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Abstract. This paper compares and contrasts two back-propagation algorithms: the Levenberg-Marquardt (LM) and 

the Broyden Fletcher Goldfarb Shanno (BFGS). The concentrations of sixteen physicochemical factors were used to 

predict Fluoride in the Inaouène basin using artificial neural networks (ANN) of the multilayer perceptron type (MLP). 

We created many models based on the evolution of activation functions and the number of neurons in the hidden layer. 

The mean square error (MSE) and correlation coefficient were used to assess the effectiveness of the various ANN 

model training procedures (R). The LM training algorithms outperform the BFGS training algorithm, according to the 

results. The statistical indicators (R = 0.99 and MSE = 0.135 for LM and R = 0.95 and MSE = 41.22 for BFGS) 

highlight the efficacy of the LM algorithm for Fluoride prediction when compared to the BFGS method utilizing MLP 

type neural networks. 
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1. INTRODUCTION 

The most popular learning algorithm is Back-propagation (BP) [1], and it is the most common 

and widely used supervised training algorithm for solving approximation problems, recognition 

of shapes, classifying and discovering patterns, and making predictions from data, and other well-

known issues. Based on statistics, data mining, pattern recognition, and predictive analyzes. The 

BP algorithm(BPA)   is the most widely used example of supervised learning because of the 

media coverage of some spectacular applications, such as the demonstration of Sejnowski and 

Rosenberg (1987) and Adamson and Damper(1996), in which BPA is used in a system that learns 

to pronounce a text in English [2], [3]. Another success was the prediction of stock market prices 

[4] and, the Comparative study of different artificial neural network (ANN) training algorithms 

for atmospheric temperature forecasting in Tabuk, Saudi Arabia [5] and, more recently, a study 

on cumulative hazards evaluation for the water environment [6]. 

The gradient BP technique is a method that calculates the error gradient for each Neuron in the 

network, from the last layer to the first. The publication history shows that BPA has been 

discovered independently by different authors but under different names. The principle of BP can 

be described in three basic steps: routing information through the network; BP of sensitivities and 

calculation of the gradient; and adjust the parameters by the approximate gradient rule. It is 

important to note that BPA suffers from the inherent limitations of the gradient technique because 

of the risk of being trapped in a local minimum. If the gradients or their derivatives are zero, the 

network is trapped in a local minimum. Add to this the slowness of convergence, especially when 

dealing with large networks [7] (i.e., for which the number of connection weights to be determined 

is essential). To make the optimization more efficient, we can use second-order methods such as 

the so-called Quasi-Newton or modified Newton methods. 

 

2. SECOND-DEGREE OPTIMIZATION METHOD (QUASI-NEWTONIAN METHODS) 

2.1.  Levenberg-Marquardt Back-Propagation Method (LM): 

The LM algorithm is a variation of Newton's method [8], which was designed for minimizing 

functions that are sums of squares of non-linear functions [9], [10]. This is ideal for training 
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artificial neural networks (ANN). this is known to be very efficient when applied to ANN [11], 

[12], where the root mean square error is the performance index. Newton's; update for optimizing 

a performance index F(x) is 1 2
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The gradient is written in matrix form 

                     ∇𝐹(𝐱) = 2𝐉𝑇(𝐱)𝐯(𝐱)                                         (3)                                                      
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it is the Jacobian matrix. to determine the Hesse matrix, the element k, j of this matrix would be 

                [∇2𝐹(𝐱)]𝑘,𝑗 =
∂2𝐹(𝐱)

∂𝑥𝑘 ∂𝑥𝑗
= 2 ∑  𝑁

𝑖=1 {
∂𝑣𝑖(𝐱)

∂𝑥𝑘

∂𝑣𝑖(𝐱)

∂𝑥𝑗
+ 𝑣𝑖(𝐱)

∂2𝑣𝑖(𝐱)

∂𝑥𝑘 ∂𝑥𝑗
}                (5)                             

  The Hessian matrix can then be expressed in matrix form 

                                  ∇2𝐹(𝐱) = 2𝐉𝑇(𝐱)𝐉(𝐱) + 2𝐒(𝐱)                            (6)                                                                                                       

