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Abstract: In this paper, the dynamics of scavenger species predation of both susceptible and infected prey at different 

rates with prey refuge is mathematically proposed and studied. It is supposed that the disease was spread by direct 

contact between susceptible prey with infected prey described by Holling type-II infection function. The existence, 

uniqueness, and boundedness of the solution are investigated. The stability constraints of all equilibrium points are 

determined. In addition to establishing some sufficient conditions for global stability of them by using suitable 

Lyapunov functions. Finally, these theoretical results are shown and verified with numerical simulations.  
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1. INTRODUCTION 

The terms mathematical model is one of the most important subjects for study and has a wider 

scope. The first mathematical model in the field of ecology that involves the interactions between 



2 

RASHA MAJEED YASEEN, HASSAN FADHIL AL-HUSSEINY 

biological species was modeled and studied, by Lotka and Volterra in the middle of 1920. On the 

other hand, the mathematical model in the field of an epidemic which describes the spread of 

disease from susceptible to infected and then to removal individuals has been formulated by 

Kermack and McKendric in 1927. Recently, many articles dealing with scavenge population in 

ecology model, scavenger represented an animal that consumed carcasses of other animals those 

which are dead naturally or killed by other animals. Different types of prey-predator and/or 

scavenge models including different biological factors were proposed and studied. Researchers 

successfully introduce how much exists of scavenger population effected on prey-predator and/or 

harvest model and studied the behavior of these system with different functional response, see [1- 

6] and the reference cited therein. On the other hand, refuge which is defined as the place that 

provides shelter or protection, as well as stage structure, of one or more species have been a wider 

subject to study see [7-16]. It's well-known that in nature no species can survive alone; and the 

species not only spreads the disease but also competes with other species for space or food or is 

predated by other species. In most previous studies, the prey interacts with predator and/or 

scavenger with effects of infectious disease on this model have become problems of major subject 

for study by many researchers. Recently, Abdul Satar and Naji [17] suggested and studied 

ecological model consisting of prey, predator, and scavenger involving toxicant and harvesting. 

While, Marwah and Hassan [18] proposed and analyzed prey-predator-scavenger model contented 

migration and spreading infectious disease. 

Based on the above discussion, we formulated a three-dimensional system for the prey-

scavenger model (where infectious disease SIS spread among prey population). Positivity and 

boundedness of all solutions of the proposed model are discussed along with both local and global 

stability as well as, the persistence conditions at each equilibrium point are investigated. Finally, 

to verify the analytic results we solve the model by numerical simulation for different values of 

parameters and represented them graphically. 
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2. THE MATHEMATICAL MODEL FORMULATION 

      In this section an eco-epidemiological model consisting of a prey-scavenger model 

incorporating prey refuge with infectious disease in the prey is proposed for study. In order to 

construct our model the following hypotheses considered: 

1. In the absence of disease, the prey population grows logistically with carrying capacity 𝐾 and 

intrinsic birth rate 𝑟. 

2. In the existence of SIS infectious disease, the prey population is divided into two groups, 

namely susceptible prey denoted by 𝑆(𝑡) and infected prey denoted by 𝐼(𝑡). Therefore at time 

t, the total population is 𝒩(𝑡) = 𝑆(𝑡) + 𝐼(𝑡). 

3. Disease spreads among the prey population and it transmitted between the prey individuals (but 

not the scavenger) by contact, according to Holling type-II infection function with maximum 

incidence rate 𝛽 and half saturation constant 𝛼. Further the disease disappears and the infected 

prey becomes susceptible prey again at a recover rate 𝑏1. 

4. The susceptible prey is capable of reproducing only and the infected prey is removed by death 

at a natural rate 𝑑1. 

5. The susceptible prey species are assumed to take a refuge. That is (1 − 𝜀)𝑆, 𝜀 is a prey refuge 

constant, of the susceptible prey is available for feeding by scavenger. 

6. According to nature of scavenger, we assume scavenger feeds upon susceptible prey killed by 

other animals or dead naturally according to ratio-dependent functional response with 

maximum attack rate 𝑏 and half saturation constant 𝑚 or linearly with maximum attack rate 𝛾1, 

respectively. The consumed susceptible prey, which killed by other animals, is converted into 

scavenger with efficiency 𝑒1. Also, we assume scavenger feeds upon infected prey killed by 

other animals or dead naturally by linear functional response with maximum attack rates 𝑐 or 

𝛾2, respectively. The consumed infected prey, which killed by other animals, is converted into 

scavenger with efficiency 𝑒2.    

7. Finally in the absence of the prey the scavenger decay exponentially with natural death rate 𝑑2 

and intra-specific competition rate 𝛾3. 
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According to the above assumptions the prey-scavenger model (1) can be modified to the following 

set of differential equations. 

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆+𝐼

𝐾
) −

𝛽𝑆𝐼

(1+𝛼𝐼)
−

𝑏(1−𝜀)𝑆𝑃

(𝑚𝑃+𝑆)
+ 𝑏1𝐼             

 
𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

(1+𝛼𝐼)
− 𝑏1𝐼 − 𝑑1𝐼 − 𝑐𝐼𝑃                                     

                        
𝑑𝑃

𝑑𝑡
=

𝑒1𝑏(1−𝜀)𝑆𝑃

(𝑚𝑃+𝑆)
+ 𝑒2𝑐𝐼𝑃 + 𝛾1(1 − 𝜀)𝑆𝑃 + 𝛾2𝐼𝑃 − 𝛾3𝑃2 − 𝑑2𝑃

                            (1) 

 

3. BOUNDEDNESS OF THE MODEL 

Theorem (1): All the solutions of system (1), which initiate in ℜ+
3  are uniformly bounded provided 

that the following condition holds 

           𝑑1𝑑2 > (𝑟 + 𝑑1)𝐾ℳ    where    ℳ = max{𝛾1(1 − ℰ); 𝛾2}. 

Proof: note that the prey population is 𝒩(𝑡) = 𝑆(𝑡) + 𝐼(𝑡), so when 𝐼 = 0 the first equation of 

system (1) can be rewritten as:  
𝑑𝑆

𝑑𝑡
≤ 𝑟𝑆(1 −

𝑆

𝐾
) 

The right handside must be positive that implies  𝑟𝑆(1 −
𝑆

𝐾
) > 0. 

Since 𝑆 > 0  then  𝑆(𝑡) ≤ 𝐾 

when 𝐼 ≠ 0, consider the function 𝒩(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) and the derivative with respect time is: 

                  
𝑑𝒩

𝑑𝑡
= (𝑟 + 𝑑1)𝑆 −

𝑟𝑆2

𝐾
−

𝑟𝑆𝐼

𝐾
− 𝑑1(𝑆 + 𝐼) ≤ (𝑟 + 𝑑1)𝐾 − 𝑑1𝒩(𝑡) 

Hence, by using Gronwall lemma we get   

                  𝒩(𝑡) ≤ 𝒩(0)𝑒−𝑑1𝑡 +
(𝑟+𝑑1)𝐾

𝑑1
[1 − 𝑒−𝑑1𝑡] 

So, as 𝑡 → ∞ then  𝒩(𝑡) ≤ 𝛿 where  𝛿 =
(𝑟+𝑑1)𝐾

𝑑1
 . 

