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Abstract: The continuous spread of "SARS-COV-2" around the globe, push the governments to start vaccination 

campaigns by approving several vaccines under the emergency procedure. However, the shortage of vaccines supplies 

slowed down the vaccination campaigns in most countries. In this paper we performed a 'SELIAAvHRD’ model 

containing nine stages (Susceptible, Exposed, Latent, Symptomatic Infected, Asymptomatic Infected, Asymptomatic 

Vaccinated, Hospitalized, Recovered and Dead) for analyzing and modelling the effect of social distancing measures 

and vaccination campaigns. The simulation using the proposed model in different scenarios, shows the importance of 

respecting the social distancing measure to cover the shortage of vaccine supplies and avert deaths from "SARS-COV-

2" across the world. 
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1. INTRODUCTION 

In March 2020 the world health organization (WHO) declares a global pandemic due to the global 

outbreak of the coronavirus, named "SARS-COV-2" [1, 2, 3]. In order to develop effective 

response strategies to anticipate the development of the pandemic, throughout the year 2020 

researchers from different countries have developed several mathematical models. In [4] Peirlinck 

et al. proposed a SEIIR model, which breaks down infected individuals into symptomatic and 

asymptomatic groups with the same rate of transmission. Pribylova et al. in their work [5], they 

describe a SEIAR model to analyze the '' SARS-COV-2 '' and they showed the importance of 

barrier gestures and the effectiveness of the curfew applied by most governments around the world. 

However, as countries face the harsh economic realities of lockdown, many are choosing to reopen 

their economies. At the end of May 31, 2020, most countries began to ease lockdown measures 

even though the coronavirus is far from over. As a result, the number of new cases detected began 

to increase, putting the health care systems under great pressure. Developing and producing an 

effective vaccine in just 12 months has become a global challenge and priority. 

The World Health Organization (WHO) approved a Covid-19 vaccine for the first time on 

December 31, 2020 under the emergency procedure [6]. Governments of different countries 

around the world have started to present their strategies for immunizing the majority of the 

population in order to achieve herd immunity. 

With a view to assisting public decision-making, this work anticipates vaccination scenarios based 

on the possible evolution of virus circulation and on the characteristics of the vaccines developed 

which will constitute in addition to essential barrier measures and possible treatments, the best tool 

for preventing and combating the pandemic. 

In our previous work, we proposed a SELIAHRD model (Susceptible, Exposed, Latent, 

Symptomatic, Asymptomatic, Hospitalized, Recovered and Death) with a simulation of the barrier 

gesture implementation scenarios showing that if the populations apply the health instructions and 

respect social distinction the health care system would not be saturated [7]. Based on this work we 

improve the proposed model taking into account the vaccinated persons. The remainder of the 

paper is organized as follows. Section 2. gives a brief description of the model of interest. Then, 

in section 3. we discuss the well-posedness and equilibria of the proposed model. Section 4.  gives 
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the proof of the global stability of the disease-free equilibrium. The results and discussion are 

presented in the last section. 

 

2. PROPOSED EPIDEMIC MODEL 

Initial vaccine trials focused on vaccine safety. These trials were designed to gather data quickly 

on how effectively the vaccines prevented people from progressing to hospitalization and death 

with Covid-19. Now, as new, SARS-CoV-2 variants from the United Kingdom, South Africa and 

Brazil spread at the World level, understanding transmission as it relates to vaccine rollout efforts 

is essential. However, until now there is no evidence that any of the current Covid-19 vaccines can 

completely stop people from being infected (viral transmission from vaccinated individuals to 

unvaccinated individuals).  

To investigate the effect of vaccinated people, we propose the SELIAAvHRD model including 

nine compartments shown in figure 1 bellow, where E, L, I, A, H, R and D have same meaning as 

in [7] which are respectively, the exposed, latent, symptomatic, asymptomatic, hospitalized, 

recovered and death compartments. On the other hand, Av denotes the asymptomatic vaccinated 

people and S the susceptible people (the total population is considered as susceptible people 

“vaccinated and non-vaccinated”). 

