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Abstract. In this study, we propose a numerical method for four partial differential equations that describe the

dynamics of hepatitis B virus (HBV) with capsids, three discrete delays and two modes of transmission which

are the classical virus-to-cell infection and the direct cell-to-cell transmission. Firstly, we show that the proposed

numerical method maintains the positivity and boundedness of solutions in order to ensure the well-posedness

of the problem. By constructing Lyapunov functionals, we prove that the numerical method preserves the global

dynamical behaviors of the corresponding continuous system for any spacial and temporal step sizes. The delayed

discrete model obtained by the proposed numerical method includes various special cases available in the literature.

To depict the theoretical results graphically, we present some numerical illustrations at the end of the study.
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1. INTRODUCTION

Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus

(HBV). It is a major global health problem. It can cause chronic infection and puts people at
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high risk of death from cirrhosis and cancer of the liver [1]. In addition, this virus can spread

by two fundamental modes, firstly, by cell-to-cell transfer involving direct cell-to-cell contact

and secondly, by virus-to-cell infection through the extracellular space [2, 3, 4]. Nowadays,

HBV has an important place in terms of public health. According to World Health Organization

(WHO), an estimated 296 million individuals are living with chronic hepatitis B infection and

820 000 individuals have died from HBV complications [1].

In recent years, several authors were interested to study the dynamics of HBV infection by

proposing the mathematical models with delays and different sorts of incidence rate. Yousfi

et al. [5] modeled the adaptive immune response in HBV infection and discussed a possible

explanation of the immune response failure to the infection. Hattaf and Yousfi [6] designed and

investigated an generalized HBV infection model comprising a system of three partial differen-

tial equations (PDEs) for uninfected cells, infected cells and free virus. Manna and Chakrabarty

[7] modeled the HBV infection giving consideration both uninfected and infected hepatocytes

along with the intracellular HBV DNA-containing capsids and the virions. Yang et al. [8] pro-

posed and analyzed a diffusive within-host virus dynamics model with both virus-to-cell and

cell-to-cell transmissions. In 2017, Manna [9] extended the system gived in [7] by including

both delay and diffusion for the HBV model. Xu et al. [10] improved and generalized the model

presented in [8] by considering the global dynamics of an HBV infection model with nonlin-

ear incidence function. In 2020, Hattaf and Yousfi [11] generalized all the models cited above

by considering an HBV model of nonlinear partial differential equations (or reaction-diffusion

equations) with two transmission modes and three distributed delays by taking into considera-

tion the spatial mobility of capsids and virions. This model is described by the following system

of PDEs,

(1)



∂H
∂ t

= s−µH(x, t)− f
(
H(x, t), I(x, t),V (x, t)

)
V (x, t)−g

(
H(x, t), I(x, t)

)
I(x, t),

∂ I
∂ t

= e−α1τ1

[
f
(
H(x, t− τ1), I(x, t− τ1),V (x, t− τ1)

)
V (x, t− τ1)

+g
(
H(x, t− τ1), I(x, t− τ1)

)
I(x, t− τ1)

]
−δ I(x, t),

∂D
∂ t

= dD4D+ae−α2τ2I(x, t− τ2)− (β +δ )D(x, t),
∂V
∂ t

= dV4V +βe−α3τ3D(x, t− τ3)− cV (x, t),
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where H(x, t), I(x, t), D(x, t) and V (x, t) are the densities of the uninfected hepatocytes, in-

fected hepatocytes, HBV DNA-containing capsids, and the virions at position x and time t,

respectively. Uninfected hepatocytes are produced at rate s, die at rate µH and become infected

by contact with virions at rate f (H, I,V )V and by contact with infected hepatocytes at rate

g(H, I)I. The parameter δ is the death rate of infected hepatocytes and capsids. The parameters

a, β and c are, respectively, the production rate of capsids from infected hepatocytes, the rate

at which the capsids are transmitted to blood which gets converted to virions, and the clearance

rate of virions. In addition, we assume that the virion or hepatocyte cell contacts a susceptible

hepatocyte at time t−τ1 and the cell becomes infected at time t. The factor e−α1τ1 accounts for

the probability of surviving from time t− τ1 to time t, where α1 is the death rate for infected

but not yet virus-producing cells. The probability of survival of immature capsids is given by

e−α2τ2 and the average life time of an immature capsid is given by 1
α2

. The factor e−α3τ3 ac-

counts for the probability of surviving from time t− τ3 to time t, where 1
α3

is the average life

time of an immature virion. Finally, dD and dV are the diffusion coefficients of capsids and

virions, respectively with4 being the Laplacian operator.

As in [12, 13, 14], the incidence functions f (H, I,V ) and g(H, I) for both modes of infection

are continuously differentiable and satisfy the following hypotheses:

(H0): g(0, I) = 0, for all I ≥ 0;
∂g
∂H

(H, I)≥ 0
(
or g(H, I) is a strictly monotone increasing

function with respect to H when f ≡ 0
)

and
∂g
∂ I

(H, I)≤ 0, for all H ≥ 0 and I ≥ 0.

