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Abstract: A three-species food web model consisting of two competing prey – one predator with fear is created 

mathematically in the current work. Intra-specific competition within the predator's population, as well as a modified 

Holling type II functional response, are used. The study's goal is to look at the role of fear and intra-specific 

competition. Following a discussion of the solution's existence and uniqueness, other dynamical features of the 

solution, such as stability, persistence, and local bifurcation, were studied. Ultimately, the system is studied 

numerically with Matlab to fully understand global dynamics and the impact of altering parameter values. Different 

dynamical behaviors are discovered, such as stable point, stable line, and bi-stability. 
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1. INTRODUCTION 

The prey-predator relationship is one of the most essential instruments in the ecological system. 

Due to its worldwide occurrence and relevance, the interactive features among predators and their 
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prey have long been considered and will remain to be one of the core topics across both biology 

and computational ecology. Mathematics has had a huge impact in recent decades as a mechanism 

for describing and comprehending biological processes. As a result, biologists have presented 

mathematicians with a variety of difficult issues, resulting in advancements in the field of nonlinear 

differential equations. This form of the differential equation has long been significant in the study 

of theoretical population structure, and it will likely remain so in the future. One of the most well-

known uses of mathematics in biology is the building of system dynamics models for species 

interactions. Because the effect of indirect predation is greater than that of direct predation, the 

victim's fear of the predator is also crucial. In recent years, several biologists, experimentalists, 

and theorists have investigated the implications of supplying extra food to predators in prey-

predator systems, see [1] and the references therein. As a result of the implementation and use of 

analytical methodologies, as well as the expansion of computational power, our knowledge of these 

models has grown. Despite tremendous advances in the prey-predator theory, several hard 

mathematical and ecological problems remain unsolved. Experimenters and theoreticians face 

additional challenges as the complexity of differential equations and dimensions grows. 

Freedman and Waltman [2] investigated three-level food webs with two competing predators 

feeding on a sole prey as well as a single predator preying on competing prey species. They help 

to ensure the system's long-term viability. Predation and competition are frequently thought to be 

major factors affecting species' coexistence in ecological systems [3-4]. Previous research [5–8] 

has largely focused on two species, making it difficult to explain how fear affects predation rates 

when multiple species are present. Most studies also ignore the impact of fear on predation rates. 

Predator species' indirect influence on prey species has a higher impact than direct killing, 

according to current field studies. As a result, the current research examines predator anxiety and 

how it affects the behavior of competing prey species as well as predation rates. The competition 

factor, according to [9-10], indicates a situation in which the environment has few resources and 

both populations compete for survival. Several academics have recently looked into prey-predator 

models with two predators competing for prey [11-13]. 
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In a constrained resource setting, Firdiansyah and Nurhidayati [14] developed a prey-predator 

model with two predators eating a single prey. They described the feeding process using two types 

of functional responses (Holling types I and II). Furthermore, the fear effect is regarded as an 

indirect influence generated by both predators in their model. Manna et al. [15] investigated a 

three-species food web model that included two competitive prey interactions with a generalist 

predator that feeds on both. They looked at how population distributions were affected by random 

dispersal of all three species and nonlocal intra-specific competition for two prey species. Maghool 

and Naji [16] investigate the effects of predation anxiety on the behavior of a three-species food 

chain. Because each prey in the system has anti-predator properties, the authors used the Sokol-

Howell kind of functional response. As seen, the model is capable of displaying complicated 

dynamics, including chaos. 

With these researches in mind, certain prey-predator models have been built in order to obtain 

more realistic models that correlate to actual natural settings. For example, prey-predator models 

with the Allee effect have been considered in [17-18]; Mondal et al. [19] recently explored the 

impact of providing additional food to a predator in a delayed prey-predator scenario under the 

influence of fear. Prey-predator models with fear have been extensively investigated in [20-22]; 

prey-predator models with fear and refuge have been studied in [23-24], and the effect of fear and 

time delay on prey-predator dynamics have been discussed in [25-27]. However, [27] investigates 

the prey-predator paradigm in the presence of fear and group defense.  

A modified Holling type II functional response is examined to reflect the interaction between two 

prey and predator in this research, which is based on a three-species food web model with two 

competing prey and one predator. Fear, as well as intra-specific competition, are taken into account. 

The following is a summary of the paper's outline: The model, as well as its dimensionlessness, 

are detailed in Section 2. The equilibrium points and their current state are described in Section 3. 

The topic of local stability is discussed in section 4. Section 5 discusses the model's persistence, 

whereas Section 6 specifies the Basin of attractions for equilibrium points. Section 7 discusses the 

local bifurcation. The simulation of the model is performed in section 8. Finally, in the concluding 
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section, the concluding and discussion are supplied. 

 

2. THE MATHEMATICAL FORMULATION 

In this section, an ecological model based on a three-species food web with two prey and one 

predator is developed and mathematically formulated in the form: 

 

𝑑𝑋

𝑑𝑇
= 𝑟1𝑋 − 𝑎1𝑋

2 − 𝑏1𝑋𝑌 − 𝑐1𝑔1(𝑋, 𝑌)𝑍,                   

𝑑𝑌

𝑑𝑇
= 𝑟2𝑌 − 𝑎2𝑌

2 − 𝑏2𝑋𝑌 − 𝑐2𝑔2(𝑋, 𝑌)𝑍,                    

𝑑𝑍

 𝑑𝑇
= (𝑒1𝑐1𝑔1(𝑋, 𝑌) + 𝑒2𝑐2𝑔2(𝑋, 𝑌))𝑍 − 𝑎3𝑍

2 − 𝑑𝑍,

                          (1) 

where 𝑋(𝑡), 𝑌(𝑡), and 𝑍(𝑡) denote the population size of the first prey, second prey, and predator 

at time 𝑡 respectively. As per the updated Holling type-II functional response, the two contending 

preys are expected to develop logistically while being consumed by a predator.  The predator's diet 

is entirely dependent on these two competing prey, and in the absence of them, it decays 

exponentially. Furthermore, predator species are thought to have intra-specific competition. On 

the other hand, it is well recognized that the predator has an indirect impact on the prey population 

by inducing fear and changing the prey's behavior. In fact, the prey population increases awareness, 

reduces foraging activity, sacrifices higher intake zones and feeds in safer locations, adjusts the 

reproductive cycle, and so on owing to fear of predation. As a result, the impact of predator-induced 

anxiety is added to the suggested model, resulting in the model (2): 

𝑑𝑋

𝑑𝑇
=

𝑟1𝑋

(1+𝑛1𝑍)
− 𝑎1𝑋

2 − 𝑏1𝑋𝑌 −
𝑐1𝑋𝑍

1+𝑞1𝑋+𝑞2𝑌
 ,

𝑑𝑌

𝑑𝑇
=

𝑟2𝑌

(1+𝑛2𝑍)
− 𝑎2𝑌

2 − 𝑏2𝑋𝑌 −
𝑐2𝑌𝑍

1+𝑞1𝑋+𝑞2𝑌
 ,

𝑑𝑍

𝑑𝑇
=  

(𝑒1𝑐1𝑋+𝑒2𝑐2𝑌)𝑍

1+𝑞1𝑋+𝑞2𝑌
− 𝑎3𝑍

2 − 𝑑𝑍,                

                                  (2) 

where 𝑋(0) ≥ 0, 𝑌(0) ≥ 0 , 𝑍(𝑡) ≥ 0 , and 𝑔1(𝑋, 𝑌) =
𝑋

1+𝑞1𝑋+𝑞2𝑌
 , and 𝑔2(𝑋, 𝑌) =

𝑌

1+𝑞1𝑋+𝑞2𝑌
 . 

While, the first and second prey's fear functions are represented by 
1

(1+𝑛1𝑍)
  and 

1

(1+𝑛2𝑍)
 , 

respectively. In model (2), all of the parameters are supposed for being positive and are described 

in table (1) below. 
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Table 1:   Explanation of parameters. 

Parameter Description 

𝑟1, 𝑟2 The net growth rates of the first and second prey respectively. 

𝑎1, 𝑎2, 𝑎3 
Intra-specific competition rates of the first prey, second prey, and predator 

respectively. 

𝑏1, 𝑏2 The intensity of intra-specific competition between the two preys. 

𝑐1, 𝑐3 The prey consumption rates.   

𝑒1, 𝑒1 Rates at which meal from the 1st and 2nd prey is converted. 

𝑛1, 𝑛2 Fear levels for the 1st and 2nd prey respectively. 

𝑞1, 𝑞1 Environmental protection rates of the 1st and 2nd prey respectively. 

𝑑 The natural mortality rate of a predator. 

The fact that system (2) has 16 parameters makes analysis challenging. As a result, using the 

nondimensional variables and parameters indicated below, the set of parameters is reduced to 12, 

providing the model (3). 

𝑥 =
𝑎1𝑋

𝑟1
 , 𝑦 =

𝑏1𝑌

𝑟1
, 𝑧 =

𝑐1𝑍

𝑟1
 , 𝑡 = 𝑟1𝑇, 𝑚1 =

𝑛1𝑟1

𝑐1
,    𝑚2 =

𝑞1𝑟1

𝑎1
, 𝑚3 =

𝑞2𝑟1

𝑏1
, 𝑚4 =

𝑟2

𝑟1
  

  

 𝑚5 =
𝑛2𝑟1

𝑐1
, 𝑚6 =

𝑎2

𝑏1
, 𝑚7 =

𝑏2

𝑎1
, 𝑚8 =

𝑐2

𝑐1
, 𝑚9 =

𝑒1𝑐1

𝑎1
, 𝑚10 =

𝑒2𝑐2

𝑏1
, 𝑚11 =

𝑎3

𝑐1
, 𝑚12 =

𝑑

𝑟1
 .