 

 

 

 

 

 

 

 

Figure 1: SELIAAvHRD model. 
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Based on our previous model [7] we proposed the following model (system 1): 

𝑑𝑆(𝑡)

𝑑𝑡
=
−𝛽𝑆(𝑡)[𝐿(𝑡) + 𝐴(𝑡) + 𝐼(𝑡)] − 𝛽𝑣𝑆(𝑡)𝐴𝑣(𝑡)

𝑁
, 

𝑑𝐸(𝑡)

𝑑𝑡
=
𝛽𝑆(𝑡)[𝐿(𝑡) + 𝐴(𝑡) + 𝐼(𝑡)] + 𝛽𝑣𝑆(𝑡)𝐴𝑣(𝑡)

𝑁
− 𝜇𝐸(𝑡), 

𝑑𝐿(𝑡)

𝑑𝑡
= 𝜇𝐸(𝑡) − [𝜇1𝛼1 + 𝜇2𝛼2 + (1 − 𝛼2)]𝐿(𝑡), 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜇1𝛼1𝐿(𝑡) − [𝜇3𝜎1 + (1 − 𝜎1)]𝐼(𝑡),                      (𝟏) 

𝑑𝐴(𝑡)

𝑑𝑡
= 𝜇2𝛼2𝐿(𝑡) − [𝜇4𝜎2 + (1 − 𝜎2)]𝐴(𝑡),  

𝑑𝐴𝑣(𝑡)

𝑑𝑡
= (1 − 𝛼2)𝐿(𝑡) − 𝜎3𝐴𝑣(𝑡), 

𝑑𝐻(𝑡)

𝑑𝑡
= 𝜇3𝜎1𝐼(𝑡) − [𝜇5𝛾 + (1 − 𝛾)]𝐻(𝑡), 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝜇4𝜎2𝐴(𝑡) + 𝜇5𝛾𝐻(𝑡) + 𝜎3𝐴𝑣(𝑡), 

𝑑𝐷(𝑡)

𝑑𝑡
= (1 − 𝜎1)𝐼(𝑡) + (1 − 𝜎2)𝐴(𝑡) + (1 − 𝛾)𝐻(𝑡) − 𝛿𝐷(𝑡). 

Table 1 bellow show the symbol definition for the proposed model. 

Symbol Definition 

S Number of susceptible person 

E Number of exposed person 

L Number of latent person 

I Number of symptomatic person 

A Number of asymptomatic person 

Av Number of vaccinated asymptomatic person 

H Number of hospitalized person 

R Number of recovered person 

D Number of death person 

N Total number of person 

𝛽 Transmission rate 

𝛽𝑣 Transmission rate of vaccinated people 

Μ Exposed rate 
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α1 Symptomatic infection rate   

α2 Asymptomatic infection rate 

σ1 Symptomatic hospitalized rate 

σ2 Asymptomatic recovery rate 

σ3 Vaccinated Asymptomatic recovery rate 

μ1 The velocity of latent person become symptomatic person 

μ2 The velocity of latent person become asymptomatic person 

μ3 The velocity of symptomatic person become hospitalized person 

μ4 The velocity of asymptomatic person become recovered person 

μ5 The velocity of hospitalized person become recovered person 

𝛾 The recovery rate 

δ The normal death rate 

 

Table 1: Symbol definition. 

    

3. POSITIVITY, BOUNDEDNESS AND EQUILIBRIA 

In this paragraph, we ensure that the model has a mathematical and biological meaning, by 

proofing the existence, the positivity and the boundedness of solutions of the proposed system (1), 

that can be rewritten as follows: 

𝑑𝑍 = 𝑃(𝑍(𝑡)), 

where  

𝑍(𝑡) =

(

 
 
 
 
 
 
 

𝑆(𝑡)

𝐸(𝑡)

𝐿(𝑡)

𝐼(𝑡)

𝐴(𝑡)

𝐴𝑣(𝑡)

𝐻(𝑡)

𝑅(𝑡)
𝐷(𝑡) )

 
 
 
 
 
 
 

, 

and P is a C1 function mapping ℝ𝟗 into it self defined by: 
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𝑃(𝑍) =

(

 
 
 
 
 
 
 