(H1): f (0, I,V ) = 0, for all I ≥ 0 and V ≥ 0,

(H2): f (H, I,V ) is a strictly monotone increasing function with respect to H
(
or

∂ f
∂H

(H, I,V ) ≥ 0 when g(H, I) is a strictly monotone increasing function with respect

to H
)
, for any fixed I ≥ 0 and V ≥ 0,

(H3): f (H, I,V ) is a monotone decreasing function with respect to I and V .

Biologically, the four hypotheses are reasonable and consistent with the reality. For more details

on the biological significance of these four hypotheses, we refer the reader to the works [12, 14,

15, 16].

On the other hand, the exact solution of system (1) is difficult to be solved analytically.

Furthermore, statistical and clinical data on HBV infection are collected and analyzed at discrete
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times. For these both reasons, we’ll discretize system (1) by using mixed Euler method that is

a mix of both forward and backward Euler methods. The selection of the discretization scheme

is motivated by the work of Hattaf et al. [17].

In this paper, we will prove that the delayed discrete model obtained by the mixed Euler

method retains essential dynamical properties, such as positivity, boundedness and global be-

haviors of the solutions without restrictions on the spatial and temporal step sizes. So, the

remainder of the paper is outlined as follows: In Section 2, we introduce the numerical method

to discretize system (1). In Section 3, we investigate the global dynamics of the delayed discrete

model obtained by the mixed Euler method. Numerical simulations are carried out in Section 4

to validate the analytical results. A brief conclusion finishes the paper.

2. NUMERICAL METHOD AND SPECIAL CASES

In the following, we consider the model (1) in the spatial domain Ω = [xmin,xmax] where

xmin,xmax ∈R. Let ∆t be the time step size and ∆x = (xmax−xmin)/N be the space step size with

N is a positive integer. Assume that there exist three integers (m1,m2,m3)∈N3 with τ1 = m1∆t,

τ2 =m2∆t and τ3 =m3∆t. The space and time grid points are xn = xmin+n∆x for n∈{0,1, ...,N}

and tm = m∆t for m ∈ N. The solution of system (1) at the discretized spatio-temporal point

(xn, tm) is
(
H(xn, tm), I(xn, tm),D(xn, tm),V (xn, tm)

)
. Hence, we denote the approximations of

H(xn, tm), I(xn, tm), D(xn, tm) and V (xn, tm) by Hm
n , Im

n ,D
m
n and V m

n , respectively. For the sake of

convenience, we set all the approximation solutions at the time tm by the (N +1)−dimensional

vector Um = (Um
0 ,Um

1 , ...,Um
N )T , where U ∈ {H, I,D,V} and the notation (.)T denotes the trans-

position of a vector. If all components of a vector U are nonnegative, we denote it by U ≥ 0. By

applying the mixed Euler method and using the above approximations, we obtain the following

system of partial deference equations:

(2)



Hm+1
n −Hm

n
∆t = s−µHm+1

n − f
(
Hm+1

n , Im
n ,V

m
n
)
V m

n −g
(
Hm+1

n , Im
n
)
Im
n ,

Im+1
n −Im

n
∆t = e−α1τ1[ f

(
Hm−m1+1

n , Im−m1
n ,V m−m1

n
)
V m−m1

n

+g
(
Hm−m1+1

n , Im−m1
n

)
Im−m1
n ]−δ Im+1

n ,

Dm+1
n −Dm

n
∆t = dD

Dm+1
n+1−2Dm+1

n +Dm+1
n−1

(∆x)2 +ae−α2τ2Im−m2+1
n − (β +δ )Dm+1

n ,

V m+1
n −V m

n
∆t = dV

V m+1
n+1 −2V m+1

n +V m+1
n−1

(∆x)2 +βe−α3τ3Dm−m3+1
n − cV m+1

n .
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It is important to note that the discrete model formulated by system (2) includes several cases

existing in the literature. For instance:

• Model of Hattaf and Yousfi [18], when we ignore the role of capsids and when the

classical virus-to-cell mode is only considered.

• Model of Manna and Chakrabarty [19], when f (H, I,V ) = kH, g(H, I) = 0, and αi =

τi = 0 for i = 1,2,3.

• Model of Yang et al. [8], when the role of capsids is negliged and f (H, I,V ) = k1H,

g(H, I) = k2H, and αi = τi = 0 for i = 1,2,3.

• Model of Geng et al. [20], when g(H, I) = 0, α1 = α2 = α3 = τ3 = 0 and

f (H, I,V ) =


kHϕ(V )

V
, V 6= 0

kHϕ ′(V ), V = 0

where ϕ(V ) satisfies: ϕ(0) = 0, ϕ ′(V )> 0 and ϕ ′′(V )≤ 0.

In this study, we associate the discrete model (2) with the following initial conditions:

(3) Hs
n = φ1 (xn, ts) , Is

n = φ2 (xn, ts) ,

Ds
n = φ3 (xn, ts) , V s

n = φ4 (xn, ts) ,

for n∈ {0,1, ...,N} and s∈ {−p,−p+1, ...,0}, where p = max{m1,m2,m3}. Also, the discrete

boundary conditions are given by

(4) V m
−1 =V m

0 , V m
N+1 =V m

N , Dm
−1 = Dm

0 and Dm
N+1 = Dm

N for m ∈ N.