         

As a result, the nondimensional system that relates to a system (2) is defined as follows:  

𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑚1𝑧
− 𝑥 − 𝑦 −

𝑧

1+𝑚2𝑥+𝑚3𝑦
] = 𝑥𝑓1(𝑥, 𝑦, 𝑧),                

𝑑𝑦

𝑑𝑡
= 𝑦 [

𝑚4

1+𝑚5𝑧
  − 𝑚6𝑦 − 𝑚7𝑥 −

𝑚8𝑧

1+𝑚2𝑥+𝑚3𝑦
] = 𝑦𝑓2(𝑥, 𝑦, 𝑧) ,

𝑑𝑧

𝑑𝑡
= 𝑧 [

𝑚9𝑥+𝑚10𝑦

1+𝑚2𝑥+𝑚3𝑦
− 𝑚11𝑧 − 𝑚12] = 𝑧𝑓3(𝑥, 𝑦, 𝑧).                   

                    (3) 

The interactivity functions are defined on ℝ+
3 = {(𝑥, 𝑦, 𝑧): 𝑥(𝑡) ≥ 0, 𝑦(𝑡) ≥ 0, 𝑧(𝑡) ≥ 0} . 

Furthermore, the interactive functions in the system (3) are Lipschitzian functions since they are 

having continuous partial derivatives. As a result, there is a system (3) solution that is unique. 

Theorem 1: With initial conditions falling in the ℝ+
3, all solutions of system (3) are uniformly 

bounded. 

Proof. Consider any solution of the system (3) with an initial condition (𝑥0, 𝑦0, 𝑧0) ∈ ℝ+
3. From 
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the first equation of the system (3), it is obtained that: 

𝑑𝑥

𝑑𝑡
≤ 𝑥 − 𝑥2.   

Hence by solving this differential inequality it is obtained that 𝑥 ≤ 1 as 𝑡 → ∞. Similarly, from 

the second equation of the system (3), it’s observed that:  

𝑑𝑦

𝑑𝑡
≤ 𝑚4𝑦 − 𝑚6𝑦

2,   

which gives that 𝑦 ≤
𝑚4

𝑚6
  as 𝑡 → ∞.  

Look to the function   𝑄(𝑡) = 𝑐1𝑥(𝑡) + 𝑐2𝑦(𝑡) + 𝑧(𝑡), then 

𝑑𝑄

𝑑𝑡
= 𝑐1 [

𝑥

1+𝑚1𝑧
− 𝑥2 − 𝑥𝑦 −

𝑥𝑧

1+𝑚2𝑥+𝑚3𝑦
]                                

+ 𝑐2 [
𝑚4𝑦

1+𝑚5𝑧
  − 𝑚6𝑦

2 − 𝑚7𝑥𝑦 −
𝑚8𝑧𝑦

1+𝑚2𝑥+𝑚3𝑦
]

+ [
𝑚9𝑥+𝑚10𝑦

1+𝑚2𝑥+𝑚3𝑦
𝑧 − 𝑚11𝑧

2 − 𝑚12𝑧] .

  

So, by choosing 𝑐1 = 𝑚9, and 𝑐2 =
𝑚10

𝑚8
, it is obtained that: 

𝑑𝑄

𝑑𝑡
≤ 2𝑚9𝑥 +

2𝑚10𝑚4

𝑚8
𝑦 − 𝛿𝑄 ≤ 2(𝑚9 +

𝑚10𝑚4
2

𝑚6𝑚8
) − 𝛿𝑄, 

where   𝛿 = {1,𝑚4, 𝑚12}. Therefore, direct computation gives, for 𝑡 → ∞, that:  

𝑄(𝑡) ≤
2(𝑚9+

𝑚10𝑚4
2

𝑚6𝑚8
)

𝛿
. 

As a result, all of the solutions in the following region are uniformly bounded. 

{(𝑥, 𝑦, 𝑧) ∈ ℝ+
3, 0 ≤ 𝑥(𝑡) ≤ 1, 0 ≤ 𝑦(𝑡) ≤

𝑚4

𝑚6
, 0 < 𝑚9𝑥(𝑡) +

𝑚10

𝑚8
𝑦(𝑡) + 𝑧(𝑡) ≤

2(𝑚9𝑚6𝑚8+𝑚10𝑚4
2)

𝛿𝑚6𝑚8
}. 

 

3. EXISTENCE OF EQUILIBRIUM POINTS  

The system (3) has a maximum of seven non-negative equilibrium points, the form of which is 

given below, along with their existence requirements. 

The vanishing equilibrium point (VEP), denoted by 𝜀0 = (0,0,0) exists at all times. 

The first axial equilibrium point (FAEP), denoted by 𝜀1 = (1,0,0) exists at all times. 
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The second axial equilibrium point (SAEP), represented by 𝜀2 = (0,  𝑦∗∗, 0) , where 𝑦∗∗ =
𝑚4

𝑚6
 , 

exists at all times.  

The predator-free equilibrium point (PFEP), represented by 𝜀3 = (�̅�, �̅�, 0) , where �̅� =
𝑚4−𝑚6

𝑚7−𝑚6
 

and �̅� =
𝑚7−𝑚4

𝑚7−𝑚6
, exists if and only if one of the following requirements true:      

𝑚6 < 𝑚4 < 𝑚7

𝑜𝑟
𝑚7 < 𝑚4 < 𝑚6

}                                  (4) 

However, it is observed there is a line (𝑥 + 𝑦 = 1) of PFEP when 𝑚6 = 𝑚4 = 𝑚7. 

The 1st prey free equilibrium point (FPYFEP) is denoted by 𝜀4 = (0, �̅̅�, 𝑧̿), where �̅̅� is obtained 

by the fourth-order polynomial equation's positive root: 

𝜎1𝑦
4 + 𝜎2𝑦

3 + 𝜎3𝑦
2 + 𝜎4𝑦 + 𝜎5 = 0,                       (5a) 

where: 

𝜎1 = (𝑚10 − 𝑚3𝑚12)𝑚3
2𝑚5𝑚6𝑚11 + 𝑚3

3𝑚6𝑚11
2, 

𝜎2 = 𝑚3𝑚11(2𝑚5𝑚6𝑚10 − 𝑚3
2𝑚4𝑚11) + 3𝑚3

2𝑚6𝑚11(𝑚11 − 𝑚5𝑚12), 

𝜎3 = 𝑚10𝑚5𝑚8(𝑚10 − 2𝑚12𝑚3) + 𝑚12𝑚3
2𝑚8(𝑚12𝑚5 − 𝑚11) + 𝑚5𝑚6𝑚11(𝑚10 −

3𝑚12𝑚3) + 𝑚10𝑚3𝑚8𝑚11 + 3𝑚3𝑚11
2(𝑚6 − 𝑚3𝑚4), 

𝜎4 = −2𝑚12𝑚5𝑚8(𝑚10 − 𝑚3𝑚12) + 𝑚6𝑚11(𝑚11 − 𝑚12𝑚5) + 𝑚8𝑚11(𝑚10 −

2𝑚3𝑚12) − 3𝑚3𝑚4𝑚11
2, 

𝜎5 = 𝑚12𝑚8(𝑚5𝑚12 − 𝑚11) − 𝑚4𝑚11
2. 

While, 𝑧̅̅ is given by: 

𝑧̅̅ =
(𝑚10−𝑚3𝑚12)�̅̅�−𝑚12

𝑚11(1+𝑚3�̅̅�)
.                                       (5b) 

If the following adequate conditions are satisfied, the FPYFEP exists  uniquely in the first quadrant 

of the 𝑦𝑧 −plane. 

0 <
𝑚12

(𝑚10−𝑚3𝑚12)
< �̅̅�,                                     (6a) 

with one of the conditions listed below 

𝜎2 > 0, 𝜎3 > 0, 𝜎4 > 0, 𝜎5 < 0
𝜎2 < 0, 𝜎3 < 0, 𝜎4 < 0, 𝜎5 < 0

𝜎2 > 0, 𝜎4 < 0, 𝜎5 < 0
}.                          (6b) 
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The 2nd prey free equilibrium point (SPYFEP) is represented by 𝜀5 = (�̂�, 0, �̂�) , where �̂�  is 

provided by a positive root of the fourth-order polynomial equation: 

𝜌1𝑥
4 + 𝜌2𝑥

3 + 𝜌3𝑥
2 + 𝜌4𝑥 + 𝜌5 = 0,                       (7a) 

where: 

𝜌1 = (𝑚9 − 𝑚2𝑚12)𝑚2
2𝑚1𝑚11 + 𝑚2

3𝑚11
2, 

𝜌2 = 𝑚2𝑚11(2𝑚1𝑚9 − 𝑚2
2𝑚11) + 3𝑚2

2𝑚11(𝑚11 − 𝑚1𝑚12), 

𝜌3 = 𝑚9𝑚1(𝑚9 − 2𝑚2𝑚12) + 𝑚12𝑚2
2(𝑚12𝑚1 − 𝑚11) + 𝑚1𝑚11(𝑚9 − 3𝑚12𝑚2) +

𝑚9𝑚2𝑚11 + 3𝑚2𝑚11
2(1 − 𝑚2), 

𝜌4 = −2𝑚12𝑚1(𝑚9 − 𝑚2𝑚12) + 𝑚11(𝑚11 − 𝑚12𝑚1) + 𝑚11(𝑚9 − 2𝑚2𝑚12) −

3𝑚2𝑚11
2, 

𝜌5 = 𝑚12(𝑚1𝑚12 − 𝑚11) − 𝑚11
2. 

While, �̂� is given by: 

�̂� =
(𝑚9−𝑚2𝑚12)�̂�−𝑚12

𝑚11(1+𝑚2�̂�)
.                                      (7b) 

If the following adequate conditions are satisfied, the SPYFEP exists  uniquely in the first quadrant 

of the 𝑥𝑧 −plane. 