Now, define the function  𝒲(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑃(𝑡) then    

     
𝑑𝒲

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑃

𝑑𝑡
 

= 𝑟𝑆 −
𝑟𝑆2

𝐾
−

𝑟𝑆𝐼

𝐾
−

𝑏(1 − 𝜀)(1 − 𝑒1)𝑆𝑃

(𝑚𝑝 + 𝑆)
− 𝑑1𝐼 − 𝑐𝐼𝑃(1 − 𝑒2)

     +𝛾1(1 − 𝜀)𝑆𝑃 + 𝛾2𝐼𝑃 − 𝛾3𝑃2 − 𝑑2𝑃

 

≤ (𝑟 + 1)𝑆 − 𝑆 − 𝑑1𝐼 − 𝑑2𝑃 + [𝛾1(1 − 𝜀)𝑆 + 𝛾2𝐼]𝑃 
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𝑑𝒲

𝑑𝑡
≤ (𝑟 + 1)𝑆 − 𝑆 − 𝑑1𝐼 − 𝑑2𝑃 + ℳ𝑃(𝑆 + 𝐼)  

≤ (𝑟 + 1)𝑆 − 𝑆 − 𝑑1𝐼 − (𝑑2 − ℳ𝛿)𝑃 

then  
𝑑𝒲

𝑑𝑡
≤ (𝑟 + 1)𝐾 − 𝑄𝒲 where 𝑄 = min {1; 𝑑1; (𝑑2 − ℳ𝛿)} 

So, by using Gronwall, it's obtained that: 𝒲(𝑡) ≤ 𝒲(0)𝑒−𝑄𝑡 +
(𝑟+1)𝐾

𝑄
[1 − 𝑒−𝑄𝑡] 

Hence, lim
𝑛→∞

𝑠𝑢𝑝 𝒲(𝑡) ≤
(𝑟+1)𝐾

𝑄
 that is independent of the initial conditions. 

 

4. EXISTENCE OF EQUILIBRIUM POINTS 

      The system (1) has at most five non negative equilibrium points, namely 𝐸𝑖 = (𝑆𝑖, 𝐼𝑖, 𝑃𝑖) where 

𝑖 = 0, ⋯ ,4. The existence conditions for each of these equilibrium points are established in the 

following: 

1. The vanishing equilibrium point 𝐸0 = (0,0,0) always exists.  

2. The axial equilibrium point 𝐸1 = (𝑆1, 0,0) where 𝑆1 = 𝐾 always exists. 

3. The scavenger free equilibrium point 𝐸2 = (𝑆2, 𝐼2, 0) when  𝐼2 is the positive root of the 

following quadratic equation and 𝛽𝑆2 = (𝑏1 + 𝑑1)(1 + 𝛼𝐼2) 

𝒜1𝐼2
2 + 𝒜2𝐼2 + 𝒜3 = 0                                                                            (2) 

Where: 

𝒜1 = −𝛼𝑟𝜑1(𝛼(𝑏1 + 𝑑1) + 𝛽) 

𝒜2 = 𝑟𝛼𝜑1(𝛽𝐾 − 2𝜑1) − 𝛽(𝑑1𝛽𝐾 − 𝑟(𝑏1 + 𝑑1)) 

𝒜3 = 𝑟𝜑1(𝛽𝐾 − (𝑏1 + 𝑑1)) 

Obviously, 𝐸2 exists uniquely in the int.ℜ+
3  if and only if  𝛽𝐾 > (𝑏1 + 𝑑1).                                (3) 

4. The disease free equilibrium point 𝐸3 = (𝑆3, 0, 𝑃3) where 𝑃3 =
𝑟𝑆3(𝐾−𝑆3) 

 𝐾[𝑏(1−𝜀)−𝑟𝑚]+𝑟𝑚𝑆3  
, while  

𝑆3 represents a positive root of the following quadratic equation: 

ℎ1𝑆3
2 + ℎ2𝑆3 + ℎ3 = 0                                                                                (4) 

Here 

ℎ1 = 𝑟[𝑟𝑒1𝑚2 + 𝛾1𝑚𝐾 + 𝛾3𝐾] 
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ℎ2 = (𝑏(1 − 𝜀) − 𝑟𝑚)[2𝑒1𝑟𝑚𝐾 − 𝛾1𝐾2] − 𝑟𝐾(𝑚𝑑2 + 𝛾3𝐾) 

ℎ3 = 𝐾2(𝑏(1 − 𝜀) − 𝑟𝑚)[𝑒1(𝑏(1 − 𝜀) − 𝑟𝑚) − 𝑑2] 

Clearly, 𝐸3 exists uniquely in the int.ℜ+
3 , provided that the following condition holds 

𝑟𝑚 < 𝑏(1 − 𝜀) < (𝑟𝑚 +
𝑑2

𝑒1
)                                                                                     (5) 

5. The positive equilibrium point 𝐸4 = (𝑆4, 𝐼4, 𝑃4) where 𝑃4 =
 𝛽𝑆4−(𝑏1+𝑑1)(1+𝛼𝐼4)

𝑐(1+𝛼𝐼4)
 and (𝑆4, 𝐼4) 

represents a positive intersection point of the following two isoclines: 

𝑓(𝑆, 𝐼) = 𝑅1𝑆𝐼3 + 𝑅2𝐼3 + 𝑅3𝑆2𝐼2 + 𝑅4𝑆𝐼2 + 𝑅5𝐼2

                 +𝑅6𝑆2𝐼 + 𝑅7𝑆𝐼 + 𝑅8𝐼 + 𝑅9𝑆2 + 𝑅10𝑆 + 𝑅11

                                           (6.a) 

𝑔(𝑆, 𝐼) = 𝐽1𝑆2𝐼3 + 𝐽2𝑆𝐼3 + 𝐽3𝐼3 + 𝐽4𝑆3𝐼2 + 𝐽5𝑆2𝐼2 + 𝐽6𝑆𝐼2 + 𝐽7𝐼2

        +𝐽8𝑆3𝐼 + 𝐽9𝑆2𝐼 + 𝐽10𝑆𝐼 + 𝐽11𝐼 + 𝐽12𝑆3 + 𝐽13𝑆2 + 𝐽14𝑆
                       (6.b) 

Where: 

𝑅1 = 𝛼2𝑐2(𝑒2𝑐 + 𝛾2) > 0; 

𝑅2 = −𝛼2𝑚𝑐(𝑒2𝑐 + 𝛾2)(𝑏1 + 𝑑1) < 0; 

𝑅3 = 𝛾1𝛼2𝑐2(1 − 𝜀) > 0; 

𝑅4 = 𝛼𝑐[(𝑒2𝑐 + 𝛾2)(2𝑐 + 𝑚𝛽) + 𝑒1𝛼𝑐𝑏(1 − 𝜀)

−𝛼𝑐𝑑2 + 𝛼(𝑏1 + 𝑑1)(𝛾3 − 𝑚𝛾1(1 − 𝜀))]
; 

𝑅5 = 𝛼𝑚(𝑏1 + 𝑑1)[𝛼(𝑐𝑑2 − 𝛾3(𝑏1 + 𝑑1)) − 2𝑐(𝑒2𝑐 + 𝛾2)]; 