By taking consideration the study done by Hattaf and Yousfi in [11], the delayed dis-

crete model (2) has the same equilibria as system (1), namely, the infection-free equilibrium

E f
( s

µ
,0,0,0

)
. Further, the basic reproduction number is given as follows

R0 =

e−α1τ1−α2τ2−α3τ3aβ f
( s

µ
,0,0

)
δc(β +δ )

+
e−α1τ1

δ
g
( s

µ
,0
)
.

When R0 > 1, there exists another equilibrium called the chronic infection equilibrium of the

form E∗(H∗, I∗,D∗,V ∗), with H∗ ∈
(
0,

s
µ

)
, I∗ > 0, D∗ > 0 and V ∗ > 0.
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Theorem 1. For any ∆t > 0 and ∆x > 0, the solutions of the delayed discrete model (2) remain

nonnegative and bounded for all m ∈ N.

Proof. The delayed discrete model (2) can be written as follows

(5)



Hm+1
n =

Hm
n +s∆t−∆t

(
f
(

Hm+1
n ,Im

n ,V m
n

)
V m

n +g
(

Hm+1
n ,Im

n

)
Im
n

)
1+µ∆t ,

Im+1
n =

Im
n +e−α1τ1 ∆t

(
f
(

H
m−m1+1
n ,I

m−m1
n ,V

m−m1
n

)
V

m−m1
n +g

(
H

m−m1+1
n ,I

m−m1
n

)
I
m−m1
n

)
1+δ∆t ,

ADm+1 = Dm +a∆tIm−m2+1e−α2τ2 ,

BV m+1 = V m +β∆tDm−m3+1e−α3τ3 ,

where A and B are two square matrixs of dimensions (N +1)× (N +1) given by

A =



a1 a2 0 . . . 0 0 0

a2 a3 a2 . . . 0 0 0

0 a2 a3 . . . 0 0 0

. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 . . . a3 a2 0

0 0 0 . . . a2 a3 a2

0 0 0 . . . 0 a2 a1



and B =



b1 b2 0 . . . 0 0 0

b2 b3 b2 . . . 0 0 0

0 b2 b3 . . . 0 0 0

. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 . . . b3 b2 0

0 0 0 . . . b2 b3 b2

0 0 0 . . . 0 b2 b1



,

with

a1 = 1+dD
∆t

(∆x)2 +(β +δ )∆t, a2 =−dD
∆t

(∆x)2 , a3 = 1+2dD
∆t

(∆x)2 +(β +δ )∆t,

b1 = 1+dV
∆t

(∆x)2 + c∆t, b2 =−dV
∆t

(∆x)2 and b3 = 1+2dV
∆t

(∆x)2 + c∆t.

It is not difficult to verify that A is a strictly diagonally dominant matrix. Hence, A is non-

singular. From the third and last equation of the system (2), we have

Dm+1 = A−1(Dm +a∆tIm−m2+1e−α2τ2), V m+1 = B−1(V m +β∆tDm−m3+1e−α3τ3).

Obviously, Hm > 0 for all m ∈ N. In fact, assuming the contrary and letting q1 > 0 be the first

time such that Hq1 ≤ 0 and Im ≥ 0, Dm ≥ 0, V m ≥ 0 for m < q1. From the first equation of (2),
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we have

Hq1−1
n = Hq1

n −∆t
(

s−µHq1
n − f

(
Hq1

n , Iq1−1
n ,V q1−1

n
)
V q1−1

n −g
(
Hq1

n , Iq1−1
n

)
Iq1−1
n

)
.

According to (H0)− (H2) and Hq1
n ≤ 0, we get Hq1−1

n ≤ 0. This contradicts our assumption and

so Hm > 0 for all m ∈ N. Now, we prove the nonnegativity of the sequences Im, Dm and V m by

using mathematical induction. When m = 0, we have

I1
n =

I0
n + e−α1τ1∆t

(
f
(
H−m1+1

n , I−m1
n ,V−m1

n
)
V−m1

n +g
(
H−m1+1

n , I−m1
n
)
I−m1
n

)
1+δ∆t

,

D1 = A−1 (D0 +a∆tI−m2+1e−α2τ2
)
,

V 1 = B−1 (V 0 +β∆tD−m3+1e−α3τ3
)
.

Then I1 > 0. From the property of M-matrix (see, [21]), we deduce that D1 > 0 and V 1 > 0.

Thus, by using the induction, we get Im > 0, Dm > 0 and V m > 0 for all m ∈N. This proves the

nonnegativity of solutions.

Next, we establish the boundedness of solutions. To proceed, we define a sequence {Gm} as

follows

Gm
n = Hm

n + eα1τ1Im+m1
n .

Then we have

Gm+1
n −Gm

n = Hm+1
n −Hm

n + eα1τ1(Im+m1+1
n − Im+m1

n )

= ∆t
[
s−µHm+1

n − f
(
Hm+1

n , Im
n ,V

m
n
)
V m

n −g
(
Hm+1

n , Im
n
)
Im
n
]

+∆t
[

f
(
Hm+1

n , Im
n ,V

m
n
)
V m

n +g
(
Hm+1

n , Im
n
)
Im
n
]
− eα1τ1∆tδ Im+m1+1

n

= ∆t(s−µHm+1
n − eα1τ1δ Im+m1+1

n )

≤ ∆t(s−ηGm+1
n ),

where η = min{µ,δ}. Thus, we get

Gm+1
n ≤ 1

1+η∆t
Gm

n +
s∆t

1+η∆t
.
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By using the induction, we obtain

Gm
n ≤

(
1

1+η∆t

)m

G0
n +

s
η

[
1−
(

1
1+η∆t

)m]
.