0 <
𝑚12

(𝑚9−𝑚2𝑚12)
< �̂�,                                (8a) 

with one of the conditions listed below 

𝜌2 > 0, 𝜌3 > 0, 𝜌4 > 0, 𝜌5 < 0
𝜌2 < 0, 𝜌3 < 0, 𝜌4 < 0, 𝜌5 < 0

𝜌2 > 0, 𝜌4 < 0, 𝜌5 < 0
}.                          (8b) 

If there is a single solution to the following set of algebraic equations, the coexistence equilibrium 

point (CEP) represented by 𝜀6 = (𝑥∗, 𝑦∗, 𝑧∗), arises uniquely in the interior of ℝ+
3. 

 

𝑓1(𝑥, 𝑦, 𝑧) = 0,

𝑓2(𝑥, 𝑦, 𝑧) = 0 ,

𝑓3(𝑥, 𝑦, 𝑧) = 0,

                                      (9) 

where 𝑓𝑖; 𝑖 = 1,2,3 are written in system (3). Straightforward computation shows that: 

   𝑧∗ =
(𝑚9−𝑚2𝑚12)𝑥∗+(𝑚10−𝑚3𝑚12)𝑦∗−𝑚12

𝑚11(1+𝑚2𝑥∗+𝑚3𝑦∗)
.                     (10) 

While, the point (𝑥∗, 𝑦∗) represents a unique intersection point of the following two isoclines in 
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the interior of the first quadrant of the 𝑥𝑦 −plane: 

 

𝜐1(𝑥, 𝑦) =
1

1+𝑚1(
(𝑚9−𝑚2𝑚12)𝑥+(𝑚10−𝑚3𝑚12)𝑦−𝑚12

𝑚11(1+𝑚2𝑥+𝑚3𝑦)
)
− 𝑥                          

                  −𝑦 −
(
(𝑚9−𝑚2𝑚12)𝑥+(𝑚10−𝑚3𝑚12)𝑦−𝑚12

𝑚11(1+𝑚2𝑥+𝑚3𝑦)
)

1+𝑚2𝑥+𝑚3𝑦
= 0.

             (11a) 

 

𝜐2(𝑥, 𝑦) =
𝑚4

1+𝑚5(
(𝑚9−𝑚2𝑚12)𝑥+(𝑚10−𝑚3𝑚12)𝑦−𝑚12

𝑚11(1+𝑚2𝑥+𝑚3𝑦)
)
  − 𝑚6𝑦                          

                −𝑚7𝑥 −
𝑚8(

(𝑚9−𝑚2𝑚12)𝑥+(𝑚10−𝑚3𝑚12)𝑦−𝑚12
𝑚11(1+𝑚2𝑥+𝑚3𝑦)

)

1+𝑚2𝑥+𝑚3𝑦
= 0.

         (11b) 

Clearly, as 𝑦 = 0, the two isoclines become: 

𝜐1(𝑥, 0) = 𝜁1𝑥
4 + 𝜁2𝑥

3 + 𝜁3𝑥
2 + 𝜁4𝑥 + 𝜁5 = 0,                           (12a)                                                                                      

𝜐2(𝑥, 0) = 𝜁6𝑥
4 + 𝜁7𝑥

3 + 𝜁8𝑥
2 + 𝜁9𝑥 + 𝜁10 = 0,                         (12b) 

where:  

      𝜁1 = 𝑚11𝑚2
3(𝑚11 − 𝑚1𝑚12) + 𝑚1𝑚11𝑚2

2𝑚9, 

𝜁2 = 3𝑚11𝑚2
2(𝑚11 − 𝑚1𝑚12) − 𝑚11

2𝑚2
3 + 2𝑚1𝑚11𝑚2𝑚9, 

𝜁3 = 3𝑚11
2𝑚2 − 3𝑚1𝑚11𝑚12𝑚2 − 3𝑚11

2𝑚2
2 − 𝑚11𝑚12𝑚2

2 + 𝑚1𝑚12
2𝑚2

2

+ 𝑚1𝑚11𝑚9 + 𝑚11𝑚2𝑚9 − 2𝑚1𝑚12𝑚2𝑚9 + 𝑚1𝑚9
2 

𝜁4 = 𝑚11(𝑚11 − 𝑚1𝑚12) − 3𝑚11
2𝑚2 − 2𝑚12𝑚2(𝑚11 − 𝑚1𝑚12) + 𝑚9(𝑚11

− 2𝑚1𝑚12) 

𝜁5 = −𝑚11
2 − 𝑚12(𝑚11 − 𝑚1𝑚12)      

  𝜁6 = 𝑚2
3𝑚7𝑚11(𝑚11 − 𝑚5𝑚12) + 𝑚11𝑚2

2𝑚5𝑚7𝑚9, 

𝜁7 = −𝑚11
2𝑚2

3𝑚4 + 3𝑚2
2𝑚7𝑚11(𝑚11 − 𝑚5𝑚12) + 2𝑚11𝑚2𝑚5𝑚7𝑚9   

𝜁8 = −3𝑚11
2𝑚2

2𝑚4 + 3𝑚2𝑚7𝑚11(𝑚11 − 𝑚5𝑚12) − 𝑚12𝑚2
2𝑚8(𝑚11 − 𝑚5𝑚12)

+ 𝑚11𝑚5𝑚7𝑚9 + 𝑚11𝑚2𝑚8𝑚9 − 2𝑚12𝑚2𝑚5𝑚8𝑚9 + 𝑚5𝑚8𝑚9
2 

𝜁9 = −3𝑚11
2𝑚2𝑚4 + 𝑚11𝑚7(𝑚11 − 𝑚12𝑚5) − 2𝑚2𝑚8𝑚12(𝑚11 − 𝑚5𝑚12)

+ 𝑚8𝑚9(𝑚11 − 2𝑚5𝑚12) 

𝜁10 = −𝑚11
2𝑚4 − 𝑚12𝑚8(𝑚11 − 𝑚5𝑚12)  

According to the polynomial equations (12a) and (12b), each one has a unique positive root 

designated by 𝑥1 and 𝑥2, if and only if the following sufficient conditions are met: 
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𝑚11 > 𝑚1𝑚12

𝜁2 > 0
𝜁4 < 0

}.                                         (13a) 

 

𝑚11 > 𝑚5𝑚12

𝜁7 > 0
𝜁9 < 0

}.                                          (13b) 

Keeping the above in mind, the CEP exists uniquely if in addition to conditions (13a) and (13b) 

the following sufficient conditions are met: 

𝑥1 < 𝑥2.                                                                        (14a)   

𝑑𝑦

𝑑𝑥
= −(

𝜕𝜐1(𝑥,𝑦)

𝜕𝑥
) (

𝜕𝜐1(𝑥,𝑦)

𝜕𝑦
)⁄ > 0.                                  (14b) 

𝑑𝑦

𝑑𝑥
= −(

𝜕𝜐2(𝑥,𝑦)

𝜕𝑥
) (

𝜕𝜐2(𝑥,𝑦)

𝜕𝑦
)⁄ < 0.                                     (14c) 

(𝑚9 − 𝑚2𝑚12)𝑥
∗ + (𝑚10 − 𝑚3𝑚12)𝑦

∗ > 𝑚12.                     (14d) 

 

3. LOCAL STABILITY  

In this section, the local behavior of the above equilibrium points is explored by determining the 

system's (3) Jacobian matrix at the point (𝑥, 𝑦, 𝑧): 

𝐽 =

(

 
 

𝑥
𝜕𝑓1

𝜕𝑥
+ 𝑓1 𝑥

𝜕𝑓1

𝜕𝑦
𝑥

𝜕𝑓1

𝜕𝑧

𝑦
𝜕𝑓2

𝜕𝑥
𝑦

𝜕𝑓2

𝜕𝑦
+ 𝑓2 𝑦

𝜕𝑓2

𝜕𝑧

𝑧
𝜕𝑓3

𝜕𝑥
𝑧

𝜕𝑓3

𝜕𝑦
𝑧

𝜕𝑓3

𝜕𝑧
+ 𝑓3)

 
 

= (𝑎𝑖𝑗)3×3
,                         (15) 

where: 

𝑎11 = 𝑥(−1 +
𝑚2𝑧

(1+𝑚2𝑥+𝑚3𝑦)2
) +

1

(1+𝑚1𝑧)
− 𝑥 − 𝑦 −

𝑧

(1+𝑚2𝑥+𝑚3𝑦)
, 

𝑎12 = −𝑥 +
𝑚3𝑥𝑧

(1+𝑚2𝑥+𝑚3𝑦)2
, 

𝑎13 = −
𝑚1𝑥

(1+𝑚1𝑧)2
−

𝑥

1+𝑚2𝑥+𝑚3𝑦
, 

𝑎21 = −𝑚7𝑦 +
𝑚2𝑚8𝑦𝑧

(1+𝑚2𝑥+𝑚3𝑦)2
,      

𝑎22 = 𝑦 (−𝑚6 +
𝑚3𝑚8𝑧

(1+𝑚2𝑥+𝑚3𝑦)2
) +

𝑚4

1+𝑚5𝑧
− 𝑚6𝑦 − 𝑚7𝑥 −

𝑚8𝑧

1+𝑚2𝑥+𝑚3𝑦
, 

𝑎23 = 𝑦 (−
𝑚4𝑚5

(1+𝑚5𝑧)2
−

𝑚8

1+𝑚2𝑥+𝑚3𝑦
),  
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 𝑎31 = (
𝑚9+(𝑚3𝑚9−𝑚2𝑚10)𝑦

(1+𝑚2𝑥+𝑚3𝑦)2
) 𝑧 , 

 𝑎32 = (
𝑚10+(𝑚2𝑚10−𝑚3𝑚9)𝑥

(1+𝑚2𝑥+𝑚3𝑦)2
) 𝑧 , 

 𝑎33 = −2𝑚11𝑧 +
𝑚9𝑥+𝑚10 𝑦

1+𝑚2𝑥+𝑚3𝑦
− 𝑚12 ,  

Therefore, the Jacobian matrix at VEP is: 

 𝐽𝜀0
= (

1 0 0
0 𝑚4 0
0 0 −𝑚12

).                                       (16)   

Then the eigenvalues are given by 𝜆01 = 1, 𝜆02 = 𝑚4, 𝜆03 = −𝑚12. Hence the VEP (𝜀0) is a 

saddle point. 