𝑅6 = 𝛾1𝛼𝑐(1 − 𝜀)[𝑚𝛽 + 2𝑐] − 𝛼𝑐𝛽𝛾3; 

𝑅7 = 2𝛼(𝑏1 + 𝑑1)[𝑚𝛾3𝛽 + 𝑐𝛾3 − 𝑚𝑐𝛾1(1 − 𝜀)] − 𝛼𝑚𝑐𝛽𝑑2

+𝑐(𝑐 + 𝑚𝛽)(𝑒2𝑐 + 𝛾2) + 2𝛼𝑐2(𝑒1𝑏(1 − 𝜀) − 𝑑2)
; 

𝑅8 = 𝑚(𝑏1 + 𝑑1)[2𝛼(𝑐𝑑2 − 𝛾3(𝑏1 + 𝑑1)) − 𝑐(𝑒2𝑐 + 𝛾2)]; 

𝑅9 = [𝑐𝛾1(1 − 𝜀) − 𝛾3𝛽](𝑐 + 𝑚𝛽); 

𝑅10 = (𝑏1 + 𝑑1)[𝛾3(𝑐 + 2𝑚𝛽) − 𝑚𝑐𝛾1(1 − 𝜀)]

+𝑐2(𝑒1𝑏(1 − 𝜀) − 𝑑2) − 𝑚𝑐𝛽𝑑2
; 

𝑅11 = 𝑚(𝑏1 + 𝑑1)(𝑐𝑑2 − 𝛾3(𝑏1 + 𝑑1)); 

𝐽1 = −𝑟𝑐𝛼2 < 0; 

 𝐽2 = 𝛼2[𝑐𝐾𝑏1 + 𝑚𝑟(𝑏1 + 𝑑1)] > 0; 

𝐽3 = 𝛼2𝑚𝐾𝑏1(𝑏1 + 𝑑1) > 0; 
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 𝐽4 = −𝛼2𝑟𝑐 < 0; 

𝐽5 = 𝛼2𝑟[𝑐𝐾 + 𝑚(𝑏1 + 𝑑1)] − 𝛼[𝑟(𝑚𝛽 + 2𝑐) + 𝑐𝛽𝐾]; 

𝐽6 = 𝛼(𝑏1 + 𝑑1)[𝑟𝑚(2 − 𝛼𝐾) + 𝐾(𝛼𝑏 + 𝛽𝑚)] + 𝛼𝐾𝑏1(2𝑐 + 𝑚𝛽); 

𝐽7 = −2𝛼𝑚𝐾𝑏1(𝑏1 + 𝑑1) < 0; 

𝐽8 = −𝑟𝛼(2𝑐 + 𝑚𝛽) < 0; 

𝐽9 = 𝑟(𝑐 + 𝑚𝛽)(𝛼𝐾 − 1) + 2𝛼𝑟𝑚(𝑏1 + 𝑑1)

+𝐾[𝑟𝛼𝑐 − 𝛽(𝑚𝛽 + 𝑐 + 𝛼𝑏(1 − 𝜀))]
; 

𝐽10 = 𝜑1[𝑟𝑚 + 𝐾𝛼𝑏 + 𝑚𝛽𝐾 + 𝐾𝛼𝑏(1 − 𝜀) − 2𝑟𝛼𝑚𝐾] + 𝐾𝑏1(𝑐 + 𝑚𝛽); 

𝐽11 = −𝑚𝐾𝑏1(𝑏1 + 𝑑1) < 0; 

 𝐽12 = −𝑟(𝑐 + 𝑚𝛽) < 0; 

𝐽13 = 𝑟𝐾(𝑐 + 𝑚𝛽) + 𝑟𝑚(𝑏1 + 𝑑1) − 𝐾𝑏𝛽(1 − 𝜀); 

𝐽14 = 𝐾(𝑏1 + 𝑑1)[𝑏(1 − 𝜀) − 𝑟𝑚] 

clearly as 𝐼 → 0 and due to descarte rule the isocline (6.a) has a unique positive root, say 𝑆1
∗, if the 

following conditions hold 

𝑅9 > 0 and 𝑅11 < 0
or
𝑅9 < 0 and 𝑅11 > 0

}                                                                                                 (7.a) 

Moreover as 𝐼 → 0 the isocline (6.b) has a unique positive root, say 𝑆2
∗, if the following condition 

holds 

𝐽14 > 0                                                                                                                        (7.b) 

Consequently, these two isoclines (6.1) and (6.2) have an intersection point in the int.ℜ+
2 , namely 

(𝑆4. 𝐼4), provided that the following conditions are satisfied: 

𝑆1
∗ < 𝑆2

∗;                                                                                                                     (7.c) 

𝜕𝑓

𝜕𝑆
< 0 and 

𝜕𝑓

𝜕𝐼
> 0

or
𝜕𝑓

𝜕𝑆
> 0 and 

𝜕𝑓

𝜕𝐼
< 0

}                                                                                                 (7.d) 

𝜕𝑔

𝜕𝑆
> 0 and 

𝜕𝑔

𝜕𝐼
> 0

or
𝜕𝑔

𝜕𝑆
< 0 and 

𝜕𝑔

𝜕𝐼
< 0

}                                                                                                 (7.e) 
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Therefore, the positive equilibrium point 𝐸4 exists uniquely in the int.ℜ+
3  if in addition to above 

conditions (7.a)-(7.e) the following conditions are satisfied too: 

𝛽𝑆4 > (𝑏1 + 𝑑1)(1 + 𝛼𝐼4)                                                                                         (7.f) 

 

5. STABILITY OF THE MODEL 

At equilibrium points 𝐸𝑖  ; 𝑖 = 1, ⋯ ,4 the Jacobian matrix of the system (1) is: 

 𝐽𝑖 = (

𝜎11
[𝑖]

𝜎12
[𝑖]

𝜎13
[𝑖]

𝜎21
[𝑖]

𝜎22
[𝑖]

𝜎23
[𝑖]

𝜎31
[𝑖]

𝜎32
[𝑖]

𝜎33
[𝑖]

) 

Here: 

𝜎11
[𝑖]

= 𝑟 −
 𝑟(2𝑆𝑖+𝐼𝑖) 

𝐾 
−

𝛽𝐼𝑖

 (1+𝛼𝐼𝑖) 
−

 𝑚𝑏(1−𝜀)𝑃𝑖
2 

(𝑚𝑃𝑖+𝑆𝑖)2  ; 

𝜎12
[𝑖]

=
− 𝑟𝑆𝑖 

𝐾
−

𝛽𝑆𝑖

 (1 + 𝛼𝐼𝑖)2 
+ 𝑏1 ; 

𝜎13
[𝑖]

=
− 𝑏(1 − 𝜀)𝑆𝑖

2 

(𝑚𝑃𝑖 + 𝑆𝑖)2
 ; 

𝜎21
[𝑖]

=
𝛽𝐼𝑖

 (1+𝛼𝐼𝑖) 
 ;  

𝜎22
[𝑖]

=
𝛽𝑆𝑖

 (1+𝛼𝐼𝑖)2 
− 𝑏1 − 𝑑1 − 𝑐𝑃𝑖 ; 

𝜎23
[𝑖]

= −𝑐𝐼𝑖 ; 

𝜎31
[𝑖]

=
 𝑒1𝑚𝑏(1−𝜀)𝑃𝑖

2 

(𝑚𝑃𝑖+𝑆𝑖)2 + 𝛾1(1 − 𝜀)𝑃𝑖 ; 

𝜎32
[𝑖]

= 𝑒2𝑐𝑃𝑖 + 𝛾2𝑃𝑖 ;  

𝜎33
[𝑖]

=
  𝑒1𝑏(1 − 𝜀)𝑆𝑖

2 

(𝑚𝑃𝑖 + 𝑆𝑖)2
+ 𝑒2𝑐𝐼𝑖 + 𝛾1(1 − 𝜀)𝑆𝑖 + 𝛾2𝐼𝑖 − 2𝛾3𝑃𝑖 − 𝑑2 

 

6.  DYNAMICS OF THE SYSTEM AROUND EQUILIBRIUM POINT 𝑬𝟎  

Theorem (2): The trivial equilibrium point 𝐸0 = (0,0,0) is always unstable. 