Where:    

                          𝐒(𝐱) = ∑  𝑁
𝑖=1 𝑣𝑖(𝐱)∇2𝑣𝑖(𝐱)                                      (7)                                          

If S(x) it is assumed to be minor, the Hessian matrix can be approximated as 

                                                      

                                        ∇2𝐹(𝐱) ≅ 2𝐉𝑇(𝐱)𝐉(𝐱)                               (8)                                                      

Substituting (8) and (3) into 𝑥k+1 = 𝑥k − 𝐴k
−1𝑔k, the Gauss-Newton method is obtained[14] 
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𝐱𝑘+1 = 𝐱𝑘 − [2𝐉𝑇(𝐱𝑘)𝐉(𝐱𝑘)]−12𝐉𝑇(𝐱𝑘)𝐯(𝐱𝑘)

           = 𝐱𝑘 − [𝐉𝑇(𝐱𝑘)𝐉(𝐱𝑘)]−1𝐉𝑇(𝐱𝑘)𝐯(𝐱𝑘)
                   (9)                          

The Gauss-Newton approach has the advantage of not requiring the computation of second-

order derivatives, as does Newton's conventional approach. The Gauss-Newton approach has the 

disadvantage of requiring the matrix: 𝐻 = 𝐽𝑇𝐽. It could be that it isn't invertible. To overcome 

this, make the following adjustments to the predicted Hessian matrix: 𝐺 = 𝐻 + 𝜇𝐼. In order to 

invert this matrix, we first assumed that the eigenvalues and the eigenvectors of 𝐇  are 

respectively the following:{𝜆1, 𝜆2, … , 𝜆𝑛} and {𝑧1, 𝑧2, … , 𝑧𝑛}. 

Then 

                   𝐆𝑖 = [𝐇 + 𝜇𝐈]𝐳 = 𝐇𝐮 + 𝜇𝐳𝑖 = 𝜆𝐳𝑖 + 𝜇𝐳𝑖 = (𝜆𝑖 + 𝜇)𝐳𝑖               (10) 

As a result, the eigenvectors of G  and H  are the same., and the eigenvalues of G  are 

(𝜆𝑗 + 𝜇) ⋅ 𝐺 can be made definite in a positive way by raising 𝜇 until (𝜆𝑗 + 𝜇) ≻ 0 for all is, 

                         𝐱𝑘+1 = 𝐱𝑘 − [𝐉𝑇(𝐱𝑘)𝐉(𝐱𝑘) + 𝜇𝑘𝐈]−1𝐉𝑇(𝐱𝑘)𝐯(𝐱𝑘)                (11)                       

Or 

                       Δ𝐱𝑘 = −[𝐉𝑇(𝐱𝑘)𝐉(𝐱𝑘) + 𝜇𝑘𝐈]−1𝐉𝑇(𝐱𝑘)𝐯(𝐱𝑘)                  (12) 

This algorithm has the benefit of approaching the steepest descent algorithm with a low learning 

rate as 𝜇𝑘 is increased. 

                 𝐱𝑘+1 ≅ 𝐱𝑘 −
1

𝜇𝑘
𝐉𝑇(𝐱𝑘)𝐯(𝐱𝑘) = 𝐱𝑘

1

2𝜇𝑘
∇𝐹(𝐱)                       (13) 

The algorithm becomes Gauss-Newton when 𝜇𝑘 is high and when 𝜇𝑘 is reduced to zero. 𝜇𝑘 

is set to a tiny number (e.g., 𝜇𝑘 = 0.01 ) before the start of the process. If a step does not result 

in a lower 𝐅(𝐱) value, it is repeated with 𝜇𝑘 multiplied by some factor 𝜗 ≻ 1(𝑒𝑔 ⋅ 𝜗 = 10). As 

a little step in the direction of the sharpest decline is taken, 𝐅(𝐱) should decrease with time. If 

the step yields a smaller value for 𝐅(𝐱), the next step divides 𝜇𝑘 by 𝜗, bringing the algorithm 

closer to Gauss-Newton and allowing for faster convergence. 

