccinates are transferred directly to the removed class.
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The dynamics of the controlled system is given by:

∂S
∂ t

= λ1∆S+Λ−βESE−βISI−βV SV −µS−uS

∂E
∂ t

= λ2∆E +βESE +βISI +βV SV − (α +µ)E

∂ I
∂ t

= λ3∆I +αE− (w+ γ +µ)I(3)

∂R
∂ t

= λ4∆R+ γI−µR+uS

∂V
∂ t

= ξ1E +ξ2I−σV

(t,x) ∈ Q = [0,T ]×Ω with the homogeneous Neumann boundary conditions

∂S
∂η

=
∂E
∂η

=
∂ I
∂η

=
∂R
∂η

=
∂V
∂η

= 0,(t,x) ∈ Σ = [0,T ]×∂Ω(4)

and for x ∈Ω

S(0,x) = S0,E(0,x) = E0, I(0,x) = I0,R(0,x) = R0,V (0,x) =V0

Our goal is to minimize the density of infected individuals and the cost of vaccination program.

Mathematically, it can be interpreted by optimization of the objective functional

J(S,E, I,R,V,u) = ‖I‖2
L2(Q)+‖I(T, .)‖

2
L2(Ω)+θ‖u‖2

L2(Q)(5)

Where u belongs to the set Uad of admissible controls

(6) Uad =
{

u ∈ L∞(Q) : ‖u‖L∞(Q) < 1and u > 0
}

3. EXISTENCE OF GLOBAL SOLUTION

For y = (y1,y2,y3,y4,y5) and y0 = (y0
1,y

0
2,y

0
3,y

0
4,y

0
5)

We can put y = (S,E, I,R,V ) and y0 = (S0,E0, I0,R0,V0)

H(Ω) = (L2(Ω))5 and A the linear operator defined as follow

A : D(A)⊂ H(Ω)→ H(Ω)

Ay = (λ1∆y1,λ2∆y2,λ3∆y3,λ4∆y4,0) ∈ D(A)

∀y = (y1,y2,y3,y4,y5) ∈ D(A)(7)
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(8)

D(A)=
{

y = (y1,y2,y3,y4,y5) ∈ (H2(Ω)5,
∂y1

∂η
=

∂y2

∂η
=

∂y3

∂η
=

∂y4

∂η
=

∂y5

∂η
= 0,a.ex ∈∂Ω

}
If we consider the function

f (y(t)) = ( f1(y(t)), f2(y(t)), f3(y(t)), f4(y(t)), f5(y(t))

With

f1(y(t)) = Λ−βEyy2−βIy1y3−βV y1y5−µy1−uy1

f2(y(t)) = βEy1y2 +βIy1y3 +βV y1y5− (α +µ)y2

f3(y(t)) = αy2− (w+ γ +µ)y3(9)

f4(y(t)) = γy3−µy4 +uy1

f5(y(t)) = ξ1y2 +ξ2y3−σy5

Then problem (3)− (5) can be rewritten in the space H(Ω) under the form

∂y
∂ t

= Ay+ f (y(t))(10)

y(0) = y0

t ∈ [0,T ]

We denote L(T,Ω) = L2(0,T ;H2(Ω))
⋂

L∞(0,T ;H1(Ω))

Theorem 1: Let Ω be a bounded domain from R2, with the boundary of class C2+θ ,θ > 0 If

βE ,βI,βV ,µ,α,w,γ,ξ1,ξ2,σ > 0 u ∈Uad,y ∈ D(A) andy0
i ≥ 0 on Ω ( for i = 1,2,3,4,5) The

problem (3)-(5) has a unique ( global ) strong solution y ∈W 1,2(0,T ;H(Ω))

such that y1,y2,y3,y4,y5 ∈ L(T,Ω)
⋂

L∞(Q) and yi ≥ 0 on Q fori = 1,2,3,4,5 In addition,

there existsC > 0 independent of u (and of the corresponding solution y) such that for a t ∈ [0,T ]