Proof: the first and third equations of system (1) have a finite value at   𝐸0, that means: 
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lim
(𝑆,𝐼,𝑃)→(0,0,0)

𝐹𝑖(𝑆, 𝐼, 𝑃) = 0 ; 𝑖 = 1,2,3 

Hence, these functions are continuous on the extended domain 

ℜ+
3 = {(𝑆, 𝐼, 𝑃): 𝑆(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0; 𝑃(𝑡) ≥ 0}. 

In fact, they are Lipschizian on ℜ+
3 . Accordingly, the solution of the system (1) with nonnegative 

initial condition exists and is unique. Thus, the int.ℜ+
3  is invariant for system (1). Clearly, the 

system (1) can't be linearized about 𝐸0. So, local stability of 𝐸0 can't be studied directly. However, 

by using the transformation of variables 𝑥(𝑡) = 𝑆(𝑡);  𝑦(𝑡) =
𝐼(𝑡)

𝑆(𝑡)
 and 𝑧(𝑡) =

𝑃(𝑡)

𝐼(𝑡)
 the transformed 

system is obtained as: 

𝑑𝑥

𝑑𝑡
= 𝑥 [𝑟 −

𝑟𝑥(1+𝑦)

𝐾
−

𝛽𝑥𝑦

(1+𝛼𝑥𝑦)
−

𝑏(1−𝜀)𝑦𝑧

(𝑚𝑦𝑧+1)
+ 𝑏1𝑦] = 𝐻1(𝑥, 𝑦, 𝑧)

𝑑𝑦

𝑑𝑡
= 𝑦 [

𝛽𝑥(1+𝑦)

(1+𝛼𝑥𝑦)
− 𝑏1(1 + 𝑦) − 𝑑1 − 𝑐𝑥𝑦𝑧 − 𝑟

      + 
𝑟𝑥(1+𝑦)

𝐾
+

𝑏(1−𝜀)𝑦𝑧

(𝑚𝑦𝑧+1)
] = 𝐻2(𝑥, 𝑦, 𝑧)

𝑑𝑧

𝑑𝑡
= 𝑧 [

𝑒1𝑏(1−𝜀)

(𝑚𝑦𝑧+1)
+ 𝛾1(1 − 𝜀)𝑥 + (𝑐 − 𝛾3)𝑥𝑦𝑧 + (𝑒2𝑐 + 𝛾2)𝑥𝑦

      +(𝑑1 + 𝑏1 − 𝑑2) −
𝛽𝑥

(1+𝛼𝑥𝑦)
] = 𝐻3(𝑥, 𝑦, 𝑧)

                                 (8) 

Functions 𝐻𝑖(𝑥, 𝑦, 𝑧); 𝑖 = 1,2,3  are continuous and have second order derivatives on ℜ+
3 . 

Accordingly, the solution of the system (8) with nonnegative initial condition exist and is unique. 

The Jacobian matrix 𝐽 ≡
𝑑

𝑑𝑡
ℋ𝑖(𝑥, 𝑦, 𝑧) for system (8) is: 

𝐽 = [

𝜕11 𝜕12 𝜕13

𝜕21 𝜕22 𝜕23

𝜕31 𝜕32 𝜕33

] 

where: 

𝜕11 = 𝑟 −
2𝑟𝑥(1+𝑦)

𝐾
−

 (2+𝛼𝑥𝑦)𝛽𝑥𝑦 

(1+𝛼𝑥𝑦)2 −
 𝑏(1−𝜀)𝑦𝑧 

(𝑚𝑦𝑧+1)
+ 𝑏1𝑦 ; 

𝜕12 =
−𝑟𝑥2 

𝐾
−

 𝛽𝑥2 

(1+𝛼𝑥𝑦)2
−

 𝑏(1−𝜀)𝑥𝑧 

(𝑚𝑦𝑧+1)2
+ 𝑏1𝑦 ; 

 𝜕13 =
−𝑏(1−𝜀)𝑥𝑦 

(𝑚𝑦𝑧+1)2  ; 

𝜕21 =
𝑟𝑦(1+𝑦)

𝐾
+

 𝛽𝑦(1+𝑦) 

(1+𝛼𝑥𝑦)2 − 𝑐𝑦2𝑧 ; 
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𝜕22 =
 𝛽𝑥(1+2𝑦+𝛼𝑥𝑦2) 

(1+𝛼𝑥𝑦)2
− 𝑏1(1 + 2𝑦) − 𝑑1 − 2𝑐𝑥𝑦𝑧

        −𝑟 +
 𝑟𝑥(1+2𝑦)

𝐾
+

 𝑏(1−𝜀)(𝑚𝑦𝑧+2)𝑦𝑧 

(𝑚𝑦𝑧+1)2

  

𝜕23 =
𝑏(1−𝜀)𝑦2

 (𝑚𝑦𝑧+1)2 
− 𝑐𝑥𝑦2 ; 

𝜕31 = (𝑒2𝑐 + 𝛾2)𝑦𝑧 + 𝛾1(1 − 𝜀)𝑧 −
 𝛽𝑧 

(1+𝛼𝑥𝑦)2 + (𝑐 − 𝛾3)𝑦𝑧2 ; 

𝜕32 =
−𝑒1𝑚𝑏(1−𝜀)𝑧2 

(𝑚𝑦𝑧+1)2
+ (𝑒2𝑐 + 𝛾2)𝑥𝑧 +

 𝛼𝛽𝑥2𝑧 

(1+𝛼𝑥𝑦)2
+ (𝑐 − 𝛾3)𝑥𝑧2 ; 

𝜕33 =
 𝑒1𝑏(1 − 𝜀) 

(𝑚𝑦𝑧 + 1)2
+ (𝑒2𝑐 + 𝛾2)𝑥𝑦 + 𝛾1(1 − 𝜀)𝑥 −

 𝛽𝑥 

(1 + 𝛼𝑥𝑦)2

       +2(𝑐 − 𝛾3)𝑥𝑦𝑧 + (𝑏1 + 𝑑1 − 𝑑2)

 

Then, the Jacobian matrix of system (8) at the equilibrium point 𝐸0 is: 

𝐽 = [

𝑟 0 0
0 −(𝑟 + 𝑏1 + 𝑑1) 0

0 0 𝑒1𝑏(1 − 𝜀) + (𝑏1 + 𝑑1 − 𝑑2)
] 

And the characteristic equation is 

(𝑟 − 𝜆)(−(𝑟 + 𝑏1 + 𝑑1) − 𝜆)(𝑒1𝑏(1 − 𝜀) + (𝑏1 + 𝑑1 − 𝑑2) − 𝜆) = 0 

since we have positive and negative eigenvalues then 𝐸0 is saddle point.  