2.2. Back-propagation method Broyden-Fletcher-Goldfarb-Shanno (BFGS): 

Newton's technique uses a quadratic approximation of the function F(x) rather than a linear 

approximation. At a point where the quadratic function is minimized, the following approximate 
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solution is obtained: 

                     𝐹(𝐱𝑘+1) = 𝐹(𝐱𝑘 + Δ𝐱𝑘) = 𝐹(𝐱𝑘) + 𝐠𝑘
𝑇𝐀𝐱𝑘 +

1

2
Δ𝐱𝑘𝐀𝑘Δ𝐱𝑘        (14) 

The sequence obtained is  𝑥𝑘+1 = 𝑥𝑘 − 𝐴𝑘
−1𝑔𝑘 

The principal advance of Newton's approach is that it converges at a quadratic rate. The fastest 

descent method, on the other hand, has a much more slowly linear convergency rate. But Newton's 

method requires a significant amount of computation at each step. Suppose the problem has N 

dimensions an 𝑂(𝑁∗)To calculate the research direction 𝑑𝑘, a floating-point operation is required. 

The quasi-Newton approach computes the search direction by using an approximation [15] 

Hessian matrix. Let 𝐻𝑘 be a N*N symmetric matrix that approximates the Hessian matrix 𝐴𝑘; 

then, by minimizing the quadratic function, the search direction for the quasi-Newton method is 

obtained:         

          𝐹(𝐱𝑘+1) = 𝐹(𝐱𝑘 + Δ𝐱𝑘) = 𝐹(𝐱𝑘) + 𝐠𝑘
𝑇Δ𝐱𝑘 +

1

2
Δ𝐱𝑘

𝑇𝐇𝑘Δ𝐱𝑘          (15) 

If 𝐻𝑘 is invertible, the quadratic program's solution yields the following descent direction:                

                    d𝑘 = 𝐱 − 𝐱𝑘 = −(𝐇𝑘
−1)∇𝐹(𝐱)𝑇|𝐱=𝐱1

                                  (16) 

𝐻𝑘  as the matrix, must be updated from iteration to iteration by including the most recent 

gradient information in order to estimate the Hessian of the function F(x) at 𝑥 = 𝑥𝑘 

The matrix  𝐻𝑘 is updated using the equation below [16], [17]: 

                
1

k k k k k k
k k

k k k k k

y y H s s H
H H

y s s H s
+ = + −

                                 (17) 

Where 

                      1 1;k k k k k ks x x y g g+ += − = −
                                 (18)                                                     

2.3. Collection of Data:  

 TAZA is a city located in the northeast of Morocco in the Taza corridor, a pass where the Rif 

and Middle Atlas Mountains meet. Apart from the "corridor" formed by the valley of the Wadi 

Inaouen and the plain of Guercif, the rest of the province is dominated by mountains. Indeed, the 

province occupies the area which connects the Rif to the Middle Atlas, the two mountain ranges 
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narrowing at the level of the Touaher pass (559 m above sea level). The Inaouen is a Moroccan 

river, that forms near the city of TAZA, by the confluence of the Boulejraf and Larbaâ wadis, and 

borrows from east to west the breach of Taza, which marks the limit between the Rif and the 

Middle Atlas. 

Our database contains 100 surface water samples (notes) collected between 2014 and 2015 in 

the governorate of Taza (the Inaouen watershed). The water samples are being gathered, shipped 

and stocked following the protocol established by the National Potable Water Office. Part of the 

survey was carried out on site (temperature, dissolved oxygen, etc.). The rest was carried out at 

the Regional Centre CURI in Fez, which is supported by the USMBA (Sidi Mohamed Ben 

Abdellah University)[18]. 

2.4  Reduction and Preprocessing of Data: 

2.4.1 Inputs Selection: 

Use The 16 physico-chemical properties measured in the samples are the explanatory variables 

(independent): 

pH, Temperature: (T°C), dissolved oxygen: (DO), Magnesium: (Mg), Bicarbonate: (HCO3), 

Chlorides: (Cl), total dissolved solids: (TDS), Total Alkalinity: (CaCO3), Sodium: (Na), 

Potassium: (K), Calcium: (Ca), Sulfates: (SO4), Phosphorus: (P), Nitrate: (NO3), conductivity: 

(Cond) and Ammoniacal nitrogen: (NH4), 

Fluoride (F) is the dependent variable (predicted). 

