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Abstract. Coronavirus and its associated comorbidities have been the drivers of many deaths across the globe

in recent times. Individuals with underlying medical conditions are at higher risk of becoming critically ill and

developing complications if they are infected with the Coronavirus. In this paper, a Caputo-Fabrizio fractional-

order model of coronavirus disease with comorbidity is formulated to access the impact of comorbidity diseases

on COVID-19 transmission using both a fractional-order as well as a stochastic approach. Exponential law is

utilized to present the existence and uniqueness of solutions using the fixed-point theory. The fractional stochastic

approach is adopted to examine the same model to explore the random effect. Numerical simulations are used to

support the theoretical results and the simulation results suggest that the increase of comorbidity development and

the fractional-order derivative factor simultaneously increases the prevalence of the infection and the spread of the

disease. The fractional stochastic numerical results suggest that the prediction of infection rate is more stochastic

than deterministic.
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1. INTRODUCTION

The deadly Coronavirus disease (COVID-19) which was first reported in the city of Wuhan

in china [1] is one of the most deadly epidemics the world has ever experienced. From Wuhan,

it rapidly spread throughout the globe, that on the 11th of March 2020, it was declared a

global pandemic by the World Health Organization (WHO) [2]. It is still spreading to date

and has infected over 183 million and killed over 3.9 million people the world over. Infected

individuals have symptoms like high fever, fatigue, muscle pains, loss or change of taste or

smell, shortness of breath, dry cough, and sore throat.

The disease can be contracted by susceptible individuals when they come in contact with

respiratory droplets from infected individuals and through direct contact with contaminated

surfaces [3]. As of June 2021, there is no cure for COVID-19, affected nations only rely on

protective measures such as wearing face masks in public places, social distancing, maintaining

proper hygiene and ventilation, quarantine, contact tracing, and vaccination to control the

disease spread. Optimal supportive care in hospitals includes oxygen for severely ill patients

and those who are at risk of severe disease and more advanced respiratory support such as

ventilation for patients who are critically ill. Corticosteroids like dexamethasone, prednisone,

and methylprednisolone are also used to help reduce the length of time on a ventilator and save

lives of patients with severe and critical illness [4].

Recently studies have revealed that individuals infected with diseases like diabetes, lung

disease and heart disease, HIV/AIDS, hypertension have a compromised immune system and

thus are at higher risk of contracting COVID-19 and an increased risk of severe illness upon

infection [5]. Comorbidity is defined as a disease or medical condition unrelated in etiology or

causality to the principal diagnosis that coexists with the disease of interest [6]. According to

a research study in China which monitored 344 COVID-19 patients in the ICU. The majority

of those that died from the disease had at least one comorbidity, about 144 of them having

hypertension [7]. Another study conducted in China showed that 247 out of 633 COVID-19

patients had at least one comorbidity [7]. In the USA, the Centers for Disease Control and

Prevention (CDC) used COVID-NET in 14 states to monitor the demographics of COVID-19
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patients who were hospitalized [8]. The results obtained from March 1 to 30, 2020, showed

that, out of the 180 patients on COVID-NET, 89.3% of them had an underlying comorbidity.

The most common comorbidities found were obesity, hypertension, and diabetes mellitus [8].

These results, therefore, point towards the need to investigate the dynamics of COVID-19 and

comorbidity co-infections.

Mathematical modelling has played a major role in controlling many epidemics on the

globe because, in the absence of real data, models provide both qualitative and quantitative

information that help in minimizing the spread of many diseases. Recently, several integer

order mathematical models on COVID-19 and comorbidities have been developed to analyse

the impact of various comorbidities on COVID-19 transmission [9, 10, 11, 12, 13]. However,

integer-order models have a major setback: the lack of hereditary memory effect for accurate

predictions. Fractional-order derivatives on the other hand have become a powerful tool

in modeling in the recent times because of their characterization. These operators possess

memory effect crossover property and have statistical interpretation which makes the operators

efficient [14]. There are several different fractional-order derivatives but the most common one

is the Caputo derivative which is just a power law with a local singular kernel. We also have the

Caputo-Fabrizio (CF) fractional order derivative with non-singular Kernel proposed by Caputo

and Fabrizio [15]. Further properties of the CF operators were later developed by Losada and

Nieto [16]. The effectiveness of the CF operator has been illustrated in many fractional-order

models [17, 21, 20, 19, 18, 22, 23].

The aim of this work is to analyse a fractional-order model of COVID-19 with comor-

bidity as well as a corresponding stochastic model of COVID-19 with comorbidity. The study

further presents the numerical scheme for the fractional coronavirus model with comorbidity in

global derivatives via exponential decay kernel, and use these schemes to simulate the model

and make relevant conclusions from our results, to help curb the spread of the disease.
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2. MATHEMATICAL MODEL FORMULATION

The total human population at time t is given by Nh (t) and partitioned into the following; sus-

ceptible humans Sh (t), comorbidity susceptible humans Scm (t), humans infected with COVID-

19 Icv (t), humans recovered from COVID-19 Rcv(t), humans co-infected with comorbidity and

coronavirus Ivm (t), humans recovered from comorbidity disease Rcm (t). Susceptible humans

are recruited at a rate is Λh and they get infected with COVID-19 at a rate βcv = β (Icv +δcmIvm) ,

where δcm is the modification parameter for infectiousness of the co-infected humans. The natu-

ral mortality rate is denoted by µh and susceptible humans contract the comorbidity disease at a

rate φcm. The comorbidity humans get infect with COVID-19 at a rate ωcmβcv, where ωcm > 1.

The COVID-19 induced mortality rate is r and the rate of recovery of humans infected with

COVID is δ1. The rate at which recovered humans become infected again is η1βcv. The rate of

recovery of co-infected humans from comorbidity is δ2 and η2βcv is the rate at which recovered

comorbidity humans get co-infected again.

The model system of equations is as follows:

(1)

dSh
dt = Λh−βcvSh− (φcm +µh)Sh,

dScm
dt = φcmSh−wcmβcvScm−µhScm,

dIcv
dt = βcvSh− (δ1 +µh) Icv +η1βcvRcv,

dRcv
dt = δ1Icv−µhRcv−η1βcvRcv,

dIvm
dt = wcmβcvScm− (δ2 +µh) Ivm +η2βcvRcm,

dRcm
dt = δ2Ivm−µhRcm−η2βcvRcm,

βcv = β (Icv +δcmIvm) ,

with the initial conditions Sh(0) = ζ1, Scm(0) = ζ2, Icv(0) = ζ3, Rcv(0) = ζ4, Ivm(0) = ζ5,

Rcm(0) = ζ6.
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3. ANALYSIS OF THE FRACTIONAL COVID-19 MODEL

3.1. Mathematical Preliminaries. We give the following definitions that will be applied for

proofs of the existence, uniqueness and positivity of the Caputo-Fabrizio (CF) model analysed

in this work.