6.1. DYNAMICS OF THE SYSTEM AROUND EQUILIBRIUM POINT 𝑬𝟏  

The Jacobian matrix at equilibrium point 𝐸1 is: 

J1 = [

−r b1 − (r + βK) −b(1 − ε)
0 βK − (b1 + d1) 0

0 0 (e1b + γ1K)(1 − ε) − d2

] 

And the characteristic equation is: 

(−𝑟 − 𝜆[1])(𝛽𝐾 − (𝑏1 + 𝑑1) − 𝜆[1]) ((𝑒1𝑏 + 𝛾1𝐾)(1 − 𝜀) − 𝑑2 − 𝜆[1]) = 0  (9) 

Then, the equilibrium point 𝐸2 is asymptotically stable if the conditions hold 

𝛽𝐾 < (𝑏1 + 𝑑1)                                                                                              (10.a) 

(𝑒1𝑏 + 𝛾1𝐾)(1 − 𝜀) < 𝑑2                                                                               (10.b)  

Otherwise the equilibrium point 𝐸2 is saddle point. 
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6.2. DYNAMICS OF THE SYSTEM AROUND EQUILIBRIUM POINT 𝑬𝟐  

The Jacobian matrix at equilibrium point 𝐸2 is: 

𝐽2 = [

𝜎11
[2]

𝜎12
[2]

𝜎13
[2]

𝜎21
[2]

𝜎22
[2]

𝜎23
[2]

0 0 𝜎33
[2]

] 

Where: 

𝜎11
[2]

= 𝑟 −
 𝑟(2𝑆2+𝐼2)

𝐾
−

𝛽𝐼2

 (1+𝛼𝐼2)
 ;      𝜎12

[2]
=

−𝑟𝑆2 

𝐾
−

(𝑏1+𝑑1)

 (1+𝛼𝐼2)
+ 𝑏1  

𝜎13
[2]

= −𝑏(1 − 𝜀) ;   𝜎21
[2]

=
𝛽𝐼2

 (1+𝛼𝐼2)
  ;    𝜎22

[2]
=

−𝛼𝐼2(𝑏1+𝑑1) 

 (1+𝛼𝐼2)
   

𝜎23
[2]

= −𝑐𝐼2 ;   𝜎33
[2]

= 𝑒1𝑏(1 − 𝜀) + (𝑒2𝑐 + 𝛾2)𝐼2 + 𝛾1(1 − 𝜀)𝑆2 − 𝑑2  

And the characteristic equation is: 

(𝜎33
[2]

− 𝜆[2]) ((𝜆[2])
2

+ 𝒜1
[2]

(𝜆[2]) + 𝒜2
[2]

) = 0                                                     (11) 

Where: 

𝒜1
[2]

= − (𝜎11
[2]

+ 𝜎22
[2]

); 

𝒜2
[2]

= 𝜎11
[2]

𝜎22
[2]

− 𝜎12
[2]

𝜎21
[2]

; 

So, the necessary and sufficient conditions to ensure all the eigenvalues of the Jacobian matrix 𝐽2 

lie in left complex plane when we have 

𝜎11
[2]

< 0 ;  𝜎33
[2]

< 0 and 𝜎12
[2]

< 0.                                                                                 (12) 

Implies equilibrium point 𝐸2 is asymptotically stable and it's Saddle point otherwise.  

6.3. DYNAMICS OF THE SYSTEM AROUND EQUILIBRIUM POINT 𝑬𝟑  

The Jacobian matrix at equilibrium point 𝐸3 is: 

𝐽3 = [

𝜎11
[3]

𝜎12
[3]

𝜎13
[3]

0 𝜎22
[3]

0

𝜎31
[3]

𝜎32
[3]

𝜎33
[3]

] 

Where: 
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𝜎11
[3]

= 𝑟 −
 2𝑟𝑆3 

𝐾
−

𝑚𝑏(1−𝜀)𝑃3
2

 (𝑚𝑃3+𝑆3)2 
  ;  𝜎12

[3]
=

−𝑟𝑆3 

𝐾
− 𝛽𝑆3 + 𝑏1  

𝜎13
[3]

=
−𝑏(1−𝜀)𝑆3

2

 (𝑚𝑃3+𝑆3)2 
 ;   𝜎22

[3]
= 𝛽𝑆3 − (𝑏1 + 𝑑1 + 𝑐𝑃3)  

𝜎31
[3]

=
𝑒1𝑚𝑏(1−𝜀)𝑃3

2

 (𝑚𝑃3+𝑆3)2 
+ 𝛾1(1 − 𝜀)𝑃3 ;  𝜎32

[3]
= 𝑒2𝑐𝑃3 + 𝛾2𝑃3  

𝜎33
[3]

=
𝑒1𝑏(1−𝜀)𝑆3

2

 (𝑚𝑃3+𝑆3)2 
+ 𝛾1(1 − 𝜀)𝑆3 − 2𝛾3𝑃3 − 𝑑2. 

And the characteristic equation is: 

(𝜎22
[3]

− 𝜆[3]) ((𝜆[3])
2

+ 𝒜1
[3]

(𝜆[3]) + 𝒜2
[3]

) = 0                                              (13) 

Where: 

𝒜1
[3]

= − (𝜎11
[3]

+ 𝜎33
[3]

); 

𝒜2
[3]

= 𝜎11
[3]

𝜎33
[3]

+ −𝜎13
[3]

𝜎31
[3]

; 

Obviously, the equilibrium point 𝐸3 is asymptotically stable if the following conditions hold, and  

𝐸3 Saddle point otherwise. 

𝜎11
[3]

< 0 ; 𝜎22
[3]

< 0 and 𝜎33
[3]

< 0.                                                                      (14) 

6.4. DYNAMICS OF THE SYSTEM AROUND EQUILIBRIUM POINT 𝑬𝟒  

The Jacobian matrix at equilibrium point 𝐸4 is: 

𝐽4 = [

𝜎11
[4]

𝜎12
[4]

𝜎13
[4]

𝜎21
[4]

𝜎22
[4]

𝜎23
[4]

𝜎31
[4]

𝜎32
[4]

𝜎33
[4]

] 

Where: 

𝜎11
[4]

= 𝑟 −
 𝑟(2𝑆4+𝐼4)

𝐾
−

𝛽𝐼4

 (1+𝛼𝐼4) 
−

𝑚𝑏(1−𝜀)𝑃4
2

 (𝑚𝑃4+𝑆4)2 
 ; 

𝜎12
[4]

=
−𝑟𝑆4 

𝐾
−

𝛽𝑆4

 (1+𝛼𝐼4)2 
+ 𝑏1;    𝜎13

[4]
=

−𝑏(1−𝜀)𝑆4
2

 (𝑚𝑃4+𝑆4)2 
 ; 

𝜎21
[4]

=
𝛽𝐼4

 (1+𝛼𝐼4) 
    ;  𝜎22

[4]
=

 −𝛼𝛽𝑆4𝐼4 

(1+𝛼𝐼4)2   ;   𝜎23
[4]

= −𝑐𝐼4  ; 

𝜎31
[4]

=
𝑒1𝑚𝑏(1−𝜀)𝑃4

2

 (𝑚𝑃4+𝑆4)2 
+ 𝛾1(1 − 𝜀)𝑃4  ;  𝜎32

[4]
= 𝑒2𝑐𝑃4 + 𝛾2𝑃4  ; 
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𝜎33
[4]

=
𝑒1𝑏(1−𝜀)𝑆4

2

 (𝑚𝑃4+𝑆4)2 
+ 𝑒2𝑐𝐼4 + 𝛾1(1 − 𝜀)𝑆4 + 𝛾2𝐼4 − 2𝛾3𝑃4 − 𝑑2. 

