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1. INTRODUCTION

Controllability and observability are two fundamental concepts in the control theory. Sys-

tematic studies on these topics in the linear case were started at the beginning of 1960s [1, 2],

in nonlinear one in 1970s [3]. Controllability continually appears as a necessary condition for

the existence of solutions to many control problems, for example: stabilization of unstable sys-

tem by feedback, optimal control [4]. Observability plays a crucial role in study of canonical

forms of dynamical systems or observer synthesis [5]. Basically a system is controllable if it is
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possible to transfer it from an arbitrary initial state to an arbitrary final state using only certain

admissible controls; it is observable if the initial state can be determined using the information

given by an output over a finite time. There exist many papers in which these two properties for

classical discrete and continues systems are studied. A meaningful fact in practise, also in clas-

sical systems, is to investigate both properties in their local formulations for nonlinear systems

through global notions of controllability and observability by linearisation of the considered

systems.

Positive systems are a wide class of systems in which state variables and outputs are con-

strained to be positive, or at least nonnegative for all time whenever the initial state and inputs

are nonnegative [6]. Since the state variables and outputs of many real-world processes repre-

sent quantities that may not have meaning unless they are nonnegative because they measure

concentrations, temperatures, cell birth or losses, ..., positive systems arise frequently in math-

ematical modeling of engineering problems, management sciences, economics, social sciences,

chemistry, biology, ecology, medicine, and other areas.

The mathematical theory of positive linear systems is based on the theory of nonnegative

matrices developed by Perron and Frobenius, see for example, [7, 8]. An excellent survey of

positive systems with an emphasis on their applications in the areas of management and social

sciences is given by Luenberger in [7]. The more recent monographs by Farina and Rinaldi

in [9] and Kaczorek in [6] are devoted entirely to positive linear systems and some of their

applications.

The reachability, controllability and observability of positive linear systems is largely studied

by several authors since late 1980s for both discrete and continuous systems ( [10], [11], [12],

[13], [14], [15], [16], ... ). The reachability of positive nonlinear systems for continuous and

discrete systems has been studied respectively in [17] and [18].

In this work, we solve the problem of controllability and observability for nonlinear positive

continuous systems, by two different methods that are mainly based on fixed point techniques.

We characterize the set of nonnegative controls which steer the state of a positive system from

a nonnegative initial state to a nonnegative desired final state. The set of all nonnegative states

which correspond to the given nonnegative output is also characterized. The following notations
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will be used. R+ is the set of nonnegative real numbers, Rn the set of real vectors with n

components, Rn
+ the set of all vectors in Rn with nonnegative components, i.e.,

Rn
+ =

{
x = (x1,x2, ...,xn)

T ∈ Rn : xi ∈ R+, i ∈ {1, ..,n}
}

where T denotes the transpose, Rn×m the set of real matrices of size n×m
(
Rn = Rn×1) , In the

identity matrix in Rn×n, L2([0,T ],X) the set of square integrable function defined in the time

interval [0,T ] with values in X ⊂ Rn, SF the set of all fixed points of a function F .

2. PRELIMINARIES

Consider the nonlinear continuous system described by
·
x(t) = Ax(t)+ f (x(t))+Bu(t) , t ∈ R+,

x(0) = x0 ∈ Rn
(1)

with linear observation

y(t) =Cx(t) , t ∈ R+, (2)

where x(t) ∈ Rn, u(t) ∈ Rm are respectively the state and control input of system (1)− (2) at

time t, y(t) ∈ Rr , A ∈ Rn×n, B ∈Rn×m, C ∈Rr×n, f : Rn −→ Rn is a nonlinear function,

and x0 represents the initial state.

Definition 1. The system (1)− (2) is said to be positive if x(t) ∈ Rn
+ and y(t) ∈ Rr

+,

t ∈ R+, for every nonnegative initial state x0 ∈ Rn
+ and all nonnegative inputs u(t) ∈ Rm

+ ,t ∈

R+.

Definition 2. A matrix A =
(
ai j
)

in Rn×m is said to be nonnegative, and denoted by A ∈ Rn×m
+ ,

if all of its elements are nonnegative, i.e.,ai, j ∈ R+ for all i, j.

Now, we introduce the notion of Metzler matrix, proposed by L.A. Metzler in [19]. This

matrix plays an important role in the mathematical theory of positive continuous systems.