𝑝1(𝑆, 𝐸, 𝐿, 𝐼, 𝐴, 𝐴𝑣, 𝐻, 𝑅, 𝐷)
𝑝2(𝑆, 𝐸, 𝐿, 𝐼, 𝐴, 𝐴𝑣, 𝐻, 𝑅, 𝐷)
𝑝3(𝑆, 𝐸, 𝐿, 𝐼, 𝐴, 𝐴𝑣, 𝐻, 𝑅, 𝐷)
𝑝4(𝑆, 𝐸, 𝐿, 𝐼, 𝐴, 𝐴𝑣 , 𝐻, 𝑅, 𝐷)
𝑝5(𝑆, 𝐸, 𝐿, 𝐼, 𝐴, 𝐴𝑣, 𝐻, 𝑅, 𝐷)
𝑝6(𝑆, 𝐸, 𝐿, 𝐼, 𝐴, 𝐴𝑣, 𝐻, 𝑅, 𝐷)
𝑝7(𝑆, 𝐸, 𝐿, 𝐼, 𝐴, 𝐴𝑣, 𝐻, 𝑅, 𝐷)

𝑝8(𝑆, 𝐸, 𝐿, 𝐼, 𝐴, 𝐴𝑣, 𝐻, 𝑅, 𝐷)

𝑝9(𝑆, 𝐸, 𝐿, 𝐼, 𝐴, 𝐴𝑣, 𝐻, 𝑅, 𝐷))

 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 

−𝛽𝑆[𝐿 + 𝐴 + 𝐼] − 𝛽𝑣𝑆 𝐴𝑣
𝑁

𝛽𝑆[𝐿 + 𝐴 + 𝐼] + 𝛽𝑣𝑆 𝐴

𝑁
− 𝜇𝐸

𝜇𝐸 − [𝜇1𝛼1 + 𝜇2𝛼2 + (1 − 𝛼2)]𝐿

𝜇1𝛼1𝐿 − [𝜇3𝜎1 + (1 − 𝜎1)]𝐼

𝜇2𝛼2𝐿 − [𝜇4𝜎2 + (1 − 𝜎2)]𝐴
(1 − 𝛼2)𝐿 − 𝜎3𝐴𝑣

𝜇3𝜎1𝐼 − [𝜇5𝛾 + (1 − 𝛾)]𝐻
𝜇4𝜎2𝐴 + 𝜇5𝛾𝐻 + 𝜎3𝐴𝑣

(1 − 𝜎1)𝐼 + (1 − 𝜎2)𝐴 + (1 − 𝛾)𝐻 − 𝛿𝐷)

 
 
 
 
 
 
 
 
 

. 

According to the fundamental theory of functional differential equations [8], the system (1) has a 

unique solution (S(t),E(t),L(t),I(t),A(t),Av(t),H(t),R(t),D(t)) with respect to the initial data Z0 such 

that :  

S(t)≥0, E(t) ≥0, L(t) ≥0, I(t) ≥0, A(t) ≥0, Av(t) ≥0, H(t) ≥0, R(t) ≥0, D(t) ≥0. 

If we put S + E + L + I + A + A𝑣 + R + H + D ≤ N, then we have the following theorems: 

Theorem 1. (Invariant Region) The following biological feasible region of the system (1)             

B = {(S, E, L, I, A, A𝑣, H, R, D) ∈  ℝ+
𝟗 ;  S + E + L + I + A + A𝑣 + R + H + D ≤ N  )} is positively 

invariant and attracting. 

Theorem 2.  Let 𝑡0 > 0  and the initial conditions satisfied  𝑆(𝑡0) > 0, 𝐸(𝑡0) > 0, 𝐿(𝑡0) >

0, 𝐼(𝑡0) > 0, 𝐴(𝑡0) > 0, 𝐴𝑣(𝑡0) ≥ 0, 𝐻(𝑡0) > 0, 𝑅(𝑡0) > 0, 𝐷(𝑡0) > 0  then the solution  S(t), 

E(t), L(t), I(t), A(t), Av(t), H(t), R(t), D(t) of the system (1) are positive for all 𝑡 ≥ 0. 

           Proof: 

           From the first equation of system (1) we have:  

𝑆(𝑡) = 𝑠(0)[𝑒
−𝛽
𝑁 ∫ [𝐿(𝑢) + 𝐴(𝑢) + 𝐼(𝑢)]𝑑𝑢 + 𝑒

−𝛽𝑣
𝑁 ∫ 𝐴𝑣(𝑢)𝑑𝑢]

𝑡

0

𝑡

0

. 