for i = 1,2,3,4,5

(11) ‖∂yi

∂ t
‖L2(Q)+‖yi‖L2(0,T,H2(Ω)+‖yi‖H1(Ω)+‖yi‖L∞(Q) ≤C

Proof. As|yi| ≤ N fori = 1,2,3,4,5 thus function f = ( f1, f2, f3, f4, f5) becomes Lipschiz

continuous in y = (y1,y2,y3,y4,y5) uniformly with respect tot ∈ [0,T ], (See [16-18]), Eq.(11)
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admits a unique strong solution y = (y1,y2,y3,y4,y5)∈W 1,2(0,T ;H(Ω)) with y1,y2,y3,y4,y5 ∈

L(T,Ω) let’s prove the boundedness of y on Q.

If we denote: M = max‖ f1‖L∞(Q),‖y0
1‖L∞(Ω) and S(t), t ≥ 0 in the C0-semi-group

generated by the operator B : D(A) ⊂ L2(Ω) → L2(Ω) where By = λ1∆y and D(B) =

y1 ∈ H2(Ω),∂y/∂η = 0,a.e∂Ω The function Y1(t,x) = y1 − Mt − ‖y0
1‖L∞(Ω) satisfies the

Cauchy problem

∂Y1

∂ t
= λ1∆Y1 + f1(y(t))−M(12)

Y1(0,x) = y0
1−‖y0

1‖L∞(Ω)

t ∈ [0,T ]

The corresponding strong solution is:

Y1t) = S(t)(y0
1−‖y0

1‖L∞(Ω))+
∫ t

0
S(t− s)( f1(y(t))−M)ds

Since y0
1−‖y0

1‖L∞(Ω) ≤ 0 and f1(y(t))−M ≤ 0 it follows that Y1(t,x)≤ 0,∀(t,x) ∈ Q

And the function: W1(t,x) = y1 +Mt +‖y0
1‖L∞(Ω) satisfies the Cauchy problem

∂W1/∂ t = λ1∆Y1 + f1(y(t))+M(13)

W1(0,x) = y0
1 +‖y0

1‖L∞(Ω)

The corresponding strong solution is

W1(t) = S(t)(y0
1 +‖y0

1‖L∞(Ω))+
∫ t

0
S(t− s)( f1(y(t))+M)ds

Sincey0
1 +‖y0

1‖L∞(Ω) ≥ 0 and f1(y(t))+M ≥ 0 it follows that W1(t,x)≥ 0,∀(t,x) ∈ Q

Then |y1(t,x)| ≤Mt +‖y0
1‖L∞(Ω) ∀(t,x) ∈ Q

And analogously

|yi(t,x)| ≤ Mt + ‖y0
i ‖L∞(Ω) ∀(t,x) ∈ Q for i = 2,3,4,5 So we have proved that yi ∈ L∞(Q)

∀(t,x) ∈ Q for i = 1,2,3,4,5

Thus we have proved that yi ∈ L∞(Q) (∀(t,x) ∈ Q) for i = 1,2,3,4,5

By the first equation of (2) one obtains

∫ t

0

∫
Ω

∣∣∣∣∂y1

∂ s

∣∣∣∣2 dsdx+λ
2
1

∫ t

0

∫
Ω

|4y1|2 dsdx−2λ1

∫ t

0

∫
Ω

∂y1

∂ s
4y1dsdx
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=
∫ t

0

∫
Ω

(Λ−βEy1y2−βIy1y3−βV y1y5−µy1−uy1)
2 dsdx

Using the regularity of y1and the Green’s formula, we have∫ t

0

∫
Ω

∂y1

∂ s
4y1dsdx =

∫
Ω

(
−|∇y1|2 +

∣∣∇y0
1
∣∣2)dx

then ∫ t

0

∫
Ω

∣∣∣∣∂y1

∂ s

∣∣∣∣2 dsdx+λ
2
1

∫ t

0

∫
Ω

|4y1|2 dsdx+2λ1

∫
Ω

|∇y1|2 dx−2λ1

∫
Ω

∣∣∇y0
1
∣∣2 dx

=
∫ t

0

∫
Ω

(Λ−βEy1y2−βIy1y3−βV y1y5−µy1−uy1)
2 dsdx

Since ‖yi‖L∞(Q) for i = 1,2,3,4,5 are bounded independently of u and y0
1 ∈ H2(Ω) we deduce

that:

y1 ∈ L∞
(
0,T ;H1(Ω)