Definition 3. A square matrix A =
(
ai j
)

1≤i, j≤n is said to be a Metzler matrix if its non-diagonal

elements are nonnegative, i.e., ai j ∈ R+ for all i 6= j.
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Remark 4. Clearly, the nonnegative matrices are Metzler matrices. Moreover, there is a very

strong link between the nonnegative matrices and the Metzler matrices. Indeed, A =
(
ai j
)
∈

Rn×n is a Metzler matrix if and only if there exists λ ∈ R+ such that

(A+λ In) ∈ Rn×n
+ , for example,

λ = max
{

0,− min
0≤i≤n

aii

}
.

An important property of Metzler matrices is given by the following result.

Lemma 5. [6]. A ∈ Rn×n is a Metzler matrix if and only if the associated exponential matrix

eAt ∈ Rn×n
+ for all t ∈ R+.

We assume that system (1)-(2) satisfies the following assumptions

(H1) : u ∈ L2([0,T ],Rm) and x ∈ L2([0,T ],Rn) with T > 0.

(H2) : f is a lipschitzian function, i.e., there exists a constant K > 0 such that

‖ f (x1)− f (x2)‖ ≤ K ‖x1− x2‖ for all x1,x2 ∈ Rn,

where ‖·‖ is a norm on Rn.

The following sufficient condition for the positivity of system (1)-(2) holds.

Proposition 6. The system (1)-(2) is positive if

A is a Metzler matrix,

f
(
Rn
+

)
⊂ Rn

+

B ∈ Rn×m
+

C ∈ Rr×n
+

(3)

Proof. Since the conditions (H1) and (H2) satisfied, system (1) has a unique solution x(t) given

by

x(t) = eAtx0 +

∫ t

0
eA(t−τ) f (x(τ))dτ +

∫ t

0
eA(t−τ)Bu(τ)dτ, t ∈ [0,T ] . (4)

Using Picard method [20], the following functional sequence converges to the

solution (4) x̃k+1 (t) = eAt x̃0 +
∫ t

0 eA(t−τ) f (x̃k (τ))dτ +
∫ t

0 eA(t−τ)Bu(τ)dτ = Φu (x̃k)(t) , k ∈ N,

x̃0 = x0 ∈ Rn
+
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For all t ∈ [0,T ] , we have

x̃k (t) =

Φu ◦Φu ◦ ...◦Φu︸ ︷︷ ︸
k−times

(x0)(t) , k ∈ N.

Since A is a Metzler matrix, then by Lemma 5, eAt ∈Rn×n
+ . On the other hand, the conditions

B ∈ Rn×m
+ and f

(
Rn
+

)
⊂ Rn

+ ensures that eA(t−τ) f (x0) ∈ Rn
+ and eA(t−τ)Bu(τ) ∈ Rn

+ since x0 ∈

Rn
+ and u(τ) ∈ Rm

+ for every τ ∈ [0, t). Hence Φu (x0)(t) ∈ Rn
+ for any x0 ∈ Rn

+, and then

x̃k (t) ∈ Rn
+ for all k ∈ N, which implies that x(t) ∈ Rn

+. Consequently, if C ∈ Rr×n
+ , then

y(t) ∈ Rr
+. This completes the proof. �

Remark 7. The linear system obtained from (1)− (2) for f = 0 is positive if and only if A is a

Metzler matrix, B ∈ Rn×m
+ and C ∈ Rr×n

+ [6].

In the rest of this paper, we assume that system (1)-(2) is positive, with the conditions (3)

satisfied.

3. CONTROLLABILITY

In the next, we shall formulate the definition for controllability of system (1) as follows.

Definition 8. System (1) is said to be controllable in a finite time t f > 0 if for any initial state

x0 ∈Rn
+ and any desired final state x f ∈Rn

+, there exists a nonnegative input u ∈ L2([0, t f ],Rm
+)

, which steers the state of the system from x0 to x f , i.e., x f = x
(
t f ,x0,u

)
.

Consider the mapping

ax0 : t ∈ [0, t f ] 7−→ eAtx0 ∈ Rn
+.

Let’s consider the nonlinear operator G defined by

G : x ∈ L2([0, t f ],Rn) 7→
∫ ·

0
eA(·−τ) f (x(τ))dτ ∈ L2([0, t f ],Rn).

and D denote the linear operator defined by

D : u ∈ L2([0, t f ],Rm) 7→
∫ ·

0
eA(·−τ)Bu(τ)dτ ∈ L2([0, t f ],Rn).

Then, the solution of system (1) has the form

x = ax0 +G(x)+Du.
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3.1. Characterization of controllability - First mapping.