The Jacobian matrix at FAEP, can be calculated as: 

 𝐽𝜀1
= (

−1 −1 −𝑚1 − 1
0 𝑚4 − 𝑚7 0

0 0 −𝑚12 +
𝑚9

1+𝑚2

).                         (17) 

Then the eigenvalues of 𝐽𝜀1
  are given by  𝜆11 = −1, 𝜆12 =  𝑚4 − 𝑚7, 𝜆13 = −𝑚12 +

𝑚9

1+𝑚2
 . 

Hence, the equilibrium point 𝜀1  is locally asymptotically stable if and only if the following 

conditions are met.  

𝑚4 < 𝑚7                                               (18a) 

 
𝑚9

1+𝑚2
< 𝑚12                                          (18b) 

The Jacobian matrix at the SAEP is calculated as: 

 𝐽𝜀2
= (

1 −  𝑦∗∗ 0 0

−𝑚7𝑦∗∗ −𝑚6 𝑦∗∗ −𝑚4𝑚5 𝑦∗∗ −
𝑚8 𝑦∗∗

(1+𝑚3 𝑦∗∗)

0 0
 𝑚10𝑦∗∗

1+𝑚3 𝑦∗∗
− 𝑚12

).                      (19) 

Therefore, the eigenvalues of 𝐽𝜀2
  are given by 𝜆21 = 1 −  𝑦∗∗ , 𝜆22 =  −𝑚6 𝑦∗∗ , and 𝜆53 =

 𝑚10𝑦∗∗

1+𝑚3 𝑦∗∗
− 𝑚12. As a result, if and only if the following conditions are met, the point 𝜀2 is locally 

asymptotically stable: 

 𝑚6 < 𝑚4.                       (20a) 

 (𝑚10 − 𝑚3𝑚12)𝑚4 < 𝑚6𝑚12.                           (20b) 
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The Jacobian matrix at the PFEP is calculated as: 

       𝐽𝜀3
=

(

 
 

−�̅� −�̅� − 𝑚1�̅� −
�̅�

1+𝑚2�̅�+𝑚3�̅�

−𝑚7�̅� −𝑚6�̅� −𝑚4𝑚5�̅� −
𝑚8�̅�

1+𝑚2�̅�+𝑚3�̅�

0 0
𝑚9�̅�+𝑚10�̅�

1+𝑚2�̅�+𝑚3�̅�
− 𝑚12 )

 
 

.                      (21) 

As a result, the characteristic equation of  𝐽𝜀3
 can be formulated as:  

[𝜆2 + (�̅� + 𝑚6�̅�)𝜆 + (𝑚6 − 𝑚7)𝑥 ̅�̅�] [
𝑚9�̅�+𝑚10�̅�

1+𝑚2�̅�+𝑚3�̅�
− 𝑚12 − 𝜆] = 0.            (22) 

Accordingly, the eigenvalues of 𝐽𝜀3
 are computed by: 

 𝜆31 =
−(�̅�+𝑚6�̅�)+√(�̅�+𝑚6�̅�)2−4(𝑚6 −𝑚7)�̅��̅�

2
,  

 𝜆32 =
−(�̅�+𝑚6�̅�)−√(�̅�+𝑚6�̅�)2−4(𝑚6 −𝑚7)�̅��̅�

2
, 

 𝜆33 =
𝑚9�̅�+𝑚10�̅�

1+𝑚2�̅�+𝑚3�̅�
− 𝑚12. 

As a result the PFEP, given by 𝜀3 , is locally asymptotically stable provided the following 

requirements are met: 

  𝑚7 < 𝑚6.                                  (23a) 

  
𝑚9�̅�+𝑚10�̅�

1+𝑚2�̅�+𝑚3�̅�
< 𝑚12.                                 (23b) 

Note that, because condition (23a) satisfies one of the existing criteria given by Eq. (4), the 

equilibrium point 𝜀3 will be asymptotically stable for any initial points in the first quadrant of the 

𝑥𝑦 −plane, and it will be a saddle point otherwise. 

The Jacobian matrix at FPYFEP can be determined by: 

𝐽𝜀4
=

(

 
 

1

(1+𝑚1�̿�)
− �̅̅� −

�̿�

(1+𝑚3�̅̅�)
0 0

−𝑚7�̅̅� +
𝑚2𝑚8�̅̅��̿�

(1+𝑚3�̅̅�)2
, −𝑚6�̅̅� +

𝑚3𝑚8�̿��̅̅�

(1+𝑚3�̅̅�)2
−�̅̅� (

𝑚4𝑚5

(1+𝑚5�̿�)2
+

𝑚8

1+𝑚3�̅̅�
)

(
𝑚9+(𝑚3𝑚9−𝑚2𝑚10)�̅̅�

(1+𝑚3�̅̅�)2
) 𝑧̿

𝑚10�̿�

(1+𝑚3�̅̅�)2
−𝑚11𝑧̿ )

 
 

= [𝑏𝑖𝑗]3×3. (24) 

So the characteristic equation of 𝐽𝜀4
 can be represented as: 

 [𝜆2 − (𝑏22 + 𝑏33)𝜆 − (𝑏22𝑏33 − 𝑏23𝑏32)][𝑏22 − 𝜆] = 0                         (25) 

 Then the eigenvalues of 𝐽𝜀4
 are given by: 
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 𝜆41 =
1

(1+𝑚1�̿�)
− �̅̅� −

�̿�

(1+𝑚3�̅̅�)
, 

 𝜆42 =
(𝑏22+𝑏33)+√(𝑏22+𝑏33)2−4(𝑏22𝑏33−𝑏23𝑏32)

2
,  

 𝜆43 =
(𝑏22+𝑏33)−√(𝑏22+𝑏33)2−4(𝑏22𝑏33−𝑏23𝑏32)

2
.  

Hence, the equilibrium point 𝜀4  is locally asymptotically stable if and only if the following 

sufficient requirements are met: 

 
1

(1+𝑚1�̿�)
< �̅̅� +

�̿�

(1+𝑚3�̅̅�)
.                         (26a) 

 
𝑚3𝑚8�̿�

(1+𝑚3�̅̅�)2
< 𝑚6.                      (26b) 

The Jacobian matrix at SPYFEP is determined by:        

 𝐽𝜀5
=

[
 
 
 
 −�̂� +

𝑚2�̂��̂�

(1+𝑚2�̂�)2
�̂� +

𝑚3�̂��̂�

(1+𝑚2�̂�)2
−

𝑚1�̂�

(1+𝑚1�̂�)2
−

�̂�

1+𝑚2�̂�

0
𝑚4

1+𝑚5�̂�
− 𝑚7�̂� −

𝑚8�̂�

1+𝑚2�̂�
0

𝑚9�̂�

(1+𝑚2�̂�)2
(
𝑚10+(𝑚2𝑚10−𝑚3𝑚9)�̂�

(1+𝑚2�̂�)2
) �̂� −𝑚11�̂� ]

 
 
 
 

= [𝑐𝑖𝑗]3×3.  (27) 

Thus the characteristic equation of 𝐽𝜀5
 is formulated as:  

 (𝑐22 − 𝜆)  [𝜆2 − (𝑐11 + 𝑐33)𝜆 + (𝑐11𝑐33 − 𝑐13𝑐31)] = 0.                     (28) 

Accordingly, the eigenvalues of 𝐽𝜀5
 can be written as: 

 𝜆41 =
𝑚4

1+𝑚5�̂�
− 𝑚7�̂� −

𝑚8�̂�

1+𝑚2�̂�
, 

 𝜆42 =
(𝑐11+𝑐33)+√(𝑐11+𝑐33)2−4(𝑐11𝑐33−𝑐13𝑐31)

2
,       

 𝜆43 =
(𝑐11+𝑐33)−√(𝑐11+𝑐33)2−4(𝑐11𝑐33−𝑐13𝑐31)

2
. 

As a result, if and only if the following sufficient conditions are met, the SPYFEP is locally 

asymptotically stable: 

 
𝑚4

1+𝑚5�̂�
< 𝑚7�̂� +

𝑚8�̂�

1+𝑚2�̂�
.                                            (29a) 

 
𝑚2�̂�

(1+𝑚2�̂�)2
< 1.                          (29b) 

Finally, the following theorem established sufficient conditions to ensure CEP's local stability. 

Theorem (2): The CEP is locally asymptotically stable provided that the following sufficient 
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requirements are met 

max{𝑚2 , 𝑚3} <
(1+𝑚2𝑥∗+𝑚3𝑦∗)2

𝑧∗                                            (30a) 

 
𝑚7

𝑚2
<

𝑚8𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
<

𝑚6

𝑚3
                                               (30b) 

 
𝑚2𝑚10𝑦∗

1+𝑚3𝑦∗ < 𝑚9                       (30c)  

 
𝑚3𝑚9𝑥∗

1+𝑚2𝑥∗
< 𝑚10,                        (30d) 

 −𝑑13𝑑21𝑑32 < 𝑑12𝑑23𝑑31 < 𝑑13𝑑22𝑑31,                     (30e) 

where 𝑑𝑖𝑗; 𝑖, 𝑗 = 1,2,3 are the Jacobian elements that given in the proof.   