 The database is distributed as follows: For the training phase of a predictive pattern of the 

dependent variable, 70% of the samples were randomly selected from the entire data set. The other 

30% of the data have been used to check the performance of the network and to avoid overlearning. 

This is to see if the predictions of these models are accurate and valid (15% for testing and 15% 

for validity). 

2.4.2 Formatting of Data 

Standardization is a preprocessing approach for data that aids in the reduction of model 

complexity. Raw, untransformed values comprise the input data (16 independent variables). Their 
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magnitudes are vastly different. These data are turned into standardized variables to help 

standardize the measurement scales. In fact, according to the relationship, the values of each 

independent variable I have been standardized with respect to their means and standard 

deviations:𝑋(𝑣𝑖) [19][20][21] 

Xs(𝑣𝑖) = (
X(𝑣𝑖)−𝑋̅(𝑣𝑖)

σ(𝑣𝑖)
)                                                    (19) 

With:  

Xs(𝑣𝑖): Standardized value  

X(𝑣𝑖): Observed value  

𝑋̅(𝑣𝑖): Average value 

𝑋̅(𝑣𝑖) =
1

100
∑ 𝑋𝑘(𝑣𝑖)

100
𝑘=1                                                               (20) 

σ(𝑣𝑖): standard deviation 

σ(𝑣𝑖) = √
1

100
∑ (𝑋𝑘(𝑣𝑖) − 𝑋̅(𝑣𝑖))2100

𝑘=1                                                  (21)                                          

The goal of normalising the values of all parameters is to eliminate very high or low-level 

exponential values and to prevent the variation from increasing too much with the mean. 

To meet the needs of the neural network transfer function, the values for the dependent variables 

were normalized in the interval [0;1]. This normalization was done in accordance with the 

relationship: 

𝐘n = (
Y−Ymin

Ymax −Ymin
)                                                                     (22)       

With: 

Yn : Normalized value 

Y :    Original value 

Ymin : Minimum value 

Ymax  : Maximum value 

2.4.3 Neural Network Implementation with MATLAB: 

Simple single-layer networks are substantially less effective than multilayer perceptron (MLP) 

networks. There are three layers in the network employed in this study: an input layer, a hidden 

 1......16i
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layer, and an output layer. The hidden layer's number of neurons isn't predetermined. This is 

decided during the learning process. The MATLAB 2018 software was used to run the neural 

network simulations. 

The design of multilayer neural networks consists of two parts: establishing the network's 

architecture and performing numerical optimization calculations. This computation involves 

determining synaptic coefficients and using a supervised learning technique to update these 

coefficients. The LM and BFGS algorithms were chosen for our research. These two techniques 

use non-linear optimization approaches to reduce the cost function (the mean squared error 

(MSE)), which is a measure of the difference between the network's actual and desired responses. 

This optimization is done iteratively by altering the weights as a function of the cost function's 

gradient: the gradient is computed using the BP method, which is a specialized method for neural 

networks. Algorithm optimization makes advantage of it. Before learning, the weights are set at 

random.  

2.4.4 Evaluation of Performances: 

MATLAB 2018 uses the cost function, which is most commonly used in statistics and is called 

the least-squares criterion, and consists of minimizing the sum of the squares of the residuals, in 

this case, the network will learn a discriminant function, for evaluating the quality of our 

predictive model and judging these performances. The total of the discrepancies between the 

target values and the predicted outputs provided for the training set gives the mean squared error 

(MSE). The evaluation's outcome can be expressed in two ways: statistical indicators and graph 

analysis. The correlation coefficient (R) and mean squared error (MSE) are the indicators 

employed in this study, and they are defined as follows: The correlation coefficient:                                                               