Definition 1. [15] Assume ψ(t) ∈H 1(`1, `2), for `2 > `1, p ∈ [0,1]. Then the CF fractional

operator is given as

Dp
t (ψ(t)) =

M (p)
(1− p)

∫ `2

`1

ψ
′
(Θ)e

[
−p t−Θ

1−p

]
dΘ, 0 < p < 1,

=
dψ

dt
, p = 1,

(2)

where M (p) represents a normality that satisfies the condition M (0) = M (1) = 1.

Definition 2. The integral operator of fractional order corresponding to the CF fractional de-

rivative defined in [16] states that

(3) CF Ip
t ψ(t) =

2(1− p)
(2− p)M (p)

ψ(t)+
2p

(2− p)M (p)

∫ t

0
ψ(τ)dτ., p ∈ [0,1], t ≥ 0

Definition 3. The Laplace transform of (CFDp
t ψ(t),κ) is represented as follows

(4) L
[
0CFDp

t ψ(t),κ
]
=

κψ̃(x,κ)−ψ0(x)
κ + p(1−κ)

,

where ψ̃(x,κ) is the Laplace transform L
(
ψ(x, t),κ

)
of ψ(x, t).

Classical models have been noticed not to be effective capturing complex phenomena. Non-

integer order models have the capability of capturing the memory effect for accurate prediction.

Currently, Caputo-Fabrizio operator characterized by no singularity which has a capability of

crossover properties. In natural occurring circumstances the exponential decay which is Ca-

puto–Fabrizio is common.

3.2. The Caputo-Fabrizio model. The Caputo-Fabrizio fractional-order model of COVID-

19 disease with comorbidity is given as follows.
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(5)

CF
0 Dq

t Sh = Λh−βcvSh− (φcm +µh)Sh,

CF
0 Dq

t Scm = φcmSh−wcmβcvScm−µhScm,

CF
0 Dq

t Icv = βcvSh− (δ1 +µh) Icv +η1βcvRcv,

CF
0 Dq

t Rcv = δ1Icv−µhRcv−η1βcvRcv,

CF
0 Dq

t Ivm = wcmβcvScm− (δ2 +µh) Ivm +η2βcvRcm,

CF
0 Dq

t Rcm = δ2Ivm−µhRcm−η2βcvRcm,

βcv = β (Icv +δcmIvm) ,

with the following initial conditions Sh(0) = ζ1,Scm(0) = ζ2, Icv(0) = ζ3,Rcv(0) = ζ4, Ivm(0) =

ζ5,Rcm(0) = ζ6.

3.3. Model steady states and basic reproduction number. In this section, the equilibrium

states of the fractional coronavirus with comorbidity model (5) are investigated and their stabil-

ities anlyzed. The coronavirus with comorbidity free state of the system (1) is given by

E0 = (S0
h,S

0
cm, I

0
cv,R

0
cv, I

0
vm,R

0
cm) =

(
Λh

φcm +µh
,

φcmΛh

µh (φcm +µh)
,0,0,0,0

)
,

while the endemic equilibrium point is

E∗ = (S∗h,S
∗
cm, I

∗
cv,R

∗
cv, I
∗
vm,R

∗
cm),

where

S∗h =
Λh

φcm +βcv +µh
,

S∗cm =
φcmΛh

(βcmωcm +µh)(φcm +βcv +µh)
,
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I∗cv =
βcvΛh (η1βcv+µh)

µh (φcm +βcv +µh)(η1βcv +µh +δ1)
,

R∗cv =
σ1βcvΛh

µh (φcm +βcv +µh)(η1βcv +µh +δ1)
,

I∗vm =
ωcmφcmβcvΛh (η2βcv +µh)

µh (βcmωcm +µh)(φcm +βcv +µh)(η2βcv +µh +δ2)
,

R∗cm =
σ2ωcmφcmβcvΛh

µh (βcmωcm +µh)(φcm +βcv +µh)(η2βcv +µh +δ2)
.

Furthermore, the basic reproduction number R0 of the model (5) in a susceptible population

is expressed as:

(6) R0 =
β
(
δcmS0

cmωcmµh +δ1δcmS0
cmωcm +µhS0

h +δ2S0
h

)
(µh +δ1)(µh +δ2)

= R0cv +R0vm

where R0cv =
βS0

h
µh+δ1

and R0vm =
βδcmS0

cmωcm
µh+δ2

.

Theorem 1. The steady state E0 is locally asymptotically stable if all of the eigenvalues φi of

J(E0) satisfy;

(7) |arg(φi)|>
qπ

2
, i = 1,2,3,4,5,6.

Proof. The Jacobian matrix J(E0) of the model (5) evaluated at the coronavirus with comorbid-

ity free state E0 is given by the following

(8)

J(E0)=



−(µh +φcm) 0 − βΛh
µh+φcm

0 − δcmβΛh
µh+φcm

0

φcm −µh − ωcmβφcmΛh
µh(µh+φcm)

0 −ωcmδcmβφcmΛh
µh(µh+φcm)

0

0 0 βΛh
µh+φcm

− (µh +δ1) 0 − δcmβΛh
µh+φcm

0

0 0 δ1 −µh 0 0

0 0 ωcmβφcmΛh
µh(µh+φcm)

0 ωcmδcmβφcmΛh
µh(µh+φcm)

− (µh +δ2) 0

0 0 0 0 δ2 −µh


It is obvious that four of the eigenvalues are negatives which are −µh,−µh,−µh,−(φcm +µh)

and the other two eigenvalues are be obtained from the 2×2 matrix given by:

(9) J1 =

 βΛh
µh+φcm

− (µh +δ1) − δcmβΛh
µh+φcm

ωcmβφcmΛh
µh(µh+φcm)

ωcmδcmβφcmΛh
µh(µh+φcm)

− (µh +δ2)

 .
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The other eigenvalues are the roots of the following equation

(10) λ
2 +a1λ +a2 = 0,

where

a1 = (µh +δ1)
[
1−R0cv

]
+(µh +δ2)

[
1−R0vm

]

a2 =
2β 2Λ2

hωcmδcmφcm

µh(µh +φcm)2 +(µh +δ1)(µh +δ2)
[
1−R0

]
.