The aim of this subsection is to establish a necessary and sufficient condition for the controlla-

bility of system based on fixed points of a mapping appropriately chosen. Also, we characterize

the set U+ of nonnegative controls which steer the state of system (1) from a initial state x0 ∈Rn
+

at t = 0 to a desired final state x f ∈ Rn
+ at t = t f , i.e.,

U+ =
{

u ∈ L2([0, t f ],Rm
+) : x

(
t f ,x0,u

)
= x f

}
.

Definition 9. The positive image of the operator D is

Im+D =
{

Du ∈ L2([0, t f ],Rn
+) : u ∈ L2([0, t f ],Rm

+)
}
.

Let P : L2([0, t f ],Rn)→ Im+D be any projection on Im+D, x̃ be any fixed element of Im+D

different from zero.

We define

gx̃ : L2([0, t f ],Rn) → Im+D

x 7−→

 0, if x f = x
(
t f
)

x̃, otherwise

and

ζ : x ∈ L2([0, t f ],Rn) 7−→ x−ax0−G(x) ∈ L2([0, t f ],Rn).

We consider the operator

F : x ∈ L2([0, t f ],Rn) 7−→ ax0 +G(x)+Pζ (x)+gx̃ (x) ∈ L2([0, t f ],Rn).

then we have the following proposition.

Proposition 10. The nonlinear system (1) is controllable in time t f if and only if, for all x0,x f ∈

Rn
+, F has a fixed point.

Proof. (Su f f iciency) Let x0,x f ∈ Rn
+. x ∈ SF then

x = ax0 +G(x)+Pζ (x)+gx̃ (x) . (5)

Thus

ζ (x) = Pζ (x)+gx̃ (x) ∈ Im+D.
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which implies that ζ (x) = Pζ (x) and gx̃ (x) = 0, which ensures that x
(
t f
)
= x f .

Consequently, the equation (5) becomes

x = ax0 +G(x)+ζ (x)

Since ζ (x) ∈ Im+D, then there exists an input u ∈ L2([0, t f ],Rn
+) such that ζ (x) = Du, that

means

x = ax0 +G(x)+Du,

and then

x
(
t f
)
= x f = ax0

(
t f
)
+(G(x))

(
t f
)
+(Du)

(
t f
)
= x
(
t f ,x0,u

)
,

i.e., the system (1) is controllable in time t f .

(Necessity) Let x0,x f ∈ Rn
+. Since the system (1) is controllable in time t f , there exists an

input u ∈ L2([0, t f ],Rn
+) such that x

(
t f ,x0,u

)
= x f . Then we get

x(t) := x(t,x0,u) = ax0 (t)+(G(x))(t)+(Du)(t) , t ∈ [0, t f ],

and hence

x
(
t f
)

:= x
(
t f ,x0,u

)
= x f .

Consequently

ζ (x) = Du ∈ Im+D and gx̃ (x) = 0,

then

Pζ (x) = ζ (x) .

Hence, we obtain

F (x) = ax0 +G(x)+Pζ (x)+gx̃ (x) = ax0 +G(x)+Du = x

Then x is a fixed point of the operator F . The proposition is proved. �

Remark 11. The fixed points of F are independent of the choice of the projection operator P

and the element x̃. Indeed, let P1 and P2 be two projections on Im+D and x̃1 and x̃2 two any

elements not equal to zero of Im+D. Let’s consider the operators

F1 : x ∈ L2([0, t f ],Rn) 7−→ ax0 +G(x)+P1ζ (x)+gx̃1 (x) ∈ L2([0, t f ],Rn).
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and

F2 : x ∈ L2([0, t f ],Rn) 7−→ ax0 +G(x)+P2ζ (x)+gx̃2 (x) ∈ L2([0, t f ],Rn).

Let x be a fixed point of F1. By proof of Proposition 10, we have x
(
t f
)
= x f and ζ (x) ∈

Im+D. Consequently P2ζ (x) = ζ (x) and gx̃2 (x) = 0, then

F2 (x) = ax0 +G(x)+ζ (x) = x

Hence, if x is a fixed point of F1, then it is also a fixed point of F2.

In the following, we shall need to inverse the operator D. But D is not inversible in a general

case. Introduce then

D̃ : y ∈ (kerD)⊥ 7→ D̃y = Dy ∈ ImD,

this operator is inversible and its inverse, which is defined on ImD can be extended to ImD⊕

(ImD)⊥ as follows

D† : y+ z ∈ ImD⊕ (ImD)⊥ 7→ D̃−1y ∈ L2([0, t f ],Rm).