Then we have

limsup
m−→∞

Gm
n ≤

s
η

for all n ∈ {0,1, ...,N}.

Then we claim that {Gm} is bounded. Therefore, {Hm} and {Im} are bounded. It follows from

the third equation of model (5) that

N

∑
n=0

Dm+1
n =

1
1+∆t (β +δ )

(
N

∑
n=0

Dm
n +a∆te−α2τ2

N

∑
n=0

Im−m2+1
n

)
.

Since {Im} is bounded, there exists a M such that Im
n ≤ M, for all m ∈ {−m2,−m2 +

1, ...,0,1, ...} and n ∈ {0,1, ...,N}. Then we have

N

∑
n=0

Dm+1
n ≤ 1

1+∆t (β +δ )

(
N

∑
n=0

Dm
n +a∆te−α2τ2M(N +1)

)
.

By induction, we obtain that

N

∑
n=0

Dm
n ≤ 1

(1+∆t (β +δ ))m

N

∑
n=0

D0
n

+
ae−α2τ2M(N +1)

(β +δ )

[
1−
(

1
1+∆t (β +δ )

)m]
.

≤
N

∑
n=0

D0
n +

ae−α2τ2M(N +1)
(β +δ )

.

Which implies that {Dm} is bounded. Similarly, the boundedness of {V m} can be obtained.

This completes the proof.

3. STABILITY ANALYSIS

In this section, we will investigate the global dynamics of system (2) by constructing appro-

priate discrete Lyapunov functionals. First, we have the following result.

Theorem 2. If R0 6 1, then the infection-free equilibrium E f is globally asymptotically stable

for all4t > 0 and4x > 0.
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Proof. Based on the method introduced in [22], we construct a Lyapunov functional as follows

Lm =
1
∆t

N

∑
n=0

lm
n ,

where

lm
n = eα1τ1

(
1+δ∆t−

aβ f
(
H0,0,0

)
e−α2τ2−α3τ3

c(β +δ )

)
Im
n +

β f
(
H0,0,0

)
e−α3τ3

c(β +δ )
Dm

n

+
f
(
H0,0,0

)
c

(
1+ c∆t

)
V m

n +∆t
m−1

∑
j=m−m1

f
(
H j+1

n , I j
n,V

j
n
)
V j

n

+∆t
m−1

∑
j=m−m1

g
(
H j+1

n , I j
n
)
I j
n +

aβ f
(
H0,0,0

)
e−α2τ2−α3τ3

c(β +δ )
∆t

m−1

∑
j=m−m2

I j+1
n

+
β f
(
H0,0,0

)
e−α3τ3

c
∆t

m−1

∑
j=m−m3

D j+1
n .

We have

lm+1
n − lm

n = eα1τ1

(
1+δ∆t−

aβ f
(
H0,0,0

)
e−α2τ2−α3τ3

c(β +δ )

)
(Im+1

n − Im
n )

+
β f
(
H0,0,0

)
e−α3τ3

c(β +δ )
(Dm+1

n −Dm
n )

+
f
(
H0,0,0

)
c

(
1+ c∆t

)
(V m+1

n −V m
n )

+∆t
(

f
(
Hm+1

n , Im
n ,V

m
n
)
V m

n − f
(
Hm−m1+1

n , Im−m1
n ,V m−m1

n
)
V m−m1

n

)
+∆t

(
g
(
Hm+1

n , Im
n
)
Im
n −g

(
Hm−m1+1

n , Im−m1
n

)
Im−m1
n

)
+

aβ f
(
H0,0,0

)
e−α2τ2−α3τ3

c(β +δ )
∆t
(
Im+1
n − Im−m2+1

n
)

+
β f
(
H0,0,0

)
e−α3τ3

c
∆t
(
Dm+1

n −Dm−m3+1
n

)
.

Hence,

lm+1
n − lm

n = ∆teα1τ1δ (Im+1
n − Im

n )−∆teα1τ1δ Im+1
n +

a∆tβ f
(
H0,0,0

)
e−α2τ2−α3τ3

c(β +δ )
Im
n

+∆t
(

f
(
Hm+1

n , Im
n ,V

m
n
)
V m

n +g
(
Hm+1

n , Im
n
)
Im
n

)
−∆t f

(
H0,0,0

)
V m

n



10 Z. HAJHOUJI, M. E. YOUNOUSSI, K. HATTAF, N. YOUSFI

+
∆tβ f

(
H0,0,0

)
e−α3τ3

c(β +δ )

(
dD

Dm+1
n+1 −2Dm+1

n +Dm+1
n−1

(∆x)2

)
+

∆t f
(
H0,0,0

)
c

(
1+ c∆t

)(
dV

V m+1
n+1 −2V m+1

n +V m+1
n−1

(∆x)2

)
.