We know that S(t) is non-negative for all 𝑡 ≥ 0. From the others equations of system (1) we set: 

𝐸(𝑡) = 𝐸(0)𝑒−𝜇𝑡 +∫ 𝑒(𝑢−𝑡)𝜇
𝛽

𝑁
𝑆(𝑢)[𝐿(𝑢) + 𝐴(𝑢) + 𝐼(𝑢)]𝑑𝑢 +

𝛽𝑣
𝑁
∫ 𝑒(𝑢−𝑡)𝜇𝑆(𝑢)𝐴𝑣(𝑢)𝑑𝑢
𝑡

0

,
𝑡

0

 

𝐸(𝑡) = [𝐸(0) +
𝛽

𝑁
∫ 𝑒𝑢𝜇𝑆(𝑢)[𝐿(𝑢) + 𝐴(𝑢) + 𝐼(𝑢)]𝑑𝑢 +

𝛽𝑣
𝑁
∫ 𝑒𝑢𝜇𝑆(𝑢)𝐴𝑣(𝑢)𝑑𝑢
𝑡

0

]𝑒−𝜇𝑡,
𝑡

0
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𝐿(𝑡) = [𝐿(0) + 𝜇∫ 𝑒𝑢(𝜇1𝛼1+𝜇2𝛼2+(1−𝛼2))𝐸(𝑢)𝑑𝑢]𝑒−(𝜇1𝛼1+𝜇2𝛼2+(1−𝛼2))𝑡,
𝑡

0

 

𝐼(𝑡) = [𝐼(0) + 𝜇1𝛼1∫ 𝑒𝑢(𝜇3𝜎1+(1−𝜎1))𝐿(𝑢)𝑑𝑢]𝑒−(𝜇3𝜎1+(1−𝜎1))𝑡,
𝑡

0

 

𝐴(𝑡) = [𝐴(0) + 𝜇2𝛼2∫ 𝑒𝑢(𝜇4𝜎2+(1−𝜎2))𝐿(𝑢)𝑑𝑢]𝑒−(𝜇4𝜎2+(1−𝜎2))𝑡,
𝑡

0

 

𝐴𝑣(𝑡) = [ 𝐴𝑣(0) + (1 − 𝛼2)∫ 𝑒𝑢𝜎3𝐿(𝑢)𝑑𝑢
𝑡

0

] 𝑒−𝑡𝜎3 , 

𝐻(𝑡) = [𝐻(0) + 𝜇3𝜎1∫ 𝑒𝑢(𝜇5𝛾1+(1−𝛾))𝐼(𝑢)𝑑𝑢]𝑒−(𝜇5𝛾+(1−𝛾))𝑡 ,
𝑡

0

 

𝐷(𝑡) = [𝐷(0) + ∫ 𝑒𝑢𝛿[(1 − 𝜎1)𝐼(𝑢) + (1 − 𝜎2)𝐴(𝑢) + (1 − 𝛾)𝐻(𝑢)]𝑑𝑢]𝑒
−𝛿𝑡.

𝑡

0

 

Therefore E(t), L(t), I(t), A(t), Av(t), H(t) and D(t) are all non-negative for all 𝑡 ≥ 0. 

From the seventh equation of the system (1), clearly we can deduce the positivity of R(t) for all 

𝑡 ≥ 0. Hence, the model is mathematically and epidemiologically well posed.  

 

4. STABILITY ANALYSIS 

In this paragraph, we prove the stability of the diseases-free equilibrium 𝑈0 of the model (1).  

The equilibrium of the model (1) is obtained by setting 
𝑑𝑆(𝑡)

𝑑𝑡
=
𝑑𝐸(𝑡)

𝑑𝑡
=
𝑑𝐿(𝑡)

𝑑𝑡
=
𝑑𝐼(𝑡)

𝑑𝑡
=
𝑑𝐴(𝑡)

𝑑𝑡
=

𝑑𝐴𝑣(𝑡)

𝑑𝑡
=
𝑑𝐻(𝑡)

𝑑𝑡
=
𝑑𝑅(𝑡)

𝑑𝑡
=
𝑑𝐷(𝑡)

𝑑𝑡
= 0. 

The system disease free equilibrium (DFE) is given as,  𝑈0 = (𝑁, 0,0,0,0,0,0,0,0).  With the 

existence of different types of infected individuals, the use of the next generation operator is 

mandatory to define the effective basic reproduction number (𝑅0) [9], in order to investigated the 

stability of the disease free equilibrium.    