Using the Routh-Hurwitz criterion, the eigenvalues are either negative or have negative real

parts if only if a1,a2 > 0. The coefficient a1 > 0 if R0cv < 1 and R0vm < 1 are satisfied. Note

that we have R0cv < R0 and R0vm < R0, while a2 > 0 if R0 < 1. The argument of the roots of Eq.

(10) are all greater than qπ

2 if R0 < 1. Hence E0 is locally asymptotically whenever R0 < 1. �

3.4. Existence and Uniqueness of Solutions. It is vital to examine the existence and unique-

ness of the solutions of the COVID-19 model (5) in the light of exponential decay law. The

existence of a solution of the COVID-19 model is investigated here using the fixed point theory.

The fractional integral (2) is applied to (5) to obtain

(11)

Sh(t)−Sh(0) = CF
0 Iq

t {Λh−βcvSh− (φcm +µh)Sh},

Scm(t)−Scm(0) = CF
0 Iq

t {φcmSh−wcmβcvScm−µhScm},

Icv(t)− Icv(0) = CF
0 Iq

t {βcvSh− (δ1 +µh) Icv +η1βcvRcv},

Rcv(t)−Rcv(0) = CF
0 Iq

t {δ1Icv−µhRcv−η1βcvRcv},

Ivm(t)− Ivm(0) = CF
0 Iq

t {wcmβcvScm− (δ2 +µh) Ivm +η2βcvRcm},

Rcm(t)−Rcm(0) = CF
0 Iq

t {δ2Ivm−µhRcm−η2βcvRcm}.
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(12)

Sh(t)−Sh(0) = 2(1−q)
(2−q)M(q){Λh−βcv(t)Sh(t)− (φcm +µh)Sh(t)}

+ 2q
(2−q)M(q)

∫ t

0

(
Λh−βcv(ε)Sh(ε)− (φcm +µh)Sh(ε)

)
dε,

Scm(t)−Scm(0) = 2(1−q)
(2−q)M(q){φcmSh(t)−wcmβcv(t)Scm(t)−µhScm(t)}

+ 2q
(2−q)M(q)

∫ t

0
{φcmSh(ε)−wcmβcv(ε)Scm(ε)−µhScm,(ε)}dε,

Icv(t)− Icv(0) = 2(1−q)
(2−q)M(q){βcv(t)Sh(t)− (δ1 +µh) Icv(t)+η1βcvRcv,(t)}

+ 2q
(2−q)M(q)

∫ t

0
{βcv(ε)Sh(ε)− (δ1 +µh) Icv(ε)+η1βcv(ε)Rcv,(ε)}dε,

Rcv(t)−Rcv(0) = 2(1−q)
(2−q)M(q){δ1Icv(t)−µhRcv(t)−η1βcv(t)Rcv(t)}

+ 2q
(2−q)M(q)

∫ t

0
{δ1Icv(ε)−µhRcv(ε)−η1βcv(ε)Rcv(ε)}dε,

Ivm(t)− Ivm(0) = 2(1−q)
(2−q)M(q){wcmβcv(t)Scm(t)− (δ2 +µh) Ivm(t)+η2βcv(t)Rcm(t)}

+ 2q
(2−q)M(q)

∫ t

0
{wcmβcv(ε)Scm(ε)− (δ2 +µh) Ivm(ε)+η2βcv(ε)Rcm(ε)}dε,

Rcm(t)−Rcm(0) = 2(1−q)
(2−q)M(q){δ2Ivm(t)−µhRcm(t)−η2βcv(t)Rcm(t)}

+ 2q
(2−q)M(q)

∫
{δ2Ivm(ε)−µhRcm(ε)−η2βcv(ε)Rcm(ε)}dε.

We use the following notation for the sake of simplicity.

(13)

Φ1(t,Sh) = Λh−βcvSh− (φcm +µh)Sh,

Φ2(t,Scm) = φcmSh−wcmβcvScm−µhScm,

Φ3(t, Icv) = βcvSh− (δ1 +µh) Icv +η1βcvRcv,

Φ4(t,Rcv) = δ1Icv−µhRcv−η1βcvRcv,
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Φ5(t, Ivm) = wcmβcvScm− (δ2 +µh) Ivm +η2βcvRcm,

Φ6(t,Rcm) = δ2Ivm−µhRcm−η2βcvRcm.

Theorem 2. The kernels Φ1, Φ2, Φ3, Φ4, Φ5, and Φ6 satisfy the lipschitz condition if

(14) 0≤ β (l1 +δcml2)+(µ +φcm)< 1.

Proof.

(15)

||Φ1(t,Sh)−Φ1(t,Sh1)|| = ||−βcv(Sh−Sh1)− (φcm +µh)(Sh−Sh1)||

≤ (φcm +µh)||(Sh−Sh1)||− ||βcv(Sh−Sh1)||

≤ (φcm +µh)+β ||Icv +δcmIvm||||(Sh−Sh1)||

≤ β (l1 +δcml2)+(µ +φcm)||(Sh−Sh1)||.

Let ω̃1 = β (l1+δcml2)+(µ +φcm), where l1 = Icv and l2 = δcmIvm are bounded functions, then

we obtain

||Φ1(t,Sh)−Φ1(t,Sh1)|| ≤ ω̃1||(Sh−Sh1)||.

Therefore the lipschitz condition is satisfied for Φ1. Also, if 0≤ β (l1+δcml2)+(µ +φcm)< 1,

then Φ1 is a contraction.

Similarly,

Φ2, Φ3, Φ4, Φ5, Φ6 fulfil the lipschitz conditions

(16)

||Φ2(t,Scm)−Φ1(t,Scm1)|| ≤ ω̃2||(Scm−Scm1)||.

||Φ3(t, Icv)−Φ3(t, Icv1)|| ≤ ω̃3||(Icv− Icv1)||

||Φ4(t,Rcv)−Φ4(t,Rcv1)|| ≤ ω̃4||(Rcv−Rcv1)||

||Φ5(t, Ivm)−Φ5(t, Ivm1)|| ≤ ω̃5||(Ivm− Ivm1)||
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||Φ6(t,Rcm)−Φ6(t,Rcm1)|| ≤ ω̃6||(Rvm−Rvm1)||.