According to the first equation of the discrete system (2), we obtain

Hm+1
n ≤ 1

1+µ∆t
Hm

n +
s∆t

1+µ∆t
.

By using the induction, we easily get

Hm
n ≤

(
1

1+µ∆t

)m

H0
n +

s
µ

(
1−
(

1
1+µ∆t

)m)
.

Thus,

limsup
m−→∞

Hm
n ≤

s
µ
= H0 for all n ∈ {0, ...,N}.

This implies that the difference of Lm satisfies

Lm+1
n −Lm

n ≤
N

∑
n=0

[(
f
(
Hm+1

n , Im
n ,V

m
n
)
− f
(
H0,0,0

))
V m

n

+
δ

e−α1τ1

(
R0−1

)
Im
n

]
+

dDβ f
(
H0,0,0

)
e−α3τ3

c(∆x)2(β +δ )

(
Dm+1

N+1−Dm+1
N +Dm+1

−1 −Dm+1
0

)
+

dV f
(
H0,0,0

)
c(∆x)2

(
1+ c∆t

)(
V m+1

N+1 −V m+1
N +V m+1

−1 −V m+1
0

)
,

≤ δ

e−α1τ1

(
R0−1

)
Im
n .

Thus, if R0 ≤ 1, then Lm+1−Lm ≤ 0, for all m ∈ N. This implies that the sequence {Lm} is

monotone decreasing sequence. Then there exists a constant L̃ such that lim
m→∞

Lm = L̃. Hence,

lim
m→∞

(Lm+1− Lm) = 0, from which we get lim
m→∞

(R0− 1)Im
n = 0 for all n ∈ {0,1, ...,N}. We

discuss two cases:

(i) If R0 < 1, then lim
m→∞

(Lm+1−Lm) = 0 implies that lim
m→∞

Hm
n = H0, lim

m→∞
Im
n = 0, lim

m→∞
Dm

n = 0,

lim
m→∞

V m
n = 0, for all n ∈ {0,1, ...,N}.

(ii) If R0 = 1, then lim
m→∞

(Lm+1−Lm) = 0 implies that lim
m→∞

Hm
n = H0 for all n ∈ {0,1, ...,N}. It

follows from the above discussion that E f is globally asymptotically stable. This completes the

proof.
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Finally, we establish the global stability of the chronic infection equilibrium E∗. To do this,

we assume that R0 > 1 and the incidence functions f and g satisfy the following further hy-

pothesis

(H4)

(
1− f (H, I,V )

f (H, I∗,V ∗)

)(
f (H, I∗,V ∗)
f (H, I,V )

− V
V ∗

)
≤ 0,(

1− f (H∗, I∗,V ∗)g(H, I)
f (H, I∗,V ∗)g(H∗, I∗)

)(
f (H, I∗,V ∗)g(H∗, I∗)
f (H∗, I∗,V ∗)g(H, I)

− I
I∗

)
≤ 0.

We based on the following Hattaf-Yousfi lemma [23]:

Lemma 1. Let T , I,V and σ be four nonnegative real numbers and E(T , I,V ) be an arbitrary

point. The function ψ(E,σ) defined on interval [0,+∞) by

ψ(E,σ)(T ) = T −σ −
∫ T

σ

f (T , I,V )

f (X , I,V )
dX ,

has the global minimum at T = T and satisfies

(
1− f (T , I,V )

f (σ , I,V )

)
(T −σ)≤ ψ(E,σ)(T )≤

(
1− f (T , I,V )

f (T, I,V )

)
(T −σ) for all T > 0.

Thus, we have the following result.

Theorem 3. Assume that R0 > 1 and (H4) holds. Then the chronic infection equilibrium E∗ is

globally asymptotically stable.

Proof. Construct a Lyapunov functional as follows

W m
n =

1
∆t

N

∑
n=0

wm
n ,
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where

wm
n = ψ(E∗,H∗)(H

m
n )+

(
eα1τ1 +g(H∗, I∗)

)
I∗Φ
(

Im
n
I∗

)
+

f (H∗, I∗,V ∗)V ∗eα2τ2

aI∗
D∗Φ

(
Dm

n
D∗

)
+ f (H∗, I∗,V ∗)

(
1+

(β +δ )V ∗

aβe−α2τ2−α3τ3I∗

)
V ∗Φ

(
V m

n
V ∗

)
+ f (H∗, I∗,V ∗)V ∗∆t

m−1

∑
j=m−m1

Φ

(
f
(
H j+1

n , I j
n,V

j
n
)
V j

n

f (H∗, I∗,V ∗)V ∗

)

+g(H∗, I∗)I∗∆t
m−1

∑
j=m−m1

Φ

(
g
(
H j+1

n , I j
n
)
I j
n

g(H∗, I∗)I∗

)

+ f (H∗, I∗,V ∗)V ∗∆t
m−1

∑
j=m−m2

Φ

(
I j+1
n

I∗

)

+ f (H∗, I∗,V ∗)V ∗∆t
m−1

∑
j=m−m3

Φ

(
D j+1

n

D∗

)
,

where Φ(u) = u−1− ln(u) (u > 0) with a global minimum at u = 1 and satisfies Φ(1) = 0.