And the characteristic equation is: 

(𝜆[4])
3

+ 𝒜1
[4]

(𝜆[4])
2

+ 𝒜2
[4]

(𝜆[4]) + 𝒜3
[4]

= 0                                                (15) 

Where: 

𝒜1
[4]

= − (𝜎11
[4]

+ 𝜎22
[4]

+ 𝜎33
[4]

); 

𝒜2
[4]

= 𝜎11
[4]

𝜎33
[4]

+ 𝜎22
[4]

𝜎33
[4]

+ 𝜎11
[4]

𝜎22
[4]

− 𝜎12
[4]

𝜎21
[4]

− 𝜎13
[4]

𝜎31
[4]

− 𝜎23
[4]

𝜎32
[4]

; 

𝒜3
[4]

= 𝜎11
[4]

𝜎23
[4]

𝜎32
[4]

+ 𝜎22
[4]

𝜎13
[4]

𝜎31
[4]

+ 𝜎33
[4]

𝜎12
[4]

𝜎21
[4]

− 𝜎11
[4]

𝜎22
[4]

𝜎33
[4]

−𝜎12
[4]

𝜎23
[4]

𝜎31
[4]

𝜎13
[4]

𝜎32
[4]

𝜎21
[4]

                                              
; 

∆= 𝒜1
[4]

𝒜2
[4]

− 𝒜3
[4]

= − (𝜎11
[4]

)
2

𝜎22
[4]

− (𝜎11
[4]

)
2

𝜎33
[4]

− 𝜎11
[4]

(𝜎22
[4]

)
2

− (𝜎22
[4]

)
2

𝜎33
[4]

−𝜎11
[4]

(𝜎33
[4]

)
2

− 𝜎22
[4]

(𝜎33
[4]

)
2

− 2𝜎11
[4]

𝜎22
[4]

𝜎33
[4]

+ 𝜎12
[4]

𝜎23
[4]

𝜎31
[4]

+ 𝜎33
[4]

𝜎23
[4]

𝜎32
[4]

+𝜎13
[4]

𝜎31
[4]

(𝜎11
[4]

+𝜎33
[4]

) + 𝜎12
[4]

𝜎21
[4]

(𝜎11
[4]

+𝜎22
[4]

) + 𝜎32
[4]

(𝜎22
[4]

𝜎23
[4]

+𝜎21
[4]

𝜎13
[4]

)

 

So, by using Routh-Hurwitz criterion, the equilibrium point 𝐸4  is asymptotically stable if the 

following conditions hold 

𝜎11
[4]

< 0 ; 𝜎33
[4]

< 0 ; 𝜎12
[4]

< 0                                                                         (16.a) 

𝜎22
[4]

< min {
 −𝜎13

[4]
𝜎21

[4]
 

𝜎23
[4]  ;  

 𝜎12
[4]

𝜎23
[4]

 

𝜎13
[4] }                                                                      (16.b) 

Otherwise the equilibrium point 𝐸4 is Saddle point.   

Theorem (3): The equilibrium point 𝐸1  is a globally asymptotically stable provided that the 

following conditions hold 

(𝑏1(𝑆1 + 1) + 𝑑1) > (
𝑟𝑆1

𝐾
+ 𝛽(𝑆1 + 1) + 𝑏1) 𝐾                                            (17.a) 

𝑐(1 − 𝑒2) > 𝛾2                                                                                                (17.b) 

𝑑2 > (𝑏(𝑆1 − 𝑒1) + 𝛾1)(1 − 𝜀)𝐾                                                                   (17.c) 

Proof: consider the following positive definite real valued function: 

𝔴1(𝑡) =
(𝑆 − 𝑆1)2

2
+ 𝐼(𝑡) + 𝑃(𝑡) 
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And the derivative of 𝔴1(𝑡) with respect to time can be written as   

𝑑𝔴1

𝑑𝑡
= (𝑆 − 𝑆1)

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑃

𝑑𝑡
  

So, by using system (1) with some algebraic manipulations we get 

𝑑𝔴1

𝑑𝑡
=

−𝑟𝑆

𝐾
(𝑆 − 𝑆1)2 − [(𝑏1(𝑆1 + 1) + 𝑑1) − (

𝑟𝑆1

𝐾
+ 𝛽(𝑆1 + 1) + 𝑏1) 𝐾] 𝐼

−[𝑐(1 − 𝑒2) − 𝛾2]𝐼𝑃 − [𝑑2 − (𝑏(𝑆1 − 𝑒1) + 𝛾1)(1 − 𝜀)𝐾]𝑃
 

Clearly, 
𝑑𝔴1

𝑑𝑡
 is negative definite function under the conditions (17.a-17.c). Moreover it's clear that 

the function 𝔴1(𝑡)  is radially unbounded; then according to the Lyapunov first theorem the 

equilibrium point 𝐸1 is a globally asymptotically stable point. 

Theorem (4): The equilibrium point 𝐸2  is globally asymptotically stable provided that the 

following sufficient conditions hold 

𝑑2 > 𝑐𝐼2 + 𝐾(1 − 𝜀)(𝑏𝑆2 + 𝑒1𝑏 + 𝛾1)                                                          (18.a) 

𝑐(1 − 𝑒2) > 𝛾2                                                                                                (18.b) 

4𝑍11𝑍22 > 𝑍12
2                                                                                                  (18.c) 

Where 𝑍11, 𝑍12, 𝑍22 given in the prove. 