The operator D† is known as the pseudo inverse operator of D. In particular, the mapping D†

satisfies  DD†y = y for all y ∈ ImD,

D†Dz = z for all z ∈ (kerD)⊥ .

Remark 12. If ImD is closed, then L2([0, t f ],Rn) = ImD⊕ (ImD)⊥ and D† satisfies [21]

DD†D = D, D†DD† = D†,
(

DD†
)∗

= DD† and
(

D†D
)∗

= D†D,

with D∗ is the adjoint of D.

Now, we characterize the set U+ by the following result.

Proposition 13. We have

U+ =
{

D†
ζ (x)+Ψ ∈ L2([0, t f ],Rm

+) : x ∈ SF and Ψ ∈ kerD
}
.
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Proof. If u ∈U+, then by proof of Proposition 10, the trajectory x of system (1) corresponding

to control u is a fixed point of F and ζ (x) = Du ∈ Im+D . Hence, we can write

u = D†
ζ (x)+Ψ,

with Ψ = u−D†ζ (x) , and we have

DΨ = ζ (x)−DD†
ζ (x) = ζ (x)−ζ (x) = 0,

i.e., Ψ ∈ kerD.

Conversely, let u = D†ζ (x)+Ψ ∈ L2([0, t f ],Rm
+), with x ∈ SF and Ψ ∈ kerD, then ζ (x) ∈

Im+D, and hence Du=DD†ζ (x)= ζ (x). Thus x= ax0 +G(x)+Du, then u∈U+. This finishes

the proof. �

3.2. Characterization of controllability - Second mapping.

In this subsection, we shall characterize the controllability of system (1) and the set U+ using

another mapping. For this, let

âx0 : t ∈ [0, t f ] 7−→

 ax0 (t)

ax0

(
t f
)
 ∈ Rn

+×Rn
+,

Ĝ : x ∈ L2([0, t f ],Rn) 7−→

 Gx

(Gx)
(
t f
)
 ∈ L2([0, t f ],Rn)×Rn,

and we define

D̂ : u ∈ L2([0, t f ],Rm) 7−→

 Du

(Du)
(
t f
)
 ∈ L2([0, t f ],Rn)×Rn.

We consider the following operators

ζ̂ : L2([0, t f ],Rn)×Rn → L2([0, t f ],Rn)×Rn x

y

 7→

 x

y

− âx0− Ĝ(x) ,

and
F̂ : L2([0, t f ],Rn)×Rn → L2([0, t f ],Rn)×Rn x

y

 7→ âx0 + Ĝ(x)+ P̂ζ̂

 x

x f

+

 0

y− x f


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with P̂ : L2([0, t f ],Rn)×L2([0, t f ],Rn)→ Im+ D̂ any projection on Im+ D̂.

Proposition 14. The nonlinear system (1) is controllable in time t f if and only if, for all x0,x f

∈ Rn
+, F̂ has a fixed point.

Proof. Let x0,x f ∈ Rn
+. If

 x

y

 ∈ SF̂ , then we have

 x

y

= âx0 + Ĝ(x)+ P̂ζ̂

 x

x f

+

 0

y− x f


Hence

P̂ζ̂

 x

x f

=

 x

x f

− âx0− Ĝ(x) = ζ̂

 x

x f

 ,

which implies that ζ̂

 x

x f

 ∈ Im+ D̂, so there exists an input u ∈ L2([0, t f ],Rm
+) such that

ζ̂

 x

x f

= D̂u.

The rest of the proof is similar to that of Proposition 10. �

Proposition 15. The set U+ is given by

U+ =

D̂†
ζ̂

 x

x f

+Ψ ∈ L2([0, t f ],Rm
+) : x ∈ S̃F̂ and Ψ ∈ ker D̂

 ,

with

S̃F̂ :=

x ∈ L2([0, t f ],Rn) : there exists y ∈ L2([0, t f ],Rn) such that

 x

y

 ∈ SF̂

 .

Proof. It is similar to that of Proposition 13. �
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4. OBSERVABILITY

In this section we discuss the concept of observability problem for nonlinear positive con-

tinuous systems. Consider the nonlinear systems (1)− (2) with u(t) = 0 for t ∈ R+, and x0 is

assumed to be unknown.

Definition 16. System (1)− (2) is said to be observable in a finite time t f > 0 if it is possible

to determine uniquely the nonnegative initial state x0 ∈ Rn
+ from the knowledge of the output

y ∈ L2([0, t f ],Rr
+).