)
and the inequality in (11) holds for i = 1. similalry for y2,y3,y4,y5.In order to show the

positiveness of yi for i = 1,2,3,4,5 we write system (2) in the form:

∂y1

∂ t
= λ1∆y1 +H1(y1,y2,y3,y4,y5)

∂y2

∂ t
= λ2∆y2 +H2(y1,y2,y3,y4,y5)

∂y3

∂ t
= λ3∆y3 +H3(y1,y2,y3,y4,y5)

∂y4

∂ t
= λ4∆y4 +H4(y1,y2,y3,y4,y5)

∂y5

∂ t
= H5(y1,y2,y3,y4,y5)

It is easy to see that the functions Hi(y1,y2,y3,y4,y5) for i = 1,2,3,4,5 are continuously

differentiable satisfying

H1(0,y2,y3,y4,y5) = Λ≥ 0

H2(y1,0,y3,y4,y5) = βIy1y3 +βV y1y5 ≥ 0

H3(y1,y2,0,y4,y5) = αy2 ≥ 0

H4(y1,y2,y3,0,y5) = γy3 +uy1 ≥ 0

H5(y1,y2,y3,y4,0) = ξ1y2 +ξ2y3 ≥ 0
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For all y1,y2,y3,y4,y5 ≥ 0 (See [19]). This completes the proof.

4. EXISTENCE OF THE OPTIMAL SOLUTION

This section is devoted to the existence of an optimal solution. The main result of this section

is following

Theorem 2: If Λ,βE ,βI,βV ,µ,α,w,γ,ξ1,ξ2,σ > 0 and y0 ∈ D(A), y0
i ≥ 0 on Ω , for i =

1,2,3,4,5, then the optimal problem (2-6) admits an optimal solution (y∗,u∗)

proof. Let J∗ = in f {J(y,u)}Where u ∈Uad and y is the corresponding solution of (3)-(5). so

J∗ is finite. Therefore there exist a sequence (yn,un) with un ∈Uad , yn =
(
yn

1,y
n
2,y

n
3,y

n
4,y

n
5
)
∈

W 1,2 (0,T ;H(Ω)) such that

∂yn
1

∂ t
= λ1∆yn

1 +Λ−βEyn
1yn

2−βIyn
1yn

3−βV yn
1yn

5−µyn
1−uyn

1

∂yn
2

∂ t
= λ2∆yn

2 +βEyn
1yn

2 +βIyn
1yn

3 +βV yn
1yn

5− (α +µ)yn
2

∂yn
3

∂ t
= λ3∆yn

3 +αyn
2− (w+ γ +µ)yn

3(14)

∂yn
4

∂ t
= λ4∆yn

4 + γyn
3−µyn

4 +uyn
1

∂yn
5

∂ t
= ξ1yn

2 +ξ2yn
3−σyn

5

with the homogeneuos Neumann boundary conditions

(15)
∂yn

1
∂η

=
∂yn

2
∂η

=
∂yn

3
∂η

=
∂yn

4
∂η

=
∂yn

5
∂η

= 0

(t,x) ∈ Σ

(16) yn
i (0,x) = y0

i ,

for i = 1,2,3,4,5 with x ∈Ω

and

(17) J∗ ≤ J (yn,un)≤ J∗+
1
n

(∀n≥ 1)

since H1(Ω) is compactly embedded in L2(Ω), we infer that yn
1(t) is compact in L2(Ω) show

that
{

yn
1(t),n≥ 1

}
is equiacontinuous in C

(
[0,T ] : L2(Ω)

)
.
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By the first equation from (14) we have