Proof: consider the following positive definite real valued function: 

𝔴2(𝑡) =
(𝑆 − 𝑆1)2

2
+ (𝐼 − 𝐼2 − 𝐼2 𝑙𝑛

𝐼

𝐼2
) + 𝑃(𝑡) 

And the derivative of 𝔴2(𝑡) with respect to time can be written as   

𝑑𝔴2

𝑑𝑡
= (𝑆 − 𝑆2)

𝑑𝑆

𝑑𝑡
+

(𝐼−𝐼2)

𝐼

𝑑𝐼

𝑑𝑡
+

𝑑𝑃

𝑑𝑡
  

≤ −[𝑍11(𝑆 − 𝑆2)2 + 𝑍12(𝑆 − 𝑆2)(𝐼 − 𝐼2) + 𝑍22(𝐼 − 𝐼2)2] − [𝑐(1 − 𝑒2) − 𝛾2]𝐼𝑃

−[𝑑2 − 𝑐𝐼2 − 𝐾(1 − 𝜀)(𝑏𝑆2 + 𝑒1𝑏 + 𝛾1)]𝑃
 

Hence by doing some algebraic manipulations and the conditions (18.a-18.c), we get that 

𝑑𝔴2

𝑑𝑡
≤ −[√𝑍11 (𝑆 − 𝑆2) + √𝑍22 (𝐼 − 𝐼2)]

2
− [𝑐(1 − 𝑒2) + 𝛾2]𝐼𝑃

         −[𝑑2 − 𝑐𝐼2 − 𝐾(1 − 𝜀)(𝑏𝑆2 + 𝑒1𝑏 + 𝛾1)]𝑃
 

Where: 
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𝑍11 = 𝑟 [
(𝑆 + 𝑆2)

𝐾
− 1] +

𝑟𝐼2

𝐾
+ 𝛽𝐼2(1 + 𝛼𝐼)

𝑍12 = 𝑏1 + 𝛽(1 + 𝛼𝐼) −
𝑆

𝐾
(𝑟 + 𝐾𝛽)

𝑍22 = 𝛼𝛽𝑆2

 

Now, by using conditions (18.a-18.c) guarantees that 
𝑑𝔴2

𝑑𝑡
< 0. It's clear that the equilibrium point 

𝐸2 is a globally asymptotically stable point.  

Theorem (5): The equilibrium point 𝐸3  is globally asymptotically stable that satisfied the 

following conditions 

𝛾3 > 𝑒1𝑚𝑏𝑆3(1 − 𝜀)                                                                                       (19.a) 

𝑐(1 − 𝑒2) > 𝛾2                                                                                                (19.b) 

(𝑏1 + 𝑑1) > 𝛽𝐾(1 + 𝑆3) + 𝑟𝑆3                                                                      (19.c) 

4𝐿11𝐿22 > 𝐿12
2                                                                                                  (19.d) 

Where 𝐿11, 𝐿12, 𝐿22 given in the prove. 

Proof: consider the following positive definite real valued function: 

𝔴3(𝑡) =
(𝑆 − 𝑆3)2

2
+ 𝐼(𝑡) + (𝑃 − 𝑃3 − 𝑃3 𝑙𝑛

𝑃

𝑃3
) 

Then the derivative of 𝔴3(𝑡) with respect to time can be written as   

𝑑𝔴3

𝑑𝑡
= (𝑆 − 𝑆3)

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

(𝑃−𝑃3)

𝑃

𝑑𝑃

𝑑𝑡
  

< −[𝐿11(𝑆 − 𝑆3)2 + 𝐿12(𝑆 − 𝑆3)(𝑃 − 𝑃3) + 𝐿22(𝑃 − 𝑃3)2] − [𝑐(1 − 𝑒2) − 𝛾2]𝐼𝑃
           
   −[𝑏1 + 𝑑1 − 𝑟𝑆3 − 𝛽𝐾(1 + 𝑆3)]𝐼 − [𝑒2𝑐 + 𝛾2]𝐼𝑃3

 

So, by doing some algebraic manipulations we get that 

𝑑𝔴3

𝑑𝑡
< −[√𝐿11(𝑆 − 𝑆3) + √𝐿22(𝑃 − 𝑃3)]

2
− [𝑐(1 − 𝑒2) − 𝛾2]𝐼𝑃

−[𝑏1 + 𝑑1 − 𝑟𝑆3 − 𝛽𝐾(1 + 𝑆3)]𝐼 − [𝑒2𝑐 + 𝛾2]𝐼𝑃3

 

Where 
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𝐿11 = 𝑟 [
(𝑆+𝑆3)

𝐾
− 1] + 𝑚𝑏𝑃𝑃3(1 − 𝜀)

𝐿12 = (𝑏𝑆𝑆3 − 𝛾1 + 𝑒1𝑚𝑏𝑃3)(1 − 𝜀)

𝐿22 = 𝛾3 − 𝑒1𝑚𝑏𝑆3(1 − 𝜀)

  

Obviously, 
𝑑𝔴3

𝑑𝑡
 is negative definite function with the conditions (19.a-19.d). Moreover it's clear 

that the function 𝔴3(𝑡) is radially unbounded, then according to the Lyapunov first theorem 𝐸3 is 

a globally asymptotically stable point.                                                              

Theorem (6): The equilibrium point 𝐸4  is globally asymptotically stable that satisfied the 

following conditions  

𝐺12
2 < 𝐺11𝐺22                                                                                                  (20.a) 

𝐺13
2 < 𝐺11𝐺33                                                                                                  (20.b) 

𝐺23
2 < 𝐺22𝐺33                                                                                                  (20.c) 

Where 𝐺11, 𝐺12, 𝐺13, 𝐺22, 𝐺23, 𝐺33 given in the prove. 

Proof: consider the following positive definite real valued function: 

𝔴4(𝑡) =
(𝑆 − 𝑆4)2

2
+ (𝐼 − 𝐼4 − 𝐼4 𝑙𝑛

𝐼

𝐼4
) + (𝑃 − 𝑃4 − 𝑃4 𝑙𝑛

𝑃

𝑃4
) 

And the derivative of 𝔴4(𝑡) with respect to time can be written as   

𝑑𝔴4

𝑑𝑡
= (𝑆 − 𝑆4)

𝑑𝑆

𝑑𝑡
+

(𝐼−𝐼4)

𝐼

𝑑𝐼

𝑑𝑡
+

(𝑃−𝑃4)

𝑃

𝑑𝑃

𝑑𝑡
  

𝑑𝔴4

𝑑𝑡
= (𝑆 − 𝑆4) [𝑟𝑆 −

𝑟𝑆2

𝐾
−

𝑟𝑆𝐼

𝐾
−

𝛽𝑆𝐼

(1 + 𝛼𝐼)
−

𝑏(1 − 𝜀)𝑆𝑃

(𝑚𝑃 + 𝑆)
+ 𝑏1𝐼]

            +(𝐼 − 𝐼4) [
𝛽𝑆

(1 + 𝛼𝐼)
− 𝑏1 − 𝑑1 − 𝑐𝑃]

            +(𝑃 − 𝑃4) [
𝑒1𝑏(1 − 𝜀)𝑆

(𝑚𝑃 + 𝑆)
+ 𝑒2𝑐𝐼 + 𝛾1(1 − 𝜀)𝑆 + 𝛾2𝐼 − 𝛾3𝑃 − 𝑑2]

 

𝑑𝔴4

𝑑𝑡
= − [

𝐺11

2
(𝑆 − 𝑆4)2 + 𝐺12(𝑆 − 𝑆4)(𝐼 − 𝐼4) +

𝐺22

2
(𝐼 − 𝐼4)2]

           − [
𝐺11

2
(𝑆 − 𝑆4)2 + 𝐺13(𝑆 − 𝑆4)(𝑃 − 𝑃4) +

𝐺33

2
(𝑃 − 𝑃4)2]

           − [
𝐺22

2
(𝑆 − 𝑆4)2 + 𝐺23(𝐼 − 𝐼4)(𝑃 − 𝑃4) +

𝐺33

2
(𝑃 − 𝑃4)2]