Let 𝑌 be vector of infected classes, such as infectious, exposed, hospitalized, etc and 𝑋 be vector 

of uninfected classes, such as susceptible, recovered, etc. 

𝑑𝑋

𝑑𝑡
= 𝑊(𝑋, 𝑌), 
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𝑑𝑌

𝑑𝑡
= 𝑓(𝑋, 𝑌) = 𝐹(𝑋, 𝑌) − 𝑉(𝑋, 𝑌). 

 Let 𝑈0 = (X
∗, 0) ∈  ℝ+

𝟗   denote the disease-free equilibrium, that is 𝑓(X∗, 0) = W(X∗, 0) =

0, where 𝐹𝑖 is the rate of new infection in compartment ′𝑖′ and 𝑉(𝑋, 𝑌) is the vector of all others 

rates (Not new infection). For each compartment, in flow in 𝑉 is negative and out flow in 𝑉 is 

positive. 

The spectral radius (𝜌) of the next generation matrix ℱ𝒱−1, define the basic reproductive number 

𝑅0 = 𝜌(ℱ𝒱
−1), where  

ℱ = (
𝜕𝐹

𝜕𝑌
)
(𝑋∗,0)

=

(

 
 
 
 

0 𝛽 𝛽 𝛽 𝛽𝑣 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0)

 
 
 
 

, 

and  

𝒱−1 = (
𝜕𝑉

𝜕𝑌
)
(𝑋∗,0)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1

𝜇
0 0 0 0 0 0

1

𝐽

1

𝐽
0 0 0 0 0

𝜇1𝛼1
𝐽 𝑑

𝜇1𝛼1
𝐽 𝑑

1

𝑑
0 0 0 0

𝜇2𝛼2
𝐽 𝑒

𝜇2𝛼2
𝐽 𝑒

0
1

𝑒
0 0 0

1 − 𝛼2
𝐽𝜎3

1 − 𝛼2
𝐽𝜎3

0 0
1

𝜎3
0 0

(𝜇1𝛼1)(𝜇3𝜎1)

𝐽 𝑑 𝑚

(𝜇1𝛼1)(𝜇3𝜎1)

𝐽 𝑑 𝑚

𝜇3𝜎1
𝑑 𝑚

0 0
1

𝑚
0

𝐶 𝐶 𝑇
1 − 𝜎2
𝑒 𝛿

0
1 − 𝛾

𝑚 𝛿

1

𝛿)

 
 
 
 
 
 
 
 
 
 
 
 
 

, 

where        

𝐽 = 𝜇1𝛼1 + 𝜇2𝛼2 + (1 − 𝛼2), 

𝑑 = 𝜇3𝜎1 + (1 − 𝜎1), 

𝑒 = 𝜇4𝜎2 + (1 − 𝜎2), 

𝑚 = 𝜇5𝛾 + (1 − 𝛾), 

          𝐶 =
(𝜇1𝛼1)(1−𝜎1)

𝐽 𝑑 𝛿
+
(𝜇2𝛼2)(1−𝜎2)

𝐽 𝑒 𝛿
+
(1−𝛾)(𝜇1𝛼1)(𝜇3𝜎1)

𝐽 𝑑𝑚 𝛿
, 
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          𝑇 =
(1−𝛾)(𝜇3𝜎1)

𝑚 𝑑 𝛿
+
1−𝜎1

 𝑑 𝛿
. 

Multiplying ℱ  and 𝒱−1  together and calculating the spectral radius, we obtained the basic 

reproductive number: 

𝑅0 =
𝛽

𝐽
+
𝛽𝜇1𝛼1
𝐽 𝑑

+
𝛽𝜇2𝛼2
𝐽 𝑒

+
𝛽𝑣(1 − 𝛼2)

𝐽𝜎3
, 

𝑅0 =
𝛽

𝜇1𝛼1 + 𝜇2𝛼2 + (1 − 𝛼2)
+

𝛽𝜇1𝛼1

(𝜇1𝛼1 + 𝜇2𝛼2 + (1 − 𝛼2))(𝜇3𝜎1 + (1 − 𝜎1))
 

              +
𝛽𝜇2𝛼2

(𝜇1𝛼1 + 𝜇2𝛼2 + (1 − 𝛼2))(𝜇4𝜎2 + (1 − 𝜎2))
+

𝛽𝑣(1 − 𝛼2)

(𝜇1𝛼1 + 𝜇2𝛼2 + (1 − 𝛼2))𝜎3
. 