�

Taking into consideration the above mentioned kernels, (12) yeilds

(17)

Sh(t) = Sh(0)+
2(1−q)

(2−q)M(q)Φ1(t,Sh)+
2q

(2−q)M(q)

∫ t

0
Φ1(ε,Sh)dε,

Scm(t) = Scm(0)+
2(1−q)

(2−q)M(q)Φ2(t,Scm)+
2q

(2−q)M(q)

∫ t

0
Φ2(ε,Scm)dε,

Icv(t) = Icv(0)+
2(1−q)

(2−q)M(q)Φ3(t, Icv)+
2q

(2−q)M(q)

∫ t

0
Φ3(ε, Icv)dε,

Rcv(t) = Rcv(0)+
2(1−q)

(2−q)M(q)Φ4(t,Rcv)+
2q

(2−q)M(q)

∫ t

0
Φ4(ε,Rcv)dε,

Ivm(t) = Ivm(0)+
2(1−q)

(2−q)M(q)Φ5(t, Ivm)+
2q

(2−q)M(q)

∫ t

0
Φ5(ε, Ivm)dε,

Rcm(t) = Rcm(0)+
2(1−q)

(2−q)M(q)Φ6(t,Rcm)+
2q

(2−q)M(q)

∫
Φ6(ε,Rcm)dε.

Now, the recursive formula is presented based on aforesaid kernels, and equation (17) trans-

formed to the following:

(18)

Sh(n)(t) = 2(1−q)
(2−q)M(q)Φ1(t,Sh(n−1))+

2q
(2−q)M(q)

∫ t

0
Φ1(ε,Sh(n−1))dε,

Scm(n)(t) = 2(1−q)
(2−q)M(q)Φ2(t,Scm(n−1))+

2q
(2−q)M(q)

∫ t

0
Φ2(ε,Scm(n−1))dε,

Icv(n)(t) = 2(1−q)
(2−q)M(q)Φ3(t, Icv(n−1))+

2q
(2−q)M(q)

∫ t

0
Φ3(ε, Icv(n−1))dε,

Rcv(n)(t) = 2(1−q)
(2−q)M(q)Φ4(t,Rcv(n−1))+

2q
(2−q)M(q)

∫ t

0
Φ4(ε,Rcv(n−1))dε,

Ivm(n)(t) = 2(1−q)
(2−q)M(q)Φ5(t, Ivm(n−1))+

2q
(2−q)M(q)

∫ t

0
Φ5(ε, Ivm(n−1))dε,
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Rcm(n)(t) = 2(1−q)
(2−q)M(q)Φ6(t,Rcm(n−1))+

2q
(2−q)M(q)

∫
Φ6(ε,Rcm(n−1))dε.

The associated initial conditions are presented as follows:

Sh0(t) = Sh(0), Scm0(t) = Scm(0), Icv0(t) = Icv(0), Rcv0(t) = Rcv(0), Ivm0(t) = Ivm(0),

Rcm0(t) = Rcm(0).

The difference between the successive terms are presented as follow:

(19)

En(t) = Sh(n)(t)−Sh(n−1)(t) = 2(1−q)
(2−q)M(q)

[
Φ1(t,Sh(n))−Φ1(t,Sh(n−1))

]
+ 2q

(2−q)M(q)

∫ t

0

[
Φ1(ε,Sh(n))−Φ1(ε,Sh(n−1))

]
dε,

Fn(t) = Scm(n)(t)−Scm(n−1)(t) = 2(1−q)
(2−q)M(q)

[
Φ2(t,Scm(n))−Φ2(t,Scm(n−1))

]
+ 2q

(2−q)M(q)

∫ t

0

[
Φ2(ε,Scm(n))−Φ2(ε,Scm(n−1))

]
dε,

Gn(t) = Icv(n)(t)− Icv(n−1)(t) = 2(1−q)
(2−q)M(q)

[
Φ3(t, Icv(n))−Φ3(t, Icv(n−1))

]
+ 2q

(2−q)M(q)

∫ t

0

[
Φ3(ε, Icv(n))−Φ3(ε, Icv(n−1))

]
dε,

Hn(t) = Rcv(n)(t)−Rcv(n−1)(t) = 2(1−q)
(2−q)M(q)

[
Φ4(t,Rcv(n))−Φ4(t,Rcv(n−1))

]
+ 2q

(2−q)M(q)

∫ t

0

[
Φ4(ε,Rcv(n))−Φ4(ε,Rcv(n−1))

]
dε,

In(t) = Ivm(n)(t)− Ivm(n−1)(t) = 2(1−q)
(2−q)M(q)

[
Φ5(t, Ivm(n))−Φ5(t, Ivm(n−1))

]
+ 2q

(2−q)M(q)

∫ t

0

[
Φ5(ε, Ivm(n))−Φ5(ε, Ivm(n−1))

]
dε,

Jn(t) = Rcm(n)(t)−Rcm(n−1)(t) = 2(1−q)
(2−q)M(q)

[
Φ6(t,Rcm(n))−Φ6(t,Rcm(n−1))

]
+ 2q

(2−q)M(q)

∫ [
Φ6(ε,Rcm(n))−Φ6(ε,Rcm(n−1))

]
dε.

Note that

Sh(n)(t) = ∑
n
i Ei(t), Scm(n)(t) = ∑

n
i Fi(t),
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Icv(n)(t) = ∑
n
i Gi(t), Rcv(n)(t) = ∑

n
i Hi(t),

Ivm(n)(t) = ∑
n
i Ii(t), Rvm(n)(t) = ∑

n
i Ji(t).

On the other hand,

||En(t)||= ||Sh(n)(t)−Sh(n−1)(t)|| =

∥∥∥∥ 2(1−q)
(2−q)M(q)

[
Φ1(t,Sh(n))−Φ1(t,Sh(n−1))

]
+

2q
(2−q)M(q)

∫ t

0

[
Φ1(ε,Sh(n))−Φ1(ε,Sh(n−1))

]
dε

∥∥∥∥
≤ 2(1−q)

(2−q)M(q)

[
Φ1(t,Sh(n))−Φ1(t,Sh(n−1))

]
+

2q
(2−q)M(q)

∥∥∥∥∫ t

0

[
Φ1(ε,Sh(n))−Φ1(ε,Sh(n−1))

]
dε

∥∥∥∥
≤ 2(1−q)

(2−q)M(q)
ω̃1||Sh(n−1)(t)−Sh(n−2)(t)||

+
2q

(2−q)M(q)
ω̃1

∫ t

0

∥∥∥∥Sh(n−1)(ε)−Sh(n−2)(ε)

∥∥∥∥dε.