(18)
∂yn

1
∂ t

yn
1 = λ1∆yn

1yn
1 +Λyn

1−βE (yn
1)

2 yn
2−βI (yn

1)
2 yn

3−βV (yn
1)

2 yn
5−µ (yn

1)
2−u(yn

1)
2

Then ∀t ∈ [0,T ]

∫
Ω

(yn
1)

2 (t,x)dx =
∫

Ω

(
y0

1
)2
(x)dx

(19)

+2
∫ t

0

∫
Ω

[
λ1∆yn

1yn
1 +Λyn

1−βE (yn
1)

2 yn
2−βI (yn

1)
2 yn

3−βV (yn
1)

2 yn
5−µ (yn

1)
2−u(yn

1)
2
]

dxdζ ,∀t ∈ [0,T ]

By theorem (1) there exists a constant C > 0 independent of n such that for all n≥ 1, t ∈ [0,T ]∥∥∥∥∂yn
i

∂ t

∥∥∥∥
L2(Q)

≤C,‖yn
i ‖L2(0,T ;H2(Ω))

≤C,‖yn
i ‖H2(Ω) ≤C, f ori = 1,2,3,4,5(20)

For all n ≥ 1, t ∈ [0,T ], the sequence yn
i is bounded in C

(
[0,T ] : L2 (Ω)

)
;4yn

i ,u
n
i and ∂yn

i
∂ t are

bounded in L2(Q) for i = 1,2,3,4,5. This implies that for all s, t ∈ [0,T ]

(21)
∣∣∣∣∫

Ω

(yn
1)

2 (t,x)dx−
∫

Ω

(yn
1)

2 (s,x)dx
∣∣∣∣≤ K |t− s|

The Ascoli-Arzela Theorem (See [20]) implies that yn
1 is compact in C

(
[0,T ] : L2(Ω)

)
. Hence,

selecting further sequences, if necessary, we haveyn
1→ y∗1 in L2(Ω) uniformly with respect to t.

and analogously

yn
i → y∗i in L2(Ω) uniformly with respect to t, for i = 2,3,4,5.

then yn
2(T )→ y∗2(T ) in L2(Ω)

The boundedness of 4yn
i in L2(Ω) , implies its weak convergence, namely 4yn

i ⇀4y∗i in

L2(Ω) i = 1,2,3,4,5 . Here and everywhere below the sign ⇀ denotes the weak convergence

in the specified space. Estimates (20) lead to

∂yn
i

∂ t
⇀

∂y∗i
∂ t

inL2(Q), i = 1 = 1,2,3,4,5

yn
i ⇀ y∗i inL2 (0,T ;H2(Ω)

)
, i = 1,2,3,4,5

yn
i ⇀ y∗i inL∞

(
0,T ;H1(Ω)

)
, i = 1,2,3,4,5
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Writing yn
1yn

2− y∗1y∗2 =
(
yn

1− y∗1
)

yn
2 + yn

1
(
yn

2− y∗2
)

and making use of the convergences yn
i −→

y∗i in L2(Q), i = 1,2,3,4,5 and of boundedness of yn
1,y

n
2 in L∞(Q), one arrives at yn

1yn
2 7→ y∗1y∗2

in L2(Q). We also have un ⇀ u∗ in L2(Q) on a subsequence denoted again un. since Uad is

closed and convex set in L2(Q), it is weakly closed, so u∗ ∈Uad and as above unyn
1 −→ u∗y∗1 in

L2(Q). Now we may pass to the limit in L2(Q) as n −→ ∞ in (14-17) to deduce that (y∗,u∗)is

an optimal solution. The proof is complete.

5. CONCLUSION

The work in this paper contributes to a growing literature on modeling the spatial spread

of a novel coronavirus epidemic in Wuhan, China. We present an application of optimal

control theory to spatiotemporal epidemic models described by a system of partial differential

equations. The control variable is the spatial and temporal distribution. We have based our

mathematical work on the use of semigroup theory and optimal control to show the existence

of solutions for our state system, as well as prove the existence of an optimal control.
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