It follows from Lemma 1 that ψ(E∗,H∗)(Hm
n ) > 0. By the inequality given in Lemma 1 and

ln(u)≤ u−1, we obtain

wm+1
n −wm

n ≤
(

Hm+1
n −Hm

n

)(
1− f (H∗, I∗,V ∗)

f (Hm+1
n , I∗,V ∗)

)
+eα1τ1

(
Im+1
n − Im

n

)(
1− I∗

Im+1
n

)
+g(H∗, I∗)I∗

(
Im+1
n
I∗
− Im

n
I∗

+ ln
(

Im
n

Im+1
n

))
+

f (H∗, I∗,V ∗)V ∗eα2τ2

aI∗

(
Dm+1

n −Dm
n

)(
1− D∗

Dm+1
n

)
+
(β +δ ) f (H∗, I∗,V ∗)V ∗

aβe−α2τ2−α3τ3I∗

(
V m+1

n −V m
n

)(
1− V ∗

V m+1
n

)
+ f (H∗, I∗,V ∗)V ∗

(
V m+1

n
V ∗
− V m

n
V ∗

+ ln
(

V m
n

V m+1
n

))
+ f (H∗, I∗,V ∗)V ∗∆t

[ m

∑
j=m−m1+1

Φ

(
f
(
H j+1

n , I j
n,V

j
n
)
V j

n

f (H∗, I∗,V ∗)V ∗

)
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−
m−1

∑
j=m−m1

Φ

(
f
(
H j+1

n , I j
n,V

j
n
)
V j

n

f (H∗, I∗,V ∗)V ∗

)]

+g(H∗, I∗)I∗∆t
[ m

∑
j=m−m1+1

Φ

(
g
(
H j+1

n , I j
n
)
I j
n

g(H∗, I∗)I∗

)

−
m−1

∑
j=m−m1

Φ

(
g
(
H j+1

n , I j
n
)
I j
n

g(H∗, I∗)I∗

)]

+ f (H∗, I∗,V ∗)V ∗∆t
[ m

∑
j=m−m2+1

Φ

(
I j+1
n

I∗

)
−

m−1

∑
j=m−m2

Φ

(
I j+1
n

I∗

)]

+ f (H∗, I∗,V ∗)V ∗∆t
[ m

∑
j=m−m3+1

Φ

(
D j+1

n

D∗

)
−

m−1

∑
j=m−m3

Φ

(
D j+1

n

D∗

)]
.

By using the equilibrium conditions for E∗ that are

s−µH∗ = f (H∗, I∗,V ∗)V ∗+g(H∗, I∗)I∗ = δeα1τ1I∗ =
δeα1τ1+α2τ2(β +δ )

a
D∗,

and

δeα1τ1I∗ =
δc(β +δ )eα1τ1+α2τ2+α3τ3

aβ
V ∗.

Then we have

wm+1
n −wm

n = ∆tµH∗
(

1− Hm+1
n
H∗

)(
1− f (H∗, I∗,V ∗)

f (Hm+1
n , I∗,V ∗)

)
+ f (H∗, I∗,V ∗)V ∗∆t

[
1− f (H∗, I∗,V ∗)

f (Hm+1
n , I∗,V ∗)

+
f (Hm+1

n , Im
n ,V

m
n )V m

n

f (Hm+1
n , I∗,V ∗)V ∗

− f (Hm−m1+1
n , Im−m1

n ,V m−m1
n )V m−m1

n I∗

f (H∗, I∗,V ∗)V ∗Im+1
n

−D∗Im−m2+1
n

Dm+1
n I∗

+
eα2τ2D∗(β +δ )

aI∗

− c(β +δ )V m+1
n

aβ I∗e−α2τ2−α3τ3
− (β +δ )Dm−m3+1

n V ∗

aI∗e−α2τ2V m+1
n

+
c(β +δ )V ∗

aβ I∗e−α2τ2−α3τ3

+
V m+1

n
V ∗
− V m

n
V ∗

+
Im+1
n
I∗
− Im+1

n
I∗
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+ ln
(

f (Hm−m1+1
n , Im−m1

n ,V m−m1
n )V m−m1

n Im−m2+1
n Dm−m3+1

n

f (Hm+1
n , Im

n ,V m
n )V m+1

n Im+1
n Dm+1

n

)]
+∆tg(H∗, I∗)I∗

[
2− f (H∗, I∗,V ∗)

f (Hm+1
n , I∗,V ∗)

+
f (H∗, I∗,V ∗)g(Hm+1

n , Im
n )I

m
n

f (Hm+1
n , I∗,V ∗)g(H∗, I∗)I∗

+
Im+1
n
I∗
− Im

n
I∗
− Im+1

n
I∗

−g(Hm−m1+1
n , Im−m1

n )Im−m1
n

g(H∗, I∗)Im+1
n

+ ln
(

g(Hm−m1+1
n , Im−m1

n )Im−m1
n

g(Hm+1
n , Im

n )I
m+1
n

)]

+
N

∑
m=0

dD∆t
(∆x)2

eα2τ2 f (H∗, I∗,V ∗)V ∗

aI∗

(
1− D∗

Dm+1
n

)(
Dm+1

n+1 −2Dm+1
n

+Dm+1
n−1
)
+

N

∑
m=0

dV ∆t
(∆x)2

eα2τ2+α3τ3

f (H∗, I∗,V ∗)V ∗
aβ I∗

(
1− V ∗

V m+1
n

)(
V m+1

n+1

−2V m+1
n +V m+1

n−1
)
.