Therefore,

‖En(t)‖ ≤
2(1−q)

(2−q)M(q)
ω̃1‖En−1(t)‖+

2q
(2−q)M(q)

ω̃1

∫ t

0

∥∥∥∥En−1(ε)

∥∥∥∥dε.

In a similar manner, we obtain the following:

(20)

‖Fn(t)‖ ≤ 2(1−q)
(2−q)M(q)ω̃2‖Fn−1(t)‖+

2q
(2−q)M(q)

ω̃2

∫ t

0

∥∥∥∥Fn−1(ε)

∥∥∥∥dε,

‖Gn(t)‖ ≤ 2(1−q)
(2−q)M(q)ω̃3‖Gn−1(t)‖+

2q
(2−q)M(q)

ω̃3

∫ t

0

∥∥∥∥Gn−1(ε)

∥∥∥∥dε,

‖Hn(t)‖ ≤ 2(1−q)
(2−q)M(q)ω̃4‖Hn−1(t)‖+

2q
(2−q)M(q)

ω̃4

∫ t

0

∥∥∥∥Hn−1(ε)

∥∥∥∥dε,
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‖In(t)‖ ≤ 2(1−q)
(2−q)M(q)ω̃5‖In−1(t)‖+

2q
(2−q)M(q)

ω̃5

∫ t

0

∥∥∥∥In−1(ε)

∥∥∥∥dε,

‖Jn(t)‖ ≤ 2(1−q)
(2−q)M(q)ω̃6‖Jn−1(t)‖+

2q
(2−q)M(q)

ω̃6

∫ t

0

∥∥∥∥Jn−1(ε)

∥∥∥∥dε.

We thus have the following theorem

Theorem 3. Fractional COVID-19 model (13) possesses a system of solutions if there exist t0

such that

(21)
2(1−q)

(2−q)M(q)
ω̃1 +

2q
(2−q)M(q)

ω̃1t0 ≤ 1.

Proof. Consider the following bounded functions: Sh(t), Scm(t), Icv(t), Rcv(t), Ivm, Rvm(t). Fur-

ther, we have shown that the kernels satisfy the Lipschitz condition. using the results of equa-

tions (19) and (20) respectively and adopting the recursive method, we obtain the following

relations:

(22)

‖En(t)‖ ≤ ‖Shn(0)‖
[

2(1−q)
(2−q)M(q)ω̃1 +

2q
(2−q)M(q)ω̃1t

]n

,

‖Fn(t)‖ ≤ ‖Scmn(0)‖
[

2(1−q)
(2−q)M(q)ω̃2 +

2q
(2−q)M(q)ω̃2t

]n

,

‖Gn(t)‖ ≤ ‖Snh(0)‖
[

2(1−q)
(2−q)M(q)ω̃3 +

2q
(2−q)M(q)ω̃3t

]n

,

‖Hn(t)‖ ≤ ‖Rcvn(0)‖
[

2(1−q)
(2−q)M(q)ω̃4 +

2q
(2−q)M(q)ω̃4t

]n

,

‖In(t)‖ ≤ ‖Ivmn(0)‖
[

2(1−q)
(2−q)M(q)ω̃5 +

2q
(2−q)M(q)ω̃5t

]n

,

‖Jn(t)‖ ≤ ‖Rcmn(0)‖
[

2(1−q)
(2−q)M(q)ω̃6 +

2q
(2−q)M(q)ω̃6t

]n

.
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Thus, the system (17) exists and is smooth. In order to demonstrate that the above functions

constitute the solutions of the system equation (5), we make the assumption that

(23)

Sh(t)−Sh(0) = Shn(t)−Ln(t),

Scm(t)−Scm(0) = Scmn(t)−Mn(t),

Icv(t)− Icv(0) = Icvn(t)−Nn(t),

Rcv(t)−Rcv(0) = Rcvn(t)−On(t),

Ivm(t)− Ivm(0) = Ivmn(t)−Pn(t),

Rcm(t)−Rcm(0) = Rvmn(t)−Qn(t),

where

(24)

||Ln(t)||= ||Sh(t)−Sh(n−1)(t)|| =

∥∥∥∥ 2(1−q)
(2−q)M(q)

[
Φ1(t,Sh)−Φ1(t,Sh(n−1))

]
+ 2q

(2−q)M(q)

∫ t

0

[
Φ1(ε,Sh)−Φ1(ε,Sh(n−1))

]
dε

∥∥∥∥
≤ 2(1−q)

(2−q)M(q)‖Φ1(t,Sh)−Φ1(t,Sh(n−1))‖

+ 2q
(2−q)M(q)

∥∥∥∥∫ t

0

[
Φ1(ε,Sh)−Φ1(ε,Sh(n−1))

]
dε

∥∥∥∥
≤ 2(1−q)

(2−q)M(q)ω̃1||Sh−Sh(n−1)||

+ 2q
(2−q)M(q)ω̃1

∥∥∥∥Sh−Sh(n−1)

∥∥∥∥t.

Carrying out this process recursively we have

(25) ‖Ln(t)‖ ≤
[

2(1−q)
(2−q)M(q)

ω̃1 +
2q

(2−q)M(q)
ω̃1t
]n+1

ω̃1
n+1k.
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Taking limits as n−→ ∞, we have
∥∥∥∥Ln(t)

∥∥∥∥−→ 0. Similarly, we obtain

(26)
∥∥∥∥Mn(t)

∥∥∥∥−→ 0,
∥∥∥∥Nn(t)

∥∥∥∥−→ 0,
∥∥∥∥On(t)

∥∥∥∥−→ 0,
∥∥∥∥Pn(t)

∥∥∥∥−→ 0.

�

Now we show that the model has a unique solution. Assume that the system has another

solution S∗h(t), S∗cm(t), I∗cv(t), R∗cv(t), I∗vm(t), R∗cm(t).

Then, exploring the properties of norm in equation (16) gives

(27)

Sh(t)−S∗h(t)=
2(1−q)

(2−q)M(q)

[
Φ1(t,Sh)−Φ1(t,S∗h)

]
+

2q
(2−q)M(q)

∫ t

0

[
Φ1(ε,Sh)−Φ1(ε,S∗h)

]
dε

and utilizing the Lipschitz condition, we have

(28) ‖Sh(t)−S∗h(t)‖ ≤
2(1−q)

(2−q)M(q)
ω̃1||Sh−S∗h(t)||+

2q
(2−q)M(q)

ω̃1

∫ t

0

∥∥∥∥Sh(ε)−S∗h(ε)
∥∥∥∥dε,

which leads to

(29) ‖Sh(t)−S∗h(t)‖
[

1− 2(1−q)
(2−q)M(q)

ω̃1−
2q

(2−q)M(q)
ω̃1t
]
≤ 0.