Proof.  Substituting the CEP in the general Jacobian matrix given by Eq. (15) yields that: 

 𝐽𝜀6
= [𝑑𝑖𝑗]3×3,                     (31) 

where:  

𝑑11 = −𝑥∗ +
𝑚2𝑥∗𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
, 

𝑑12 = −𝑥∗ +
𝑚3𝑥∗𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
, 

𝑑13 = −𝑥∗ (
𝑚1

(1+𝑚1𝑧∗)2
+

1

1+𝑚2𝑥∗+𝑚3𝑦∗), 

𝑑21 = −𝑚7𝑦
∗ +

𝑚2𝑚8𝑦∗𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
,      

𝑑22 = 𝑦∗ (−𝑚6 +
𝑚3𝑚8𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
),  

𝑑23 = −𝑦∗ (
𝑚4𝑚5

(1+𝑚5𝑧∗)2
+

𝑚8𝑧∗

1+𝑚2𝑥∗+𝑚3𝑦∗),  

𝑑31 = (
𝑚9+(𝑚3𝑚9−𝑚2𝑚10)𝑦∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
) 𝑧∗, 

𝑑32 = (
𝑚10+(𝑚2𝑚10−𝑚3𝑚9)𝑥∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
) 𝑧∗, 

𝑑33 = −𝑚11𝑧
∗.  

Hence the characteristic equation of 𝐽𝜀6
 is represented as: 

 𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0,               (32) 

where:   

𝐴1 = −(𝑑11 + 𝑑22 + 𝑑33),  
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𝐴2 = 𝑑11𝑑33 + 𝑑11𝑑22 + 𝑑22𝑑33−𝑑13𝑑31 − 𝑑23𝑑32 − 𝑑12𝑑21, 

𝐴3 = 𝑑22𝑑13𝑑31 − 𝑑12𝑑23𝑑31+𝑑21(𝑑12𝑑33 − 𝑑13𝑑32) − 𝑑11(𝑑22𝑑33 − 𝑑23𝑑32), 

with 

 
∆= 𝐴1𝐴2 − 𝐴3 = −(𝑑11 + 𝑑22)[𝑑11𝑑22 − 𝑑12𝑑21]−(𝑑11 + 𝑑33)[𝑑11𝑑33 − 𝑑13𝑑31]  

−(𝑑22 + 𝑑33)[𝑑22𝑑33 − 𝑑23𝑑32] − 2𝑑11𝑑22𝑑33 + 𝑑13𝑑21𝑑32 + 𝑑12𝑑23𝑑31.
 

The characteristic equation (32) possesses three negative real part eigenvalues, according to the 

Routh-Hurwitz criterion, if and only if 𝐴1 > 0, 𝐴3 > 0, and ∆ > 0. Simple computation showed 

that the Routh-Hurwitz criterion is fulfilled and the proof is complete if the conditions (30a)-(30e) 

are met.  

 

5. PERSISTENCE 

The persistence of the system (3) is explored in this section; the system (3) persists if the system's 

trajectory that starts at a positive initial point, does not approach an omega limit set on the domain's 

boundary planes. 

The system (3) contains three subsystems that are located in the 𝑥𝑦 − plane, 𝑥𝑧 − plane, and 

𝑦𝑧 −plane, and can be expressed as follows: 

𝑑𝑥

𝑑𝑡
= 𝑥[1 − 𝑥 − 𝑦] = 𝛿1 (𝑥, 𝑦),                  

𝑑𝑦

𝑑𝑡
= 𝑦 [𝑚4 − 𝑚6𝑦  − 𝑚7𝑥] = 𝛿2 (𝑥, 𝑦).

           

}                                (33) 

𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑚1𝑧
− 𝑥 −

𝑧

1+𝑚2𝑥
] = 𝛿3 (𝑥, 𝑧),      

𝑑𝑧

𝑑𝑡
= 𝑧 [

𝑚9𝑥

1+𝑚2𝑥
− 𝑚11𝑧 − 𝑚12  ] = 𝛿4 (𝑥, 𝑧).

}                          (34) 

And  

𝑑𝑦

𝑑𝑡
= 𝑦 [

𝑚4

1+𝑚5𝑧
− 𝑚6𝑦 −

𝑚8𝑧

1+𝑚3𝑦
] = 𝛿5 (𝑦, 𝑧),

𝑑𝑧

𝑑𝑡
= 𝑧 [

𝑚10𝑦

1+𝑚3𝑦
− 𝑚11𝑧 − 𝑚12  ] = 𝛿6 (𝑦, 𝑧).

           

}                      (35) 

The preceding subsystems (33), (34), and (35) have positive equilibrium points in the interior of 

boundary planes 𝑥𝑦 −plane, 𝑥𝑧 −plane and 𝑦𝑧 −plane, respectively, which coincide with those 

in the corresponding planes of the system (3). The Bendixson–Dulac theorem is now applied to 
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determine the possibility of periodic dynamics in boundary planes. 

Now, consider the following functions 𝛽1 (𝑥, 𝑦) =
1

𝑥𝑦
, 𝛽2 (𝑥, 𝑧) =

1

𝑥𝑧
, and 𝛽3 (𝑦, 𝑧) =

1

𝑦𝑧
. Clearly 

these functions are positive and is 𝐶1  function in interior of first quadrants of 𝑥𝑦 − plane, 

𝑥𝑧 −plane and 𝑦𝑧 −plane respectively. Moreover, it is obvious that:  

℘1(𝑥, 𝑦) =
𝜕

𝜕𝑥
(𝛽1 ∙ 𝛿1) +

𝜕

𝜕𝑦
(𝛽1 ∙ 𝛿2) = −(

1

𝑦
+

𝑚6

𝑥
). 

℘2(𝑥, 𝑧) =
𝜕

𝜕𝑥
(𝛽2 ∙ 𝛿3) +

𝜕

𝜕𝑧
(𝛽2 ∙ 𝛿4) = −(

1

𝑧
−

𝑚2

(1+𝑚2𝑥)2
+

𝑚11

𝑥
). 

℘3(𝑦, 𝑧) =
𝜕

𝜕𝑦
(𝛽3 ∙ 𝛿5) +

𝜕

𝜕𝑧
(𝛽3 ∙ 𝛿6) = −(

𝑚6

𝑧
−

𝑚3𝑚8

(1+𝑚3𝑦)2
+

𝑚11

𝑦
). 

Therefore, ℘1(𝑥, 𝑦) has the same sign (≠ 0) almost everywhere in a simply connected region of 

the 𝑥𝑦 −plane. However, ℘2(𝑥, 𝑧), and ℘3(𝑦, 𝑧) have the same sign (≠ 0) almost everywhere in 

a simply connected region of the 𝑥𝑧 −plane and 𝑦𝑧 −plane, respectively, provided the following 

sufficient requirements are met. 

 
𝑚2

(1+𝑚2𝑥)2
<

1

𝑧
+

𝑚11

𝑥
.                                      (36) 

 
𝑚3𝑚8

(1+𝑚3𝑦)2
<

𝑚6

𝑧
+

𝑚11

𝑦
.                                    (37) 

Consequently, the persistence requirements of the system (3) are built in the following theorem. 

Theorem (3): If the border planes do not have periodic dynamics, the system (3) is uniformly 

persistent as long as the below conditions are met. . 

𝑚7 < 𝑚4 < 𝑚6,                     (38a) 

𝑚12 < 𝑚𝑖𝑛 {
𝑚9

1+𝑚2
,

𝑚4𝑚10

𝑚6+𝑚3𝑚4
},                                      (38b) 

𝑚12 <
𝑚9�̅�+𝑚10�̅�

1+𝑚2�̅�+𝑚3�̅�
,                                        (38c) 

�̅̅� +
�̿�

(1+𝑚3�̅̅�)
<

1

(1+𝑚1�̿�)
,                                         (38d) 

𝑚7�̂� +
𝑚8�̂�

1+𝑚2�̂�
<

𝑚4

1+𝑚5�̂�
.                   (38e) 

Proof. Define ℑ(𝑥, 𝑦, 𝑧) = 𝑥𝑝1𝑦𝑝2𝑧𝑝3 , where 𝑝1, 𝑝2, 𝑝3  are positive constants. It is clear that, 

ℑ(𝑥, 𝑦, 𝑧) > 0  for each (𝑥, 𝑦, 𝑧) ∈ 𝐼𝑛𝑡 ℝ+
3 , and ℑ(𝑥, 𝑦, 𝑧) = 0  if 𝑥, 𝑦 , or 𝑧  approaches zero. 

https://en.wikipedia.org/wiki/Almost_everywhere
https://en.wikipedia.org/wiki/Simply_connected
https://en.wikipedia.org/wiki/Almost_everywhere
https://en.wikipedia.org/wiki/Simply_connected
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Therefore, direct computation gives: 

ℚ(𝑥, 𝑦, 𝑧) =
ℑ′(𝑥,𝑦,𝑧)

ℑ(𝑥,𝑦,𝑧)
= 𝑝1𝑓1 + 𝑝2𝑓2 + 𝑝3𝑓3, 

where 𝑓𝑖; 𝑖 = 1,2,3, are mentioned in the system (3).   

The proof is now satisfied according to the average Lyapunov technique if and only if ℚ(𝑥, 𝑦, 𝑧) >

0 for each boundary equilibrium points.  

Now, since  

ℚ(𝑥, 𝑦, 𝑧) = 𝑝1 [
1

1 + 𝑚1𝑧
− 𝑥 − 𝑦 −

𝑧

1 + 𝑚2𝑥 + 𝑚3𝑦
]                                            

      +𝑝2 [
𝑚4

1 + 𝑚5𝑧
  − 𝑚6𝑦 − 𝑚7𝑥 −

𝑚8𝑧

1 + 𝑚2𝑥 + 𝑚3𝑦
]

+𝑝3 [
𝑚9𝑥 + 𝑚10𝑦

1 + 𝑚2𝑥 + 𝑚3𝑦
− 𝑚11𝑧 − 𝑚12] .