 

Consequently, by using conditions (20.a-20.c) we get that 
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𝑑𝔴4

𝑑𝑡
≤ − [√

𝐺11

2
 (𝑆 − 𝑆4) + √

𝐺22

2
 (𝐼 − 𝐼4)]

2

− [√
𝐺11

2
 (𝑆 − 𝑆4) + √

𝐺33

2
 (𝑃 − 𝑃4)]

2

          − [√
𝐺22

2
 (𝐼 − 𝐼4) + √

𝐺33

2
 (𝑃 − 𝑃4)]

2  

where 

𝐺11 = (
(𝑆 + 𝑆4)

𝐾
− 1) +

𝑟𝐼4

𝐾
+

𝛽𝐼4

(1 + 𝛼𝐼4)
+

𝑚𝑏𝑃𝑃4(1 − 𝜀)

(𝑚𝑃 + 𝑆)(𝑚𝑃4 + 𝑆4)
 

𝐺12 = 𝑏1 +
𝛽

(1 + 𝛼𝐼)
−

𝑟𝑆

𝐾
−

𝛽𝑆

(1 + 𝛼𝐼)(1 + 𝛼𝐼4)
 

𝐺22 =
𝛼𝛽𝑆4

(1+𝛼𝐼)(1+𝛼𝐼4)
;  𝐺13 = (1 − 𝜀) [

𝑏(𝑒1𝑚𝑃4−𝑆𝑆4)

(𝑚𝑃+𝑆)(𝑚𝑃4+𝑆4)
+ 𝛾1] 

𝐺23 = 𝛾2 − 𝑐(1 − 𝑒2);  𝐺33 = 𝛾3 +
𝑒1𝑚𝑏𝑆4(1−𝜀)

(𝑚𝑃+𝑆)(𝑚𝑃4+𝑆4)
 

Clearly, 
𝑑𝔴4

𝑑𝑡
 is negative definite under conditions (20.a-20.c). Moreover it's clear that the function 

𝔴4(𝑡)  is radially unbounded, then according to the Lyapunov first theorem 𝐸4  is a globally 

asymptotically stable point.                                                                                       

 

7. NUMERICAL SIMULATION 

In order to verify theoretical analytical results in our proposed model we have solved model 

(1) numerically by using Matlab program. Numerical simulations are solved by choosing the 

parametric values from the following set 

𝑟 = 1;  𝐾 = 20;  𝛽 = 0.2;   𝛼 = 0.2;   𝑏 = 0.6;   𝜀 = 0.5;
𝑚 = 0.5;  𝑏1 = 0.1;  𝑑1 = 0.1;   𝑐 = 0.2;  𝑒1 = 0.3;      
𝑒2 = 0.5;   𝛾1 = 0.05; 𝛾2 = 0.02; 𝛾3 = 0.9;  𝑑2 = 0.7

 
                                             (21) 

It's clear that starting from three different sets of initial values, the solutions of system (1) 

approaches asymptotically to positive equilibrium point 𝐸4 = (3.674,7.705,0.446) as shown in 

phase portrait and their series given in figure (1). This matched with the analytical result obtained 
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in theorem (6), which determined the sufficient condition (20) for globally stable positive 

equilibrium point 𝐸4. 

 

 

 

Fig. (1): Trajectories of system (1) started from different initial points approaches asymptotically to globally stable positive 

equilibrium point 𝐸4. (A) Phase portrait; (B) Time series of susceptible prey; (C) Time series of infected prey; (D) Time series of 

scavenger. 

 

Further numerical simulations have been verified for data given by eq. (21) with varying 

parameters 𝛽 = 0.002  and 𝜀 = 0.05 then the trajectory of system (1), starting from different sets 

of initial points, is approaching asymptotically to globally stable disease free equilibrium point 

𝐸3 = (19.742,0,0.452) as shown in phase portrait and their series given in figure (2). 

While the solutions of system (1) approach asymptotically to the globally stable scavenger free 

equilibrium point 𝐸2 = (3.047,10.235,0) as shown in figure (3) drawing from different set of 

initial points, and data given in eq. (21) with vary the parameter 𝑐 = 0.02.  



19 

EFFECT OF THE INFECTIOUS DISEASES AND REFUGE 

 

 
Fig. (2): Trajectories of system (1) started from different initial points approaches asymptotically to globally stable disease free 

equilibrium point 𝐸3. (A) Phase portrait; (B) Time series for susceptible prey; (C) Time series for infected prey; (D) Time series 

for scavenger. 

 

 
Fig. (3): Trajectories of system (1) started from different initial points approaches asymptotically to globally stable scavenger 

free equilibrium point 𝐸2. (A) Phase portrait; (B) Time series for susceptible prey; (C) Time series for infected prey; (D) Time 

series for scavenger. 
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Finally, for the parameters values given in eq. (21) with 𝛽 = 0.002 and from different sets of 

initial points, it's easy to verify the trajectories of system (1) approaches asymptotically to the 

globally stable axial equilibrium point 𝐸1 = (20,0,0) as shown in the figure (4). 

 

 

Fig. (4): Trajectories of system (1) started from different initial points approaches asymptotically to globally stable axial 

equilibrium point 𝐸1. (A) Phase portrait; (B) Time series for susceptible prey; (C) Time series for infected prey; (D) Time series 

for scavenger. 

 

7. DISCUSSION AND RESULTS 

In this paper, the interaction dynamics of prey and scavenger proposed and analyzed. Spread 

infection disease represented by Holling type-II infection function in prey population and prey 

refuge are considering. The model included both ratio-dependent and linear functional responses 

with different rates. The existences and boundedness of solutions of suggested model have been 

discussed. local stability has been investigated around each of the equilibrium point. Also, 

investigate the global dynamics at each equilibrium point by using suitable Lyapunov functions. 

The qualitative dynamical behavior as a function of varying the sets of parameters values is studied 
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analytically as well as numerically. Finally, for the biologically feasible set of hypothetical data as 

given in Eq. (21), the system (1) is solved numerically and the obtained results are explained in 

some typical figures and we will summarize as follows:    

1. System (1) has no periodic solution, instead of that the solution approaching asymptotically 

to one of their Four possible equilibrium points depending on their set of parameters values.  

2. If we take 𝛽 = 0.002  and 𝜀 = 0.05 and keeping all parameters value in eq.(21), the positive 

equilibrium point 𝐸4  becomes unstable and the trajectory of system (1) approaches 

asymptotically to the disease free equilibrium point 𝐸3. 

3. Moreover, the positive equilibrium point 𝐸4 becomes unstable and the trajectory of system (1) 

approaches asymptotically to the axial equilibrium point 𝐸1 as keeping  data given in eq.(21) 

with 𝛽 = 0.002. 

4. It's observed that, in case of maximum attack parameter varying choose 𝑐 = 0.02  with 

keeping the rest of parameters as in eq.(21) the positive equilibrium point 𝐸4  becomes 

unstable and the trajectory of system (1) approaches asymptotically to the scavenger free 

equilibrium point𝐸2. 

5. According to the above discussion, it’s observed that system (1) is sensitive to varying in 

many of its parameters and hence there is higher possibility to control. 
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