Theorem 4. The fractional order model system (13) has a unique solution provided that

(30) ‖Sh(t)−S∗h(t)‖
[

1− 2(1−q)
(2−q)M(q)

ω̃1−
2q

(2−q)M(q)
ω̃1t
]
> 0.

Proof. Following equation (31),

(31) ‖Sh(t)−S∗h(t)‖
[

1− 2(1−q)
(2−q)M(q)

ω̃1−
2q

(2−q)M(q)
ω̃1t
]
≤ 0.

, and from equation (31),

(32) ‖Sh(t)−S∗h(t)‖
[

1− 2(1−q)
(2−q)M(q)

ω̃1−
2q

(2−q)M(q)
ω̃1t
]
> 0,

with ‖Sh(t)− S∗h(t)‖ = 0. Therefore, Sh(t) = S∗h(t). Similarly, Scm(t) = S∗cm(t), Icv(t) = I∗cv(t),

Rcv(t) = R∗cv(t), Ivm(t) = I∗vm(t), and Rcm(t) = R∗cm(t). �
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4. THE STOCHASTIC CORONAVIRUS MODEL WITH COMORBIDITY

In this section, the coronavirus model with comorbidity is expressed in global derivative with

a stochastic component. The stochastic aspect is introduced in the global derivative model (13)

as follows:

(33)

Sh(t) = Sh(0)+
∫ t

0
E1(θ ,Sh)dθ +L1(θ ,Sh)dA1(θ)

Scm(t) = Scm(0)+
∫ t

0
E2(θ ,Scm)dθ +L2(θ ,Scm)dA2(θ)

Icv(t) = Icv(0)+
∫ t

0
E3(θ , Icv)dθ +L3(θ , Icv)dA3(θ)

Rcv(t) = Rcv(0)+
∫ t

0
E4(θ ,Rcv)dθ +L4(θ ,Rcv)dA4(θ)

Ivm(t) = Ivm(0)+
∫ t

0
E5(θ , Ivm)dθ +L5(θ , Ivm)dA5(θ)

Rcm(t) = Rcm(0)+
∫ t

0
E6(θ ,Rcm)dθ +L6(θ ,Rcm)dA6(θ),

where

(34)

E1(θ ,Sh) = h′(θ)(Λh−βcvSh− (φcm +µh)Sh),

E2(θ ,Scm) = h′(θ)(φcmSh−wcmβcvScm−µhScm),

E3(θ , Icv) = h′(θ)(βcvSh− (δ1 +µh) Icv +η1βcvRcv),

E4(θ ,Rcv) = h′(θ)(δ1Icv−µhRcv−η1βcvRcv),

E5(θ , Ivm) = h′(θ)(wcmβcvScm− (δ2 +µh) Ivm +η2βcvRcm),

E6(θ ,Rcm) = h′(θ)(δ2Ivm−µhRcm−η2βcvRcm).
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5. NUMERICAL SCHEME FOR CORONAVIRUS WITH COMORBIDITY MODEL

This section presents the numerical scheme for the coronavirus model (5) with comorbidity

in global derivatives via exponential decay Kernel.

By making the assumption that C1, C2, C3, C4, C5, C6, C7 are differentiable, and substituting

the functions by Newton Polynomial interpolation we have the following scheme.

(35)

Sh(tk+1) = Sh(tk)+
1−q
M(q)

[
h(tk+1−h(tk))

!t

(
Λh−β Ik+1

cv Sk+1
h +βδcmIk+1

cv Sk+1
h

−(φcm +µh)Sk+1
h

)
− h(tk−h(tk−1))

!t

(
Λh−β Ik

cvSk
h +βδcmIk

cvSk
h− (φcm +µh)Sk

h

]

+ 1−q
M(q)

[
(C1(tk+1)−C1(tk))

h(tk+1−h(tk))
!t P1(tk+1,Sk+1

h )− (C1(tk)

−C1(tk−1))
h(tk−h(tk−1))

!t P1(tk,Sk
h)

]

+ q
M(q)

[
5

12

(
Λh−β Ik−2

cv Sk−2
h +βδcmIk−2

cv Sk−2
h

−(φcm +µh)Sk−2
h

)
×
(

h(tk−1−h(tk−2))

)
−4

3

(
Λh−β Ik−1

cv Sk−1
h +βδcmIk−1

cv Sk−1
h

−(φcm +µh)Sk−1
h

)
×
(

h(tk−h(tk−1))

)
+23

12

(
Λh−β Ik

cvSk
h +βδcmIk

cvSk
h

−(φcm +µh)Sk
h

)
×
(

h(tk+1−h(tk))
)]

+ q
M(q)

[
5

12P1(tk−2,Sk−2
h )h(tk−1−h(tk−2))(C1(tk−1)−C1(tk−2))

−4
3P1(tk−1,Sk−1

h )h(tk−h(tk−1))(C1(tk)−C1(tk−1))

23
12P1(tk,Sk

h)h(tk+1−h(tk))(C1(tk+1)−C1(tk))
]
.
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(36)

Scm(tk+1) = Scm(tk)+
1−q
M(q)

[
h(tk+1−h(tk))

!t

(
φcmSk+1

h −wcmβ Ik+1
cv Sk+1

cm +δcmwcmβ Ik+1
vm

−µhSk+1
cm

)
− h(tk−h(tk−1))

!t

(
φcmSk

h−wcmβ Ik
cvSk

cm +δcmwcmβ Ik
vm−µhSk

cm

)]
+ 1−q

M(q)

[
(C2(tk+1)−C2(tk))

h(tk+1−h(tk))
!t P2(tk+1,Sk+1

cm )− (C1(tk)

−C2(tk−1))
h(tk−h(tk−1))

!t P2(tk,Sk
cm)

]
+ q

M(q)

[
5

12

((
φcmSk−2

h −wcmβ Ik−2
cv Sk−2

cm +δcmwcmβ Ik−2
vm −µhSk−2

cm

))
×
(

h(tk−1−h(tk−2))

)
− 4

3

((
φcmSk−1

h −wcmβ Ik−1
cv Sk−1

cm +δcmwcmβ Ik−1
vm

−µhSk−1
cm

))
×
(

h(tk−h(tk−1))

)
+ 23

12

((
φcmSk

h−wcmβ Ik
cvSk

cm +δcmwcmβ Ik
vm

−µhSk
cm

))
×
(

h(tk+1−h(tk))
)]

+ q
M(q)

[
5

12P2(tk−2,Sk−2
cm )h(tk−1−h(tk−2))(C2(tk−1)−C2(tk−2))

−4
3P2(tk−1,Sk−1

cm )h(tk−h(tk−1))(C2(tk)−C2(tk−1))

23
12P2(tk,Sk

cm)h(tk+1−h(tk))(C2(tk+1)−C2(tk))
]
.