 

Then, we have that 

ℚ(𝜀0)  = 𝑝1[1] + 𝑝2[𝑚4] + 𝑝3[−𝑚12]. 

Obviously, ℚ(𝜀0) > 0 is produced by choosing random positive values for 𝑝1 and 𝑝2 that are 

sufficiently greater than 𝑝3. 

ℚ(𝜀1) = 𝑝2[ 𝑚4  − 𝑚7] + 𝑝3 [
𝑚9

1+𝑚2
− 𝑚12]. 

Note that, ℚ(𝜀1) > 0 is produced due to the conditions (38a) and (38b). 

ℚ(𝜀2) = 𝑝1[1 − 𝑦∗∗ ] + 𝑝3  [
𝑚10𝑦∗∗

1 + 𝑚3𝑦∗∗
− 𝑚12] 

Similarly, ℚ(𝜀2) > 0 is produced due to the conditions (38a) and (38b). 

 ℚ(𝜀3) = 𝑝3 [
𝑚9�̅�+𝑚10�̅�

1+𝑚2�̅�+𝑚3�̅�
− 𝑚12]. 

From the condition (38c), It is obtained that ℚ(𝜀3) > 0 for any positive constant 𝑝3. 

ℚ(𝜀4) = 𝑝1 [
1

1 + 𝑚1𝑧̿
− �̿� −

𝑧̿

1 + 𝑚3�̿�
] 

According to the condition (38d), it is clear that, ℚ(𝜀4) > 0 for any positive constant 𝑝1. 

Finally, we have: 

ℚ(𝜀5) = 𝑝2 [
𝑚4

1 + 𝑚5�̂�
  − 𝑚7�̂� −

𝑚8�̂�

1 + 𝑚2�̂�
] 

Hence, ℚ(𝜀5) > 0 for any positive constant 𝑝2, due to condition (38e). Thus the system (3) is 
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uniformly persistent, and the proof is done. 

 

6. BASIN OF ATTRACTION  

The basin of attraction of each asymptotic stable equilibrium point is determined in this section. 

Furthermore, if and only if their basin of attraction equals the interior of ℝ+
3 , the equilibrium point 

is said to be globally asymptotic stable. 

Theorem (4): If the FAEP is locally asymptotically stable, then it is globally asymptotically stable 

if and only if the following condition is met. 

         𝑚9(𝑚1 + 1) < 𝑚12.                     (39) 

Proof.   Consider the real-valued function  𝜓1(𝑥, 𝑦, 𝑧) =  𝑚9(𝑥 − 1 − ln 𝑥) +
 𝑚10

 𝑚8
𝑦 + 𝑧.  

It is clear the function 𝜓1(𝑥, 𝑦, 𝑧)  satisfies that 𝜓1(1,0,0) = 0 , while 𝜓1(𝑥, 𝑦, 𝑧) > 0 , for all 

values in the region {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 ≥ 0; (𝑥, 𝑦, 𝑧) ≠ (1,0,0)} . After that, using 

algebraic manipulation, you get: 

𝑑𝜓1

𝑑𝑡
≤ −

𝑚9

1+𝑚1𝑧
(𝑥 − 1)2 − ( 𝑚9 +

 𝑚7 𝑚10

 𝑚8
) (𝑥 − 1)𝑦 − [ 𝑚12 − (𝑚1 + 1)𝑚9]𝑧. 

Under the system's boundedness theorem and the provided condition, it is observed that, 
𝑑𝜓1

𝑑𝑡
< 0. 

As a result, the derivative, 
𝑑𝜓1

𝑑𝑡
, is a negative definite, and then the FAEP is globally asymptotically 

stable. 

Theorem (5): Assume that the SAEP is asymptotically stable locally, then their basin of attraction 

satisfies the following requirements: 

𝑚6𝑚9+𝑚4𝑚7

𝑚6(𝑚9+𝑚7)
< 𝑦                                                        (40a) 

(𝑚4𝑚5+𝑚8)
𝑚4

𝑚6
< 𝑚12                                                  (40b) 

Proof: Define that 

 𝜓2(𝑥, 𝑦, 𝑧) = 𝑥 + (𝑦 − 𝑦∗∗ − 𝑦∗∗ ln (
𝑦

𝑦∗∗
)) + 𝑧  

It is clear the function 𝜓2 satisfies that 𝜓2(0, 𝑦∗∗, 0) = 0, while 𝜓2(𝑥, 𝑦, 𝑧) > 0, for each values 

belongs to {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 ≥ 0, 𝑦 > 0, 𝑧 ≥ 0; (𝑥, 𝑦, 𝑧) ≠ (0, 𝑦∗∗, 0)} . As a result of some 
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algebraic manipulation, the following is obtained: 

𝑑𝜓2

𝑑𝑡
≤ −𝑥[(𝑚9 + 𝑚7)𝑦 − (𝑚9 + 𝑚7𝑦∗∗)]                                        

−𝑚9𝑥
2 −

𝑚4𝑚5𝑦𝑧

(1+𝑚5𝑧)
− [𝑚12 − (𝑚4𝑚5 + 𝑚8)𝑦∗∗]𝑧

−𝑚6(𝑦 − 𝑦∗∗)
2 −

(𝑚8−𝑚10 )𝑦𝑧

(1+𝑚2𝑥+𝑚3𝑦)
− 𝑚11𝑧

2.

. 

According the conditions (40a)-(40b), it is observed that, the derivative 
𝑑𝜓2

𝑑𝑡
 is negative definite. 

Then, the basin of attraction of the SAEP satisfies the given requirements. 

Theorem (6): If the PFEP is locally asymptotically stable, then it is globally asymptotically stable 

if and only if the following requirements are satisfied: 

 (1 + 𝑚7)
2 < 4 𝑚6                                                     (41a) 

(1 + 𝑚1)�̅� + (𝑚4𝑚5 + 𝑚8)�̅� < 𝑚12                                      (41b) 

Proof. Consider the function  

𝜓3(𝑥, 𝑦, 𝑧) = (𝑥 − �̅� − �̅�ln (
𝑥

�̅�
)) + (𝑦 − �̅� − �̅�ln (

𝑦

�̅�
)) + 𝑧.  

It is easy to verify that 𝜓3(𝑥, 𝑦, 𝑧) satisfies that is 𝜓3(�̅�, �̅�, 0) = 0, while 𝜓3(𝑥, 𝑦, 𝑧) > 0, for all 

values belongs to {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 ≥ 0; (𝑥, 𝑦, 𝑧) ≠ (�̅�, �̅�, 0)}. As a result of some 

algebraic manipulation with the use of given conditions, the following is obtained: 

𝑑𝜓3

𝑑𝑡
≤ −[(𝑥 − �̅�) − √𝑚6(𝑦 − �̅�)]

2
− [𝑚12 − (1 + 𝑚1)�̅� − (𝑚4𝑚5 + 𝑚8)�̅�]𝑧 

So the derivative  
𝑑𝜓3

𝑑𝑡
 is negative definite in the interior of ℝ+

3  and hence the PFEP is globally 

asymptotically stable. 

Theorem (7): Assume that the FPYFEP is asymptotically stable locally, then their basin of 

attraction satisfies the following conditions: 

𝑚3𝑚8�̿�

(1+𝑚3𝑦 ̿)
< 𝑚6                                                   (42a) 

𝑚9 + 𝑚7�̿� <
𝑚9�̿�

(1+𝑚2+𝑚3
𝑚4
𝑚6

)
,                                           (42b)               

𝑚2𝑚8�̿�

(1+𝑚3𝑦 ̿)
< 𝑚7 + 𝑚9,                               (42c)              

𝑝23
2 < 4𝑝22𝑚11,                 (42d) 
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where   

𝑝22 = 𝑚6 −
𝑚3𝑚8�̿�

(1+𝑚3𝑦 ̿)
, 𝑝23 =

𝑚4𝑚5

(1+𝑚5𝑧)(1+𝑚5�̿�)
+

(𝑚8−𝑚10)+𝑚3𝑚8�̿�

(1+𝑚2𝑥+𝑚3𝑧)(1+𝑚3𝑦 ̿)
. 

 Proof: Let 

 𝜓4(𝑥, 𝑦, 𝑧) = 𝑚9𝑥 + (𝑦 − �̿� − �̿� ln (
𝑦

�̿�
)) + (𝑧 − 𝑧̿ − 𝑧̿ ln (

𝑧

�̿�
)).  

It is obvious that 𝜓4  verifies that is 𝜓4(0, �̿�, 𝑧̿) = 0 , while 𝜓4(𝑥, 𝑦, 𝑧) > 0 , for all values in 

{(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 ≥ 0, 𝑦 > 0, 𝑧 > 0; (𝑥, 𝑦, 𝑧) ≠ (0, �̿�, 𝑧̿)} . As a result of some algebraic 

manipulation, the following is obtained: 

𝑑𝜓4

𝑑𝑡
≤ −p22(𝑦 − �̿�)2 − 𝑝23(𝑦 − �̿�)(𝑧 − 𝑧̿) − 𝑚11(𝑧 − 𝑧̿)2                                            

− [
𝑚9�̿�

(1+𝑚2+𝑚3
𝑚4
𝑚6

)
− (𝑚9 + 𝑚7�̿�)] 𝑥 − [(𝑚7 + 𝑚9) −

𝑚2𝑚8�̿�

(1+𝑚3𝑦 ̿)
] 𝑥𝑦

−
𝑚2(𝑚8−𝑚10)�̿��̿�

(1+𝑚2𝑥+𝑚3𝑧)(1+𝑚3𝑦 ̿)
𝑥.