  𝐑 =
∑  100

𝑖=1  (𝑌𝑖
obs −𝑌obs ̅̅ ̅̅ ̅̅ )(𝑌𝑖

predi 
−𝑌predi ̅̅ ̅̅ ̅̅ ̅̅ )

√∑  100
𝑖=1  (𝑌𝑖

obs −𝑌obs ̅̅ ̅̅ ̅̅ )
2

(𝑌
𝑖
predi 

−𝑌predi ̅̅ ̅̅ ̅̅ ̅̅ )
2
                                                       (23) 

The mean squared error (MSE)  

 MSE =
1

100
∑  100

𝑖=1 (𝑌𝑖
obs − 𝑌𝑖

predi 
)

2
                                                    (24) 
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With 𝑌𝑖
obs  is the observed (actual) value of the studied metal, 𝑌𝑖

predi 
 is the estimated value of 

the metal by the model at observation i, 𝑌‾  is the mean value. The best prediction is when |𝑅| on 

the one hand and SSE, on the other hand, tends towards 1 and 0, respectively.  

 

3. RESULTS AND DISCUSSION 

Tests have demonstrated that changing the network's design, the number of hidden layers, the 

number of hidden neurons, and the length of training cycles can increase the performance of a 

model built with MLP (Multilayer Perceptron) type neural networks (number of iterations). We 

did this by gradually increasing the number of hidden neurons (NHN = 1, 2, 3, ..., 15). We used 

two learning algorithms in this study, referred to as high-performance algorithms LM and BFGS. 

We varied the number of neurons in the hidden layer and the pairs of transfer functions for each 

learning technique. The mean square error (MSE) and the correlation coefficient were used to 

evaluate performance (R). The methods are implemented and developed using the MATLAB 

2018 platform on a computer. The computer's processor is an Intel Core i5-7200U CPU 2.50GHz 

with 4 GB RAM. 

3.1 Training ANN with LM   Algorithm 

Table 1 represents the best performance found for the different combinations of transfer function 

pairs for the LM algorithm; they converge quickly and result in low values of the mean square 

error MSE and high values of the correlation coefficient R in a time of no more than a few seconds. 

 

 

 

 

Table1: Recap of the best architectures offered by Matlab for prediction fluoride with 

algorithm LM. 

Hidden layer 

 
 

Output layer 

 
 

R 

 

MSE Architecture Number of iterations 

 
 

Tansig Tansig 0,980 33.96 [16-3-1] 11 

Tansig Logsig 0,994 26.14 [16-4-1] 15 

Tansig Purelin 0,910 95.12 [16-5-1] 9 

Logsig Logsig 0,911 92.31 [16-6-1] 12 

Logsig Purelin 0,970 41.4 [16-7-1] 18 

Logsig Purelin 0,999 0.135 [16-8-1] 22 
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From this table, we note that: 

* The [16-8-1] architecture, with a Logsig function for the input layer and a Purelin function 

for the output layer, gave the best performance for the LM algorithm: R=0.99 and MSE=0.135. 

 * The LM algorithm converges with the minimum number of iterations (22iterations) for all 

combinations of transfer functions; this algorithm is reputed to be very efficient in the 

approximation of functions, mainly when the network contains less than a hundredweight to be 

updated, which is the case here. 

After 22 cycles, the network had hit overtraining; it would be worthwhile to keep on learning 

until this point for the test to minimize the gradient and improve our model (Figure.3). The 

following are the different values of training parameters found in this investigation, as shown in 

Figures 2; 3; and 4: 

• Max. numbers of iteration (Epochs) = 22 

• Determination coefficients = 0.99 

• Root mean squared error (MSE) = 0.135 

• Rate of learning (Mu) = 0.0001 

• Minimal gradient = 0.875 

 

Figure 1: Trend line showing the relationship between the observed values and values 

estimated by the MLP model with algorithm ML for fluoride for the training and test phase 
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Figure 2: As a function of the number of iterations, the error gradient, learning rate, and 

validation error (for fluoride) evolve. 