Theorem3. If 𝑅0 < 1,  then DFE (disease-free equilibrium) 𝑈0  is locally asymptotically stable 

(L.A.S). If 𝑅0 > 1 then DFE is unstable. 

 

4.1. Global stability of disease-free equilibrium 

In order to obtain the global stability for the disease-free equilibrium the bellow conditions must 

be satisfied.  

First, the system (1) must be written in the form: 

𝑑𝑋

𝑑𝑡
= 𝑊(𝑋, 𝑌), 

     (2) 

𝑑𝑌

𝑑𝑡
= 𝐺(𝑋, 𝑌),  𝐺(𝑋, 0) = 0. 

(C1) for 
𝑑𝑋

𝑑𝑡
= 𝑊(𝑋, 0), 𝑋∗ is Globally Asymptotic Stable (GAS), 

(C2) for   𝐺(𝑋, 𝑌) = 𝑄𝑌 − 𝐺̂(𝑋, 𝑌),  𝐺̂(𝑋, 𝑌) ≥ 0 for (𝑋, 𝑌) ∈ 𝐵. 

Where 𝑄 = (
𝜕𝐺

𝜕𝑌
)
𝑈0

  is a Metzler matrix (M-matrix, the off diagonal elements of Q are non-

negative). The satisfaction of this two conditions give us the following lemma. 

Lemma 4. The disease-free equilibrium 𝑈0 = (𝑋
∗, 0) of the system (2) is globally asymptotically 

stable (G.A.S) provided that 𝑅0 < 1 and assumption (C1) and (C2) are satisfied. 

Now we announce the following theorem: 

Theorem 5. The disease-free equilibrium of system (1) is globally asymptotically stable if 𝑅0 < 1. 

         Proof: 



10 

BENRHMACH, NAMIR, BOUYAGHROUMNI, NAMIR
 

Let 𝑋 = (𝑆, 𝑅), and 𝑌 = (𝐸, 𝐿, 𝐼, 𝐴, 𝐴𝑣, 𝐻, 𝐷). We will have:  

𝑊(𝑋, 𝑌) = (
−𝛽𝑆[𝐿 + 𝐼 + 𝐴] − 𝛽𝑣𝑆 𝐴𝑣

𝑁
𝜇4𝜎2𝐴 + 𝜇5𝛾𝐻 + 𝜎3𝐴𝑣

), 

at the point (𝑋, 0),  𝑊(𝑋, 0) = (0),  𝑋∗ = (𝑁, 0)  is globally asymptotically stable for 
𝑑𝑋

𝑑𝑇
=

𝑊(𝑋, 0). 

Next, we prove the second condition is satisfied, that is: 𝐺̂(𝑋, 𝑌) = 𝑄𝑌 − 𝐺(𝑋, 𝑌),    

𝐺(𝑋, 𝑌) =

(

 
 
 
 
 
 

𝛽𝑆[𝐿 + 𝐴 + 𝐼] + 𝛽𝑣𝑆 𝐴𝑣
𝑁

− 𝜇𝐸

𝜇𝐸 − [𝜇1𝛼1 + 𝜇2𝛼2 + (1 − 𝛼2)]𝐿

𝜇1𝛼1𝐿 − [𝜇3𝜎1 + (1 − 𝜎1)]𝐼

𝜇2𝛼2𝐿 − [𝜇4𝜎2 + (1 − 𝜎2)]𝐴
(1 − 𝛼2)𝐿 − 𝜎3𝐴𝑣

𝜇3𝜎1𝐼 − [𝜇5𝛾 + (1 − 𝛾)]𝐻
(1 − 𝜎1)𝐼 + (1 − 𝜎2)𝐴 + (1 − 𝛾)𝐻 − 𝛿𝐷)

 
 
 
 
 
 

. 