. 

Consequently, by the use of the given conditions, it’s obtained that: 

𝑑𝜓4

𝑑𝑡
≤ −[√𝑝22 (𝑦 − �̿�) + √𝑚11(𝑧 − 𝑧̿)]

2
              

                 − [
𝑚9𝑧̿

(1 + 𝑚2+𝑚3
𝑚4

𝑚6
)

− (𝑚9 + 𝑚7�̿�)] 𝑥

                     −
𝑚2(𝑚8 − 𝑚10)�̿�𝑧̿

(1 + 𝑚2𝑥+𝑚3𝑧)(1 + 𝑚3𝑦 ̿)
𝑥.

 

It is obtained that, due to the conditions (42a)-(42d), the derivative 
𝑑𝜓4

𝑑𝑡
  is negative definite. 

Therefore, the FPYFEP has a basin of attraction satisfies the given condition. 

Theorem (8): Suppose that the SPYFEP is asymptotically stable locally, then their basin of 

attraction satisfies the following conditions: 

𝑚2�̂�

(1+𝑚2�̂�)
< 1,                       (43a) 

𝑚3�̂�

(1+𝑚2�̂�)
< 1 + 𝑚7,                                     (43b) 

𝑚4 + �̂� <
𝑚10�̂�

(1+𝑚2+𝑚3
𝑚4
𝑚6

)
,                                 (43c) 

𝑞13
2 < 4q11m11,                                   (43d) 
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where,   

 q11 = 1 −
𝑚2�̂�

(1+𝑚2�̂�)
, and q13 =

𝑚1

(1+𝑚1𝑧)(1+𝑚1�̂�)
+

(1−𝑚9)+𝑚2�̂�

(1+𝑚2𝑥+𝑚3𝑦)(1+𝑚2�̂�)
. 

Proof: Assume that 

 𝜓5(𝑥, 𝑦, 𝑧) = (𝑥 − �̂� − �̂� ln (
𝑥

�̂�
) + 𝑦 + (𝑧 − �̂� − �̂� ln (

𝑧

�̂�
)).  

So 𝜓5 verifies that 𝜓5(�̂�, 0, �̂�) = 0, while 𝜓5(𝑥, 𝑦, 𝑧) > 0, for all values belong to {(𝑥, 𝑦, 𝑧) ∈

ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 > 0; (𝑥, 𝑦, 𝑧) ≠ (�̂�, 0, �̂�)} . As a result of some algebraic manipulation, the 

following is obtained: 

 

𝑑𝜓5

𝑑𝑡
≤ −q11(𝑥 − �̂�)2 − 𝑞13(𝑥 − �̂�)(𝑧 − �̂�) − 𝑚11(𝑧 − �̂�)2                                            

− [
𝑚10�̂�

(1+𝑚2+𝑚3
𝑚4
𝑚6

)
− (𝑚4 + �̂�)] 𝑦 − [(1 + 𝑚7) −

𝑚3�̂�

(1+𝑚2�̂�)
] 𝑥𝑦

−
𝑚3(1−𝑚9)�̂��̂�

(1+𝑚2𝑥+𝑚3𝑦)(1+𝑚2�̂�)
𝑦 −

(𝑚8−m10)𝑦𝑧

(1+𝑚2𝑥+𝑚3𝑦)
.

. 

Consequently, by the use of the given conditions, it’s obtained that: 

𝑑𝜓5

𝑑𝑡
≤ −[√𝑞11 (𝑥 − �̂�) + √𝑚11(𝑧 − �̂�)]

2
              

                 − [
𝑚10�̂�

(1 + 𝑚2+𝑚3
𝑚4

𝑚6
)

− (𝑚4 + �̂�)] 𝑦

                     −
𝑚3(1 − 𝑚9)�̂��̂�

(1 + 𝑚2𝑥+𝑚3𝑦)(1 + 𝑚2�̂�)
𝑦.

 

Therefore, due to the conditions (43a)-(43d), the derivative 
𝑑𝜓5

𝑑𝑡
 is negative definite, and then the 

SPYFEP has a basin of attraction satisfies the given condition. 

Theorem (9): Suppose that the CEP is asymptotically stable locally, then their basin of attraction 

satisfies the following conditions:  

 𝑙12
2 < 𝑙11𝑙22,                            (44a) 

 𝑙13
2 < 𝑙11 𝑚11,                                        (44b) 

 𝑙23
2 < 𝑚11𝑙22,                                        (44c) 

𝑚2𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)
< 1,                                           (44d)  

𝑚3𝑚8𝑧
∗ < 𝑚6(1 + 𝑚2𝑥

∗+𝑚3𝑦
∗),            (44e) 
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   where   

𝑙11 = 1 −
𝑚2𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)
,       

𝑙12 = 1 + 𝑚7 −
(𝑚3+𝑚2𝑚8)𝑧∗

(1+𝑚2𝑥+𝑚3𝑦)(1+𝑚2𝑥∗+𝑚3𝑦∗)
, 

𝑙23 =
𝑚4𝑚5

(1+𝑚5𝑧)(1+𝑚5𝑧∗)
+

𝑚8(1+𝑚2𝑥∗+𝑚3𝑦∗)−[𝑚10+𝑥∗(𝑚2𝑚10−𝑚3𝑚9]

(1+𝑚2𝑥+𝑚3𝑦)(1+𝑚2𝑥∗+𝑚3𝑦∗)
, 

𝑙13 =
𝑚1

(1+𝑚1𝑧)(1+𝑚1𝑧∗)
+

(1+𝑚2𝑥∗+𝑚3𝑦∗)−[𝑚9+𝑦∗(𝑚3𝑚9−𝑚2𝑚10)]

(1+𝑚2𝑥+𝑚3𝑦)(1+𝑚2𝑥∗+𝑚3𝑦∗)
. 

𝑙22 = 𝑚6 −
𝑚3𝑚8𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)
. 

 Proof: Define the function: 

 𝜓6(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑥∗ − 𝑥∗ ln (
𝑥

𝑥∗)) + (𝑦 − 𝑦∗ − 𝑦∗ ln (
𝑦

𝑦∗)) + (𝑧 − 𝑧∗ − 𝑧∗ ln (
𝑧

𝑧∗)).  

It is clear that, 𝜓6  verifies that is 𝜓6(𝑥
∗, 𝑦∗, 𝑧∗) = 0 , while 𝜓6(𝑥, 𝑦, 𝑧) > 0 , for all values in 

{(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0; (𝑥, 𝑦, 𝑧) ≠ (𝑥∗, 𝑦∗, 𝑧∗)} . As a result of some algebraic 

manipulation, the following is obtained: 

𝑑𝜓6

𝑑𝑡
= −

𝑙11

2
(𝑥 − 𝑥∗)2 − 𝑙12(𝑥 − 𝑥∗)(𝑦 − 𝑦∗) −

𝑙22

2
(𝑦 − 𝑦∗)2                          

−𝑙13(𝑥 − 𝑥∗)(𝑧 − 𝑧∗) − 𝑙23(𝑦 − 𝑦∗)(𝑧 − 𝑧∗) −
𝑚11

2
(𝑧 − 𝑧∗)2,

 

Consequently, using (44a)-(44e) gives 

 

𝑑𝜓6

𝑑𝑡
≤ −

1

2
[√𝑙11 (𝑥 − 𝑥∗) + √𝑙22(𝑦 − 𝑦∗)]

2
                     

          −
1

2
[√𝑙22 (𝑦 − 𝑦∗) + √𝑚11(𝑧 − 𝑧∗) ]

2

                     −
1

2
[√𝑙11 (𝑥 − 𝑥∗) − √𝑚11(𝑧 − 𝑧∗)]

2
.

 

Note that, 
𝑑𝜓6

𝑑𝑡
 is clearly negative definite. As a result, the CEP has an attractive basin that satisfies 

the specified conditions. 

 

 7.  BIFURCATION ANALYSIS  

This section examines the effect of modifying the model parameters on the system's 

dynamical behavior (3) using Sotomayor's theorem for local bifurcation. Remember that a non-

hyperbolic equilibrium point in a dynamical system is a required but not sufficient condition for a 
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bifurcation to occur. As a result, the value that renders the equilibrium point a non-hyperbolic point 

is chosen as a candidate bifurcation parameter. Rewrite the system (3) in the following format: 

𝑑𝑋

𝑑𝑡
= 𝐹(𝑋), 𝑋 = (𝑥, 𝑦, 𝑧)𝑇 , 𝐹 = (𝑥𝑓1, 𝑦𝑓2, 𝑧𝑓3)

𝑇.                      (45) 

The second directional derivative of the system (3) can also be calculated as follows: 

𝐷2𝐹(𝑋, 𝜇)(ℒ, ℒ) = [𝛾𝑖1]3𝑥1,                                       (46) 

where  ℒ = (ℓ1, ℓ2, ℓ3)
𝑇 be any non-zero vector, with 

𝛾11 = −2 [1 −
𝑚2𝑧(1+𝑚3𝑦)

(1+𝑚2𝑥+𝑚3𝑦)3
] ℓ1

2 − 2 [1 −
𝑚3𝑧(1−𝑚2𝑥+𝑚3𝑦)

(1+𝑚2𝑥+𝑚3𝑦)3
] ℓ1ℓ2

−
2𝑚3

2𝑥𝑧

(1+𝑚2𝑥+𝑚3𝑦)3
ℓ2

2 − 2(
𝑚1

(1+𝑚1𝑧)2
+

(1+𝑚3𝑦)

(1+𝑚2𝑥+𝑚3𝑦)2
) ℓ1ℓ3

+
  2 𝑚3𝑥

(1+𝑚2𝑥+𝑚3𝑦)2
 ℓ2ℓ3 +

2𝑚1
2𝑥

(1+𝑚1𝑧)3
ℓ3

2

  

𝛾21 = −2
𝑚2

2𝑚8𝑦𝑧

(1+𝑚2𝑥+𝑚3𝑦)3
ℓ1

2 − 2(𝑚7 − 
𝑚2𝑚8𝑧(1+𝑚2𝑥−𝑚3𝑦)

(1+𝑚2𝑥+𝑚3𝑦)3
) ℓ1ℓ2 + 2

𝑚2𝑚8𝑦

(1+𝑚2𝑥+𝑚3𝑦)2
 ℓ1ℓ3

+2
𝑚4𝑚5

2𝑦

(1+𝑚5𝑧)3
ℓ3

2 − 2 [𝑚6 −
𝑚3𝑚8𝑧(1+𝑚2𝑥)

(1+𝑚2𝑥+𝑚3𝑦)3
] ℓ2

2

−2 [
𝑚4𝑚5

(1+𝑚5𝑧)2
+

𝑚8(1+𝑚2𝑥)

(1+𝑚2𝑥+𝑚3𝑦)2
] ℓ2ℓ3,

. 