Hence, the first difference of W m satisfies

W m+1
n −W m

n ≤ ∆tµH∗
(

1− Hm+1
n
H∗

)(
1− f (H∗, I∗,V ∗)

f (Hm+1
n , I∗,V ∗)

)
+ f (H∗, I∗,V ∗)V ∗

(
−1− V m

n
V ∗

+
f (Hm+1

n , I∗,V ∗)
f (Hm+1

n , Im
n ,V m

n )

+
f (Hm+1

n , Im
n ,V

m
n )V m

n

f (Hm+1
n , I∗,V ∗)V ∗

)
+g(H∗, I∗)I∗

(
−1− Im

n
I∗

+
f (Hm+1

n , I∗,V ∗)g(H∗, I∗)
f (H∗, I∗,V ∗)g(Hm+1

n , Im
n )

+
f (H∗, I∗,V ∗)g(Hm+1

n , Im
n )I

m
n

f (Hm+1
n , I∗,V ∗)g(H∗, I∗)I∗

)
− f (H∗, I∗,V ∗)V ∗

[
Φ

(
f (H∗, I∗,V ∗)

f (Hm+1
n , I∗,V ∗)

)
+Φ

(
f (Hm−m1+1

n , Im−m1
n ,V m−m1

n )V m−m1
n I∗

f (H∗, I∗,V ∗)V ∗Im+1
n

)
+Φ

(
f (Hm+1

n , I∗,V ∗)
f (Hm+1

n , Im
n ,V m

n )

)]
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−g(H∗, I∗)I∗
[

Φ

(
f (H∗, I∗,V ∗)

f (Hm+1
n , I∗,V ∗)

)
+Φ

(
g(Hm−m1+1

n , Im−m1
n )Im−m1

n

g(H∗, I∗)Im+1
n

)
+Φ

(
f (Hm+1

n , I∗,V ∗)g(H∗, I∗)
f (H∗, I∗,V ∗)g(Hm+1

n , Im
n )

)]

− f (H∗, I∗,V ∗)V ∗Φ
(

D∗Im−m2+1
n

Dm+1
n I∗

)
− f (H∗, I∗,V ∗)V ∗Φ

(
V ∗Dm−m3+1

n

V m+1
n D∗

)
− dD

(∆x)2
eα2τ2 f (H∗, I∗,V ∗)V ∗

aI∗
N−1

∑
n=0

(Dm+1
n+1 −Dm+1

n )2

Dm+1
n+1 Dm+1

n

− dV

(∆x)2
eα2τ2+α3τ3 f (H∗, I∗,V ∗)V ∗

aβ I∗
N−1

∑
n=0

(V m+1
n+1 −V m+1

n )2

V m+1
n+1 V m+1

n
.

Since the function f (H, I,V ) is strictly monotonically increasing with respect to H, we have(
1− Hm+1

n
H∗

)(
1− f (H∗, I∗,V ∗)

f (Hm+1
n , I∗,V ∗)

)
≤ 0.

Based on the hypothesis (H4), we have

−1− V m
n

V ∗ +
f (Hm+1,I∗,V ∗)

f
(

Hm+1
n ,Im

n ,V m
n

) + f
(

Hm+1
n ,Im

n ,V m
n

)
V m

n

f (Hm+1
n ,I∗,V ∗)V ∗

=(
1− f

(
Hm+1

n ,Im
n ,V m

n

)
f (Hm+1

n ,I∗,V ∗)

)(
f (Hm+1

n ,I∗,V ∗)

f
(

Hm+1
n ,Im

n ,V m
n

) − V m
n

V ∗

)
≤ 0.

and

−1− Im
n
I∗ +

f (Hm+1
n ,I∗,V ∗)g(H∗,I∗)

f (H∗,I∗,V ∗)g
(

Hm+1
n ,Im

n

) + f (H∗,I∗,V ∗)g
(

Hm+1
n ,Im

n

)
Im
n

f (Hm+1
n ,I∗,V ∗)g(H∗,I∗)I∗

=(
1− f (H∗,I∗,V ∗)g

(
Hm+1

n ,Im
n

)
f (Hm+1

n ,I∗,V ∗)g(H∗,I∗)

)(
f (Hm+1

n ,I∗,V ∗)g(H∗,I∗)

f (H∗,I∗,V ∗)g
(

Hm+1
n ,Im

n

) − Im
n
I∗

)
≤ 0.