(37)

Icv(tk+1) = Icv(tk)+
1−q
M(q)

[
h(tk+1−h(tk))

!t

(
β Ik+1

cv Sk+1
h −δcvβ Ik+1

vm +(δ1 +µh) Ik+1
cv Rk+1

cv

+η1β Ik+1
cv −η1βδcvIk+1

vm

)
− h(tk−h(tk−1))

!t

(
β Ik

cvSk
h−δcvβ Ik

vm +(δ1 +µh) Ik
cvRk

cv

+η1β Ik
cv−η1βδcvIk

vm

)]
+ 1−q

M(q)

[
(C3(tk+1)−C3(tk))

h(tk+1−h(tk))
!t P3(tk+1, Ik+1

cv )− (C3(tk)

−C3(tk−1))
h(tk−h(tk−1))

!t P3(tk, Ik
cv)

]
+ q

M(q)

[
5

12

(
β Ik−2

cv Sk−2
h −δcvβ Ik−2

vm +(β Ik−2
cv Sk−2

h −δcvβ Ik−2
vm

+(δ1 +µh) Ik−2
cv Rk−2

cv +η1β Ik−2
cv −η1βδcvIk−2

vm

)
×
(

h(tk−1−h(tk−2))

)
−4

3

(
β Ik−1

cv Sk−1
h −δcvβ Ik−1

vm +(δ1 +µh) Ik−1
cv Rk−1

cv +η1β Ik−1
cv −η1βδcvIk−1

vm

)
×
(

h(tk−h(tk−1))

)
+ 23

12

(
β Ik

cvSk
h−δcvβ Ik

vm +(δ1 +µh) Ik
cvRk

cv
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+η1β Ik
cv−η1βδcvIk

vm

)
×
(

h(tk+1−h(tk))
)]

+ q
M(q)

[
5

12P3(tk−2, Ik−2
cv )h(tk−1−h(tk−2))(C3(tk−1)−C3(tk−2))

−4
3P3(tk−1, Ik−1

cv )h(tk−h(tk−1))(C3(tk)−C3(tk−1))

23
12P3(tk, Ik

cv)h(tk+1−h(tk))(C3(tk+1)−C3(tk))
]
.

(38)

Rcv(tk+1) = Rcv(tk)+
1−q
M(q)

[
h(tk+1−h(tk))

!t

(
δ1Ik+1

cv −µhRk+1
cv −η1β Ik+1

cv Rk+1
cv

−η1δcvβ Ik+1
vm Rk+1

cv

)
− h(tk−h(tk−1))

!t

(
δ1Ik

cv−µhRk
cv−η1β Ik

cvRk
cv−η1δcvβ Ik

vmRk
cv

)]

+ 1−q
M(q)

[
(C4(tk+1)−C4(tk))

h(tk+1−h(tk))
!t P4(tk+1,Rk+1

cv )− (C4(tk)

−C4(tk−1))
h(tk−h(tk−1))

!t P4(tk,Rk
cv)

]
+ q

M(q)

[
5
12

(
δ1Ik−2

cv −µhRk−2
cv −η1β Ik−2

cv Rk−2
cv −η1δcvβ Ik−2

vm Rk−2
cv

)
×
(

h(tk−1−h(tk−2))

)
− 4

3

(
δ1Ik−1

cv −µhRk−1
cv −η1β Ik−1

cv Rk−1
cv

−η1δcvβ Ik−1
vm Rk−1

cv

)
×
(

h(tk−h(tk−1))

)
+ 23

12

(
δ1Ik

cv−µhRk
cv−η1β Ik

cvRk
cv

−η1δcvβ Ik
vmRk

cv

)
×
(

h(tk+1−h(tk))
)]

+ q
M(q)

[
5
12P4(tk−2,Rk−2

cv )h(tk−1−h(tk−2))(C4(tk−1)−C4(tk−2))

−4
3P4(tk−1,Rk−1

cv )h(tk−h(tk−1))(C4(tk)−C4(tk−1))

23
12P4(tk,Rk

cv)h(tk+1−h(tk))(C4(tk+1)−C4(tk))
]
.

(39)

Ivm(tk+1) = Ivm(tk)+
1−q
M(q)

[
h(tk+1−h(tk))

!t

(
wcmβ Ik+1

cv Sk+1
cm −wcmδcmβ Ik+1

vm Sk+1
cm

+(δ2 +µh) Ik+1
vm +η2β Ik+1

cv Rk+1
cm +η2β Ik+1

vm Rk+1
cm

)
−h(tk−h(tk−1))

!t

(
wcmβ Ik

cvSk
cm−wcmδcmβ Ik

vmSk
cm +(δ2 +µh) Ik

vm

+η2β Ik
cvRk

cm +η2β Ik
vmRk

cm

)]
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+ 1−q
M(q)

[
(C5(tk+1)−C5(tk))

h(tk+1−h(tk))
!t P5(tk+1, Ik+1

vm )− (C5(tk)

−C5(tk−1))
h(tk−h(tk−1))

!t P5(tk, Ik
vm)

]
+ q

M(q)

[
5

12

(
wcmβ Ik−2

cv Sk−2
cm −wcmδcmβ Ik−2

vm Sk−2
cm +(δ2 +µh) Ik−2

vm

+η2β Ik−2
cv Rk−2

cm +η2β Ik−2
vm Rk−2

cm

)
− 4

3

(
wcmβ Ik−1

cv Sk−1
cm −wcmδcmβ Ik−1

vm Sk−1
cm

+(δ2 +µh) Ik−1
vm +η2β Ik−1

cv Rk−1
cm +η2β Ik−1

vm Rk−1
cm

)
×
(

h(tk−h(tk−1))

)
+23

12

(
wcmβ Ik

cvSk
cm−wcmδcmβ Ik

vmSk
cm +(δ2 +µh) Ik

vm +η2β Ik
cvRk

cm

+η2β Ik
vmRk

cm

)
×
(

h(tk+1−h(tk))
)]

+ q
M(q)

[
5

12P5(tk−2, Ik−2
vm )h(tk−1−h(tk−2))(C5(tk−1)−C5(tk−2))

−4
3P5(tk−1, Ik−1

vm )h(tk−h(tk−1))(C5(tk)−C5(tk−1))

23
12P5(tk, Ik

vm)h(tk+1−h(tk))(C5(tk+1)−C5(tk))
]
.