Consider the operator

S : z ∈ Rn 7→ eA·z ∈ L2([0, t f ],Rn),

then, the solution of system (1) has the form

x(t) = (Sx0)(t)+(G(x))(t) , t ∈ [0, t f ],

and the output (2) can be rewritten as

y(t) =C (Sx0)+C (G(x))(t) , t ∈ [0, t f ],

The goal of this section is to give a characterization of the set Θ+ of states of system (1) such

that yg =Cx where yg ∈ L2([0, t f ],Rr
+) is the given output, i.e.,

Θ+ =
{

x ∈ L2([0, t f ],Rn
+) : x = Sx0 +G(x) and yg =Cx

}
,

and consequently we shall establish a necessary and sufficient condition for the observability of

system (1)− (2).

4.1. Characterization of observability - First mapping.

Let P : L2([0, t f ],Rn)→ Im+ S be any projection on Im+ S and x̃ be any fixed element of Im+ S

different from zero.

we define

ζ : x ∈ L2([0, t f ],Rn) 7−→ x−G(x) ∈ L2([0, t f ],Rn).

and we consider the operator

H : x ∈ L2([0, t f ],Rn) 7−→ G(x)+Pζ (x)+hx̃ (x) ∈ L2([0, t f ],Rn).
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with

hx̃ : L2([0, t f ],Rn) → Im+ S

x 7−→

 0, if yg =Cx

x̃, otherwise

The following proposition gives a characterization of the set Θ+.

Proposition 17. Let x∈ L2([0, t f ],Rn). Then x is an element of Θ+if and only if x is a fixed point

of H.

Proof. It is similar to that of Proposition 10. �

Thus a necessary and sufficient condition for the observability of our system is given by

Proposition 18. The system (1)− (2) is observable in time t f if and only if, for every given

output yg ∈ L2([0, t f ],Rr
+), SH has at most one element.

Proof. System (1)− (2) is observable in time t f if and only if for all yg ∈ L2([0, t f ],Rr
+) , there

exists at most one x0 ∈ Rn
+ such that x = Sx0 +G(x) ,

yg =Cx,

where x is the trajectory of system (1) coresponding to the initial state x0. Consequently, the

system (1)− (2) is observable if and only if the set Θ+, and hence SH , contains at most one

element. �

4.2. Characterization of observability - Second mapping.

The aim of this subsection is to give a second characterization of the set Θ+ and of the observ-

ability of system (1)-(2) based on the fixed points of another function appropriately chosen.

Ŝ : z ∈ Rn 7→

 Sz

CSz

 ∈ L2([0, t f ],Rn)×L2([0, t f ],Rn),

and

Ĝ : x ∈ L2([0, t f ],Rn) 7−→

 Gx

C (Gx)

 ∈ L2([0, t f ],Rn)×L2([0, t f ],Rn),
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We consider the following operators

ζ̂ : L2([0, t f ],Rn)×L2([0, t f ],Rn) → L2([0, t f ],Rn)×L2([0, t f ],Rn) x

z

 7→

 x

z

− Ĝ(x) ,

and

Ĥ : L2([0, t f ],Rn)×L2([0, t f ],Rn) → L2([0, t f ],Rn)×L2([0, t f ],Rn) x

z

 7→ Ĝ(x)+ P̂ζ̂

 x

yg

+

 0

z− yg

 ,

with P̂ : L2([0, t f ],Rn)×L2([0, t f ],Rn)→ Im+ Ŝ any projection on Im+ Ŝ.

Proposition 19. The set Θ+ is given by

Θ+ = S̃Ĥ =

x ∈ L2([0, t f ],Rn) : there exists z ∈ L2([0, t f ],Rn) such that

 x

z

 ∈ SĤ

 .

Proof. It is similar to that of Proposition 14. �

Proposition 20. The system (1)− (2) is observable in time t f if and only if for every given

output yg ∈ L2([0, t f ],Rr
+) , S̃Ĥ has at most one element.

Proof. It is similar to that of Proposition 18. �

5. CONCLUSION

In this work we have employed a technique based on the fixed point theory for resolving

the controllability and observability problem for nonlinear positive discrete systems. Sufficient

conditions for the positivity of continuous nonlinear positive systems have been established

(Proposition 6). Criteria for the controllability (Propositions 10, 14) and observability (Propo-

sitions 18, 20) have been proved. A characterization of nonnegative controls which drives the

state of the system from its initial value to a given desired final state is given (Propositions 13,

15). The set of all nonnegative states which correspond to the given output is also characterized

(Propositions 17, 19). In our future work, we investigate the controllability and observability of

fractional positive nonlinear continuous systems.
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