And this follows that 𝑄 = (
𝜕𝐺

𝜕𝑌
)
𝑈0
, 

𝑄 = 

(

 
 
 
 
 

−𝜇 𝛽 𝛽 𝛽 𝛽𝑣 0 0
𝜇 −(𝜇1𝛼1 + 𝜇2𝛼2 + (1 − 𝛼2)) 0 0 0 0 0
0 𝜇1𝛼1 −(𝜇3𝜎1 + (1 − 𝜎1)) 0 0 0 0

0 𝜇2𝛼2 0 −(𝜇4𝜎2 + (1 − 𝜎2)) 0 0 0

0 (1 − 𝛼2) 0 0 −𝜎3 0 0
0 0 𝜇3𝜎1 0 0 −(𝜇5𝛾 + (1 − 𝛾)) 0

0 0 1 − 𝜎1 1 − 𝜎2 0 1 − 𝛾 −𝛿)

 
 
 
 
 

. 

 

The off-diagonal elements of Q are non-negative and 𝐺̂(𝑋, 𝑌) = 𝑄𝑌 − 𝐺(𝑋, 𝑌) = 

 

(

 
 
 
 
 

𝛽[𝐿 + 𝐴 + 𝐼] + 𝛽𝑣𝐴𝑣 − 𝜇𝐸

𝜇𝐸 − [𝜇1𝛼1 + 𝜇2𝛼2 + (1 − 𝛼2)]𝐿

𝜇1𝛼1𝐿 − [𝜇3𝜎1 + (1 − 𝜎1)]𝐼

𝜇2𝛼2𝐿 − [𝜇4𝜎2 + (1 − 𝜎2)]𝐴
(1 − 𝛼2)𝐿 − 𝜎3𝐴𝑣

𝜇3𝜎1𝐼 − [𝜇5𝛾 + (1 − 𝛾)]𝐻
(1 − 𝜎1)𝐼 + (1 − 𝜎2)𝐴 + (1 − 𝛾)𝐻 − 𝛿𝐷)

 
 
 
 
 

−

(

 
 
 
 
 
 

𝛽𝑆[𝐿 + 𝐴 + 𝐼] + 𝛽𝑣𝑆 𝐴𝑣
𝑁

− 𝜇𝐸

𝜇𝐸 − [𝜇1𝛼1 + 𝜇2𝛼2 + (1 − 𝛼2)]𝐿

𝜇1𝛼1𝐿 − [𝜇3𝜎1 + (1 − 𝜎1)]𝐼

𝜇2𝛼2𝐿 − [𝜇4𝜎2 + (1 − 𝜎2)]𝐴
(1 − 𝛼2)𝐿 − 𝜎3𝐴𝑣

𝜇3𝜎1𝐼 − [𝜇5𝛾 + (1 − 𝛾)]𝐻
(1 − 𝜎1)𝐼 + (1 − 𝜎2)𝐴 + (1 − 𝛾)𝐻 − 𝛿𝐷)

 
 
 
 
 
 

, 
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𝐺̂(𝑋, 𝑌) =

(

 
 
 
 
 
(𝛽[𝐿 + 𝐼 + 𝐴] + 𝛽𝑣𝐴𝑣) (1 −

𝑆

𝑁
)

0
0
0
0
0
0 )

 
 
 
 
 

. 

 

Since 𝑆 ≤ 𝑁, 1 −
𝑆

𝑁
≥ 0 and thus 𝐺̂(𝑋, 𝑌) ≥ 0. So the two condition of the lemma 4 are satisfied, 

then this prove the global asymptotic stability of the disease free-equilibrium of the proposed 

system (1) for 𝑅0 < 1. 

 

5. NUMERICAL RESULTS AND DISCUSSION 

In this part, we discuss the simulation of our SELIAAvHRD model with implication of different 

scenario of social distancing and different vaccine product, to show the possible impact of 

vaccination campaigns. The vaccines chosen for this study are Pfizer-BioNTech and AstraZeneca. 

Many possibilities can be studied, using the proposed model. A simplified model is used for 

simulating the impact of vaccination campaigns.   

a) Since there is no scientific evidence that the vaccines chosen in this study cannot completely 

protect people from infection. We set 𝛽 = 𝛽𝑣.  

b) The mean incubation period was 5.2 days (95% confidence interval) [10]. Therefore 𝜇1 =

0.1923. 

c) There is a mean 5-day delay from symptom onset to detection/hospitalization of a case 

(Symptoms may appear 2 to 14 days after exposure to the virus) [10]. So we set 𝜇3 = 0.1724.    

d) Recovery rate 𝛾 = 0.15, is determined by the average duration of recovery from infection 

e) We simulated 𝜇1 = 𝜇2 and 𝜇4 = 0.08. 

f) Symptomatic and asymptomatic infection rate 𝛼1, 𝛼2 are defined by : 

 𝛼1 = (Symptomatic infected)/Susceptible;   

 𝛼2 = (𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑)/𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒.   
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5.1. Pfizer-BioNTech Vaccine 

In this first simulation, we assume that there is no social distancing and a total population of 10 

million.  