(40)

Rcm(tk+1) = Rcm(tk)+
1−q
M(q)

[
h(tk+1−h(tk))

!t

(
δ2Ik+1

vm −µhRk+1
cm −η2β Ik+1

cv Rk+1
cm

−η2β Ik+1
vm Rk+1

cm

)
− h(tk−h(tk−1))

!t

(
δ2Ik

vm−µhRk
cm−η2β Ik

cvRk
cm−η2β Ik

vmRk
cm

)]
+ 1−q

M(q)

[
(C6(tk+1)−C6(tk))

h(tk+1−h(tk))
!t P6(tk+1,Rk+1

cm )− (C6(tk)

−C6(tk−1))
h(tk−h(tk−1))

!t P6(tk,Rk
cm)

]
+ q

M(q)

[
5

12

(
δ2Ik−2

vm −µhRk−2
cm −η2β Ik−2

cv Rk−2
cm −η2β Ik−2

vm Rk−2
cm

)
×
(

h(tk−1−h(tk−2))

)
− 4

3

(
δ2Ik−1

vm −µhRk−1
cm −η2β Ik−1

cv Rk−1
cm

−η2β Ik−1
vm Rk−1

cm

)
×
(

h(tk−h(tk−1))

)
+ 23

12

(
δ2Ik

vm−µhRk
cm−η2β Ik

cvRk
cm

−η2β Ik
vmRk

cm

)
×
(

h(tk+1−h(tk))
)]

+ q
M(q)

[
5

12P6(tk−2,Rk−2
cm )h(tk−1−h(tk−2))(C6(tk−1)−C6(tk−2))

−4
3P6(tk−1,Rk−1

cm )h(tk−h(tk−1))(C6(tk)−C6(tk−1))

23
12P6(tk,Rk

cm)h(tk+1−h(tk))(C6(tk+1)−C6(tk))
]
.
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6. NUMERICAL SIMULATION AND DISCUSSIONS

In this section we present the numerical simulation of the coronavirus with comorbiidity

model (5) hinged on the exponential law. The Adams–Bashforth scheme as extensively pre-

sented in [24] was utilized in solving the model (5). The step size used for this study is

0.001 with time interval [0,120]. The following parameter values used for the simulations

are Λh = 0.8, βcv = 0.5, φcm = 0.6, µh = 0.0001, wcm = 0.04, δ1 = 0.05, η1 = 0.04, δ2 = 0.6,

η2 = 0.5, δcm = 0.6 .

Figure 1(a) captures the dynamics of the susceptible individuals Sh(t) and as the fractional

order derivative increases the number of susceptible individuals decreases. This is reduction of

virgin population which is common to many epidemiological models. Figure 1(b) depicts the

susceptible individuals with comorbidity Scm(t) in the community. The number of individuals

in this class decreases as the fractional order derivative increases. In Figure 1(c) the number of

individuals infected with coronavirus Icv(t) increases as the fractional derivative also increases.

Figure 1(d) shows the number of individuals recovered from coronavirus and they increase as

the fractional order derivative increases. Figure 1(e) represents the co-infected individuals with

coronavirus and comorbidity Ivm(t) and the number individuals in this class increases as the

fractional order increases from 0.75 to 1. Figure 1(f) shows the number of individuals recovered

from comorbidity Rcm(t) and they increase as the fractional order increases. This result predicts

that humans with such complications are taking the right health decisions.

Figure 2(a) is the susceptible humans Sh(t) and as the fractional-order derivative increases the

number of susceptible humans decreases. The result is similar to that of Figure 1(a), however,

the random effect can be observed in this situation. Figure 2(b) shows the susceptible humans

with comorbidity Scm(t) in the community. The number of comorbidity susceptible humans

decreases as the fractional-order derivative increases. Figure 2(c) represents the number of

individuals infected with coronavirus Icv(t) and it increases as the fractional derivative also

increases. The random-effects suggest that the daily infection is not constant. This rise of

infection perceived in Figure 2(c) is mostly characterized by epidemiological models of this

nature. Figure 2(d) indicates the number of individuals recovered from coronavirus Rcv(t) and

the number of individuals increases as the fractional-order derivative increases. Figure 2(e)
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shows the dynamics of the co-infected humans with coronavirus and comorbidity Ivm(t) and

the number of individuals move up as the fractional-order derivatives increase from 0.75 to 1.

Figure 2(f) represents that the number of individuals recovered from comorbidity Rcm(t) and

increases as the fractional order increases. This may suggest that individuals with comorbidity

are undertaking the appropriate health decisions within the community.
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Figure 1. Simulation results for model (5), exponential law at q =

1,0.9,0.80,0.75
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Figure 2. Simulations for fractional stochastic COVID-19 comorbidity model

(33) via exponential decay law at q = 1,0.9,0.85,0.75
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7. CONCLUSION

In this work, we examined the dynamics of coronavirus with comorbidity in a community.

The steady states of the model were established and reproduction number was also determined.

Exponential law was applied to study the dynamics of the coronavirus with comorbidity by es-

tablishing the existence and uniqueness of solutions of the model using fixed point theory. A

fractional stochastic approach in the light of exponential decay law was employed to analyse

the same model. The numerical simulation results suggested that fractional-order derivative and

parameter values have a serious impact on the dynamics of the fractional coronavirus with a co-

morbidity model. Similar results were obtained for the stochastic model, However, unlike the

fractional-order model, the stochastic model exhibits some random effect. From an epidemio-

logical viewpoint, comorbidity individuals acquire more re-infection due to lack of surveillance

and precautions like wearing masks, social. Also, the increase of comorbidity development and

the fractional- order derivative factor simultaneously increases the prevalence of the infection

which can lead to a disaster situation. The disease can thus be controlled if comorbidity in-

dividuals observe all the above mentioned precautionary measures. The fractional stochastic

numerical simulation results show that the random nature of the infection is not fixed as in the

fractional deterministic model. It is recommended that complex phenomena be investigated us-

ing the fractional stochastic perspectives in order to present the randomness nature of the spread

of many diseases.
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