Network training is depicted in Figure 3. It demonstrates that the desired outcome is reached 

after sixteen iterations. The three curves relating to the evolution of the mean square error of the 

three phases converge appropriately to the least mean square error with eight hidden neurons 

(MSE) 

 

Figure 3: the representative graph concerning the development of the mean square error for 

a network architecture [16-8-1]. 
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3.2 Training ANN with BFGS Algorithm: 

Table 2 represents the best architecture found for the different combinations of transfer function 

pairs for the BFGS algorithm.  

   From this table, we note that: 

- The [16-6-1] architecture, with a Logsig function for the input layer and a Purelin function 

for the output layer, gave the best performance for the Broyden-Fletcher-Goldfarb-Shanno 

algorithm and her indicator statistical (R=0.95 and MSE=41.22) 

 

Hidden layer 

 
 

Output layer 

 
 

R 

 

MSE Architecture Number of iterations 

 
 

Tansig Tansig 0,920 82.16 [16-3-1] 180 

Tansig Logsig 0,916 100.85 [16-4-1] 215 

Tansig Purelin 0,901 111.12 [16-5-1] 149 

Logsig Logsig 0,953 41.22 [16-6-1] 222 

Logsig Purelin 0,932 63.12 [16-7-1] 482 

Logsig Purelin 0,945 48.45 [16-8-1] 237 

 

 

 

Table2: Recap of the best architectures offered by Matlab for prediction Fluoride with 

algorithm BFGS. 

 

The network reached overtraining after 222 iterations; it would be worthwhile to keep training 

up to this point for testing to minimize the gradient and improve our model (Figure 6). Figures 5, 

6 and 7 illustrate the different values of the training parameters found in this experiment: 

• Max. numbers of iteration (Epochs) = 222 

• Determination coefficients = 0.95 

• Root mean squared error (MSE) = 41.22 

• Minimal gradient = 66.96 
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Figure 4: Trend line showing the relationship between the observed values and values 

estimated by the MLP model with algorithm BFGS for fluoride for the training and test phase. 

 

Figure 5: As a function of the number of iterations, the error gradient, learning rate, and 

validation error (for fluoride) evolve. 

 

Network training is depicted in Figure 6. It demonstrates that the required result is obtained 

after 216 iterations. The three curves corresponding to the evolution of the mean square error of 

the three phases converge appropriately to the least mean square error (MSE=41.28) when six 

hidden neurons are used. 
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Figure 6: the representative graph concerning the development of the mean square error for 

a network architecture [16-6-1]. 

 

Figures 3 and 6 give the mean square error (MSE) values for LM algorithm of ANN. The LM 

algorithms showed a lowest MSE value at the point of convergence.  However, the BFGS 

algorithm took more epochs (216) to converge to the smallest MSE (41.22). compared to the LM 

algorithms training.   Nevertheless, the LM algorithm took only 16 epochs to reach 0.135 MSE. 

 

4. CONCLUSION 

Artificial neural networks are effective prediction tools. They are capable of dealing with non-

linear issues. They do, however, have a considerable disadvantage in terms of network 

architecture selection, as this is generally left to the user. In this study, we constructed numerous 

high-performing models based on the two learning algorithms LM and BFGS. The findings reveal 

that the LM method has the best statistical indicators (R=0.99 and MSE=0.135) as well as the 

fastest convergence speed (22 iterations). Indeed, when compared to the BFGS algorithm, the 

model created by the ML algorithm allows for improvements of up to 4% in the explanation of 
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variation. The LM training algorithms outperform the BFGS training algorithm, according to the 

results. 

As a result, the analytical findings show that the LM method is more efficient than the BFGS for 

Fluoride prediction in the Inaouen basin. The BFGS algorithm, on the other hand, can be 

considered a best substitute approach. 

In light of this, the following recommendations can help us continue to develop this topic:  

•  Use additional activation functions and work on various sorts of networks, such as recurring 

networks. The obtained results inspire us to reflect on the method that allows us to better the 

work we've done so far. Using other algorithms, for example, would be quite fascinating. 

•  Furthermore, the models are based on real-world data. As a result, they can be used to forecast 

Fluoride concentrations in the future based on physicochemical factors. 

•  Try out a different RNA architecture to see which one gives you the best results. 
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