The Pfizer-BioNTech (BNT162b2) vaccine is a COVID-19 vaccine administered as a 2-dose series, 

3 weeks apart and may not protect everyone with an efficacy of 95% [11]. We denote 𝑃𝑒, which 

corresponds to value for the Pfizer-BioNTech vaccine efficacy. 

 

𝑃𝑒 = {

0                  𝑖𝑓 0 ≤ 𝑡 < 12 𝑑𝑎𝑦𝑠,              
0.524              𝑖𝑓 12 ≤ 𝑡 < 21 𝑑𝑎𝑦𝑠,             
0.905              𝑖𝑓 21 ≤ 𝑡 < 28 𝑑𝑎𝑦𝑠,             
0.948              𝑖𝑓 28 𝑑𝑎𝑦𝑠 ≤ 𝑡.                  

 

 

 

Figure 2: Simulation for the number of cases with no social distancing. 

 

The basic reproductive number in the first scenario is 𝑅0 = 2.958.  

In the second simulation, we assume that 90% of population obey the rule of social distancing. 
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Figure 4: Simulation for the number of cases with 90% respect of social distancing. 

 

The basic reproductive number in the second scenario is 𝑅0 = 0.842.  

 

5.2. AstraZeneca Vaccine 

The Oxford AstraZeneca covid-19 vaccine ChAdOx1nCoV-19 (AZD1222) administered as a 2-

dose series. A single dose of the vaccine provided 76% protection against symptomatic covid-19 

in the first 90 days after vaccination [12]. We denote 𝑃𝐴 , which corresponds to value for the 

AstraZeneca vaccine efficacy. 

      𝑃𝐴 = {

0                  𝑖𝑓 0 ≤ 𝑡 < 12 𝑑𝑎𝑦𝑠,                 
0.76               𝑖𝑓 12 ≤ 𝑡 < 90 𝑑𝑎𝑦𝑠,                
0.824              𝑖𝑓 90 ≤ 𝑡 𝑑𝑎𝑦𝑠,                     

 

 

We have simulated two different scenarios involving the vaccination campaign, with consideration 

of barrier gestures and social distancing measures.  
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Figure 5: Simulation for the number of cases with no social distancing. 

The basic reproductive number in the first scenario is 𝑅0 = 2.962 and for the second scenario 

𝑅0 = 0.875.  

 

Figure 6: Simulation for the number of cases with 90% respect of social distancing. 
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As can be seen in figures 3 and 5, the number of death and hospitalized people still alerting even 

with the existence of effective vaccines. In the second application of the model we have introduce 

social distancing measures applied by some governments to slow down the Covid-19 spread and 

to cover the shortage of vaccines  supplies. In figures 4 and 6 we show the results of the simulation, 

if we assume that the people respect the social distancing measures. We can see that the number 

of new deaths drop significantly.     

From those results, and with the current rate of vaccination in most countries, we can say that 

strengthening of all measures of barrier gestures, social distancing and increasing the number of 

vaccinated person is mandatory. 

 

6. CONCLUSIONS 

In this paper we have proposed a mathematical model containing nine different stage 

SELIAAvHRD (Susceptible, Exposed, Latent, Symptomatic, Asymptomatic, Asymptomatic 

(vaccinated), Hospitalized, Recovered and Death). Using this proposed model, we were able to 

simulate to different scenario including the vaccination campaign and social distancing measures. 

We obtained a basic reproduction number 𝑅0 > 1 in the absence of social distancing measure 

even with existence of vaccinated people. On the other hand, if we maintained the control measures 

we obtained 𝑅0 < 1, with the descent of the number of new cases and deaths. The limitation of 

vaccine production capacity slowed down the progress of vaccination campaigns all over the world. 

Since the targeted collective immunity will not be reached in the expected time planned by most 

countries, a return to normal life and the lifting of all restrictions will take time. 
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