Recall that Φ(u) ≥ 0 for all u > 0, thus we get W m+1−W m ≤ 0, for all m ∈ N. Then there

exists a constant W̃ such that lim
m→∞

W m = W̃ , which implies that lim
m→∞

(W m+1−W m) = 0. Fur-

thermore, from system (2), it can be shown that lim
m→∞

Hm
n = H∗, lim

m→∞
Im
n = I∗, lim

m→∞
Dm

n = D∗,

lim
m→∞

V m
n = V ∗, for all n ∈ {0,1, ...,N}, which implies that E∗ of system (2) is globally asymp-

totically stable. This completes the proof.
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4. APPLICATION AND NUMERICAL SIMULATIONS

In this section, we apply our theoretical results obtained within the preceding sections to the

subsequent model:

Hm+1
n −Hm

n
∆t

= s−µHm+1
n − k1Hm+1

n V m
n

1+b1V m
n
− k2Hm+1

n Im
n

1+b2Im
n

,

Im+1
n − Im

n
∆t

= e−α1τ1

[
k1Hm−m1+1

n V m−m1
n

1+b1V m−m1
n

+
k2Hm−m1+1

n Im−m1
n

1+b2Im−m1
n

]
−δ Im+1

n ,

Dm+1
n −Dm

n
∆t

= dD4D+ae−α2τ2Im−m2+1
n − (β +δ )Dm+1

n , (8)

V m+1
n −V m

n
∆t

= dV4V +βe−α3τ3Dm−m3+1
n − cV m+1

n ,

where k1 and k2 denote the virus-to-cell infection and therefore the cell-to-cell transmission

rates. The non-negative constants b1 and b2 measure the saturation effect. The other state

variables and parameters have an equivalent biological meanings as in system (1). As before,

we consider model (8) with initial conditions

Hs
n = φ1 (xn, ts)≥ 0, Is

n = φ2 (xn, ts)≥ 0, (9)

Ds
n = φ3 (xn, ts)≥ 0, V s

n = φ4 (xn, ts)≥ 0,

for n ∈ {0,1, ...,N} and s ∈ {−p,−p+1, ...,0}, where p = max{m1,m2,m3}. In addition, the

discrete boundary conditions are given by

V m
−1 =V m

0 , V m
N+1 =V m

N , Dm
−1 = Dm

0 and Dm
N+1 = Dm

N for m ∈ N. (10)

The problem (8)− (10) is a particular case of system (2)− (4) with f (H, I,V ) =
k1H

1+b1V
and

g(H, I) =
k2H

1+b2I
.

On the other hand, the hypotheses (H0)− (H4) are satisfied and the basic reproduction num-

ber of system (8) is given by

R0 =
aβk1se−α1τ1−α2τ2−α3τ3

δ µc(β +δ )
+

k2se−α1τ1

δ µ
.

Therefore, by applying Theorems 2 and 3, we conclude the following result.
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Corollary 1.

(i): If R0 ≤ 1, then the infection-free equilibrium E f of system (8)− (10) is globally

asymptotically stable.

(ii): If R0 > 1, then the infection-free equilibrium E f becomes unstable and the chronic

infection equilibrium E∗ of (8)− (10) is globally asymptotically stable.

For numerical simulations, we consider Ω = [0,50], dD = 0.005, dV = 0.001, ∆t = 0.1 and

∆x = 0.5. Also, we choose the following parameter values: s = 100, µ = 0.14, δ = 0.5, b1 =

0.00001, b2 = 0.0001, α1 = 0.0139, α2 = 0.65, α3 = 0.001, a = 0.002, β = 2, c = 3, τ1 =

2.5, τ2 = 3.5, τ3 = 4.5, k1 = 10−6, k2 = 3× 10−5. By a simple computation, we have R0 =

0.0414 < 1. Hence, system (8) features an infection-free equilibrium E f (701.1449,0,0,0).

From Corollary 1, E f is globally asymptotically stable, which suggests that the virus is cleared,

the infection dies out and therefore the patient are going to be completely cured (see, Fig. 1).

FIGURE 1. Stability of the infection-free equilibrium E f .

Next, we choose s = 1.3× 102.8, µ = 0.023, δ = 0.53, b1 = 0.01, b2 = 0.0001, a = 150,

β = 0.87, c = 3.8, τ1 = 4.5, τ2 = 2.5, τ3 = 1.5 and that we keep the opposite parameter values.

During this case, R0 = 1.8963 > 1 and system (8) has a unique chronic infection equilibrium

E∗(2.0007× 104,6.382× 102,1.6059× 104,3.21× 103). By Corollary 1, we deduce that E∗

is globally asymptotically stable, which suggests that the virus persists within the host and

therefore the infection becomes chronic (see, Fig. 2).



18 Z. HAJHOUJI, M. E. YOUNOUSSI, K. HATTAF, N. YOUSFI

FIGURE 2. Stability of the chronic infection equilibrium E∗.

5. CONCLUSION

In this paper, we have proposed a numerical method to discretize a continuous model for HBV

infection with multi-delays and two modes of transmission. We firstly proved that the proposed

numerical method preserves the nonnegativity and boundedness of solutions. In addition, we

have proved that the numerical method also preserves the global dynamics of the corresponding

continuous system for any spacial and temporal step sizes.

Furthermore, the numerical method and results investigated in [8, 18, 19, 20] are improved

and extended. On the other hand, the study of this article is based on a continuous model which

neglects the memory effect and considers only the derivative of integer order. It will be inter-

esting to study the memory effect on the dynamics of HBV infection by using the generalized

Hattaf fractional derivative with non-singular kernel presented in [24] instead of the classical

derivative used in (1). This will be done in our future work.
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