𝛾31 = −
2𝑚2𝑧[𝑚9+(𝑚3𝑚9−𝑚2𝑚10)𝑦]

(1+𝑚2𝑥+𝑚3𝑦)3
ℓ1

2 − 2 
𝑚3[𝑚10𝑧+(𝑚2𝑚10−𝑚3𝑚9)𝑥]

(1+𝑚2𝑥+𝑚3𝑦)3
 ℓ2

2

−2
(𝑚2𝑥−𝑚3𝑦)(𝑚2𝑚10−𝑚3𝑚9)𝑧+(𝑚2𝑚10+𝑚3𝑚9)𝑧

(1+𝑚2𝑥+𝑚3𝑦)3
 ℓ1ℓ2 −  2𝑚11ℓ3

2

+2
𝑚10+(𝑚2𝑚10−𝑚3𝑚9)𝑥

(1+𝑚2𝑥+𝑚3𝑦)2
ℓ2ℓ3 + 2

𝑚9+(𝑚3𝑚9−𝑚2𝑚10)𝑦

(1+𝑚2𝑥+𝑚3𝑦)2
 ℓ1ℓ3.

. 

The theorems that follow analyze the potential of local bifurcation in the system based on the 

above calculation (3). 

Theorem (10): If the condition (18a) is met, then a transcritical bifurcation of the system (3) at 

the FAEP happens when the parameter 𝑚12 passes over the value  𝑚12
∗ =

𝑚9

1+𝑚2
. 

Proof: At FAEP with 𝑚12
∗ , the Jacobian matrix of the system (3) is expressed as: 

𝐽1 = 𝐽(𝜀1,𝑚12
∗ ) = (

−1 −1 −𝑚1 − 1
0 𝑚4 − 𝑚7 0
0 0 0

). 

In this matrix, two of the eigenvalues have negative real portions, while the third is zero and 

denoted 𝜆13
∗ = 0.Thus FAEP is a non-hyperbolic point at 𝑚12

∗ . 

Let  ℒ1 = (ℓ11, ℓ12, ℓ13)
𝑇 be the eigenvector conjugate with the eigenvalue 𝜆12

∗ = 0.  

Thus, 𝐽1ℒ1 = 0, gives that ℒ1 = (−(𝑚1 + 1)ℓ13, 0, ℓ13)
𝑇, and ℓ13 ≠ 0 is any real number. 
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Now, let Θ1 = (ϑ11, ϑ12, ϑ13)
𝑇 represents the eigenvector conjugate with the eigenvalue 𝜆12

∗ =

0, of the matrix 𝐽1
𝑇.  

Thus, 𝐽1
𝑇Θ1 = 0  gives that Θ1 = (0,0, ϑ13)

𝑇,  where ϑ13 ≠ 0 is any real number. Following 

Sotomayor’s theorem, gives that: 

 
𝜕𝐹

𝜕𝑚12
= 𝐹𝑚12

(𝑋,𝑚12) = (0, 0 , −z)𝑇 ⟹ 
𝜕𝐹

𝜕𝑚12
= 𝐹𝑚12

(𝜀1,𝑚12
∗ ) = (0, 0 ,0)𝑇. 

Therefore, Θ1
𝑇𝐹𝑚12

(𝜀1, 𝑚12
∗ ) = 0, as a result, the first condition for the occurrence of transcritical 

bifurcation is met. Moreover, since  

 𝐷𝐹𝑚12
(𝑋,𝑚12) = (

0 0 0
0 0 0
0 0 −1

) ⟹ 𝐷𝐹𝑚12
(𝜀1,𝑚12

∗ )ℒ1 = (0, 0, −ℓ13)
𝑇. 

Then, Θ1
𝑇𝐷𝐹𝑚12

(𝜀1,𝑚12
∗ )ℒ1 = −ℓ13ϑ13 ≠ 0. 

Also, by using equation (46), it is obtained that  

 𝐷2𝐹(𝜀1, 𝑚12
∗ )(ℒ1, ℒ1) = (

−2(1 −
1

(1+𝑚2)2
) (𝑚1 + 1)ℓ13

2 + 2𝑚1
2ℓ13

2

0

− 2𝑚11ℓ13
2 − 2

𝑚9

(1+𝑚2)2
 (𝑚1 + 1)ℓ13

2

) 

Accordingly, the following is obtained: 

 Θ1
𝑇𝐷2𝐹(𝜀1, 𝑚12

∗ )(ℒ1, ℒ1) = −2 [𝑚11 +
𝑚9(𝑚1+1)

(1+𝑚2)2
] ℓ13

2ϑ13  ≠ 0.  

Hence a transcrtical bifurcation take place. 

Theorem (11): If the condition (20a) is met, then a transcritical bifurcation of the system (3) at the 

SAEP happens if 𝑚12 passes through the value 𝑚12
∗∗ =

 𝑚10𝑦∗∗

1+𝑚3 𝑦∗∗
. 

Proof: The Jacobian matrix at (𝜀2, 𝑚12
∗∗  ) is determined by:  

   𝐽2 = 𝐽(𝜀2,𝑚12
∗∗  ) = (

1 −  𝑦∗∗ 0 0

−𝑚7𝑦∗∗ −𝑚6 𝑦∗∗ −𝑚4𝑚5 𝑦∗∗ −
𝑚8 𝑦∗∗

(1+𝑚3 𝑦∗∗)

0 0 0

),                                

Obviously, under condition (20a), two of the eigenvalues have negative real portions, while the 

third is zero and denoted 𝜆23
∗∗ = 0.Thus SAEP is a non-hyperbolic point at 𝑚12

∗∗ . 

Let  ℒ2 = (ℓ21, ℓ22, ℓ23)
𝑇 be the eigenvector conjugate with the eigenvalue 𝜆23

∗∗ = 0.  
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Hence, 𝐽2ℒ2 = 0, gives that ℒ2 = (0,𝐻ℓ23, ℓ23)
𝑇,  where 𝐻 = −

𝑚4𝑚5(1+𝑚3 𝑦∗∗)+𝑚8

𝑚6(1+𝑚3 𝑦∗∗)
< 0 , and 

ℓ23 ≠ 0 is any real number. 

Now, let  Θ2 = (ϑ21, ϑ22, ϑ23)
𝑇  represents the eigenvector conjugate with the eigenvalue 

𝜆23
∗∗ = 0 of the matrix 𝐽2

𝑇.  

Thus, 𝐽2
𝑇Θ2 = 0  gives that Θ2 = (0,0, ϑ23)

𝑇, where ϑ23 ≠ 0 is any real number.  

Now, since:  

 
𝜕𝐹

𝜕𝑚12
= 𝐹𝑚12

(𝑋,𝑚12) = (0, 0 , −z)𝑇 ⇛ 
𝜕𝐹

𝜕𝑚12
= 𝐹𝑚12

(𝜀2,𝑚12
∗∗ ) = (0, 0 ,0)𝑇. 

Therefore, Θ2
𝑇𝐹𝑚12

(𝜀2,𝑚12
∗∗ ) = 0 , hence the first condition for the occurrence of transcritical 

bifurcation is met. Moreover, since  

 𝐷𝐹𝑚12
(𝑋,𝑚12) = (

0 0 0
0 0 0
0 0 −1

) ⇛ 𝐷𝐹𝑚12
(𝜀2,𝑚12

∗∗ )ℒ5 = (0,0, −ℓ23)
𝑇. 

Then, Θ2
𝑇𝐷𝐹𝑚12

(𝜀5, 𝑚12
∗∗ )ℒ5 = −ϑ23ℓ23 ≠ 0. 

Also, by using equation (46), it is obtained that:  

 𝐷2𝐹(𝜀2, 𝑚12
∗∗ )(ℒ2, ℒ2) =

                             (

0

2𝑚4𝑚5
2y∗∗ℓ23

2 − 2𝑚6𝐻
2ℓ23

2 − 2 [𝑚4𝑚5 +
𝑚8

(1+𝑚3y∗∗)2
] 𝐻ℓ23

2

− 2𝑚11ℓ23
2 + 2

𝑚10

(1+𝑚3y∗∗)2
𝐻ℓ23

2

). 

Accordingly, the following is obtained: 

 Θ2
𝑇𝐷2𝐹(𝜀2,𝑚12

∗∗ )(ℒ2, ℒ2) = 2 [− 𝑚11 +
𝑚10

(1+𝑚3y∗∗)2
𝐻]ϑ23ℓ23

2 ≠ 0.  

Hence, in the sense of Sotomayor, a transcrtical bifurcation take place. 

Theorem (12): If the condition (23a) is met, then a transcritical bifurcation of the system (3) at 

the PFEP happens when the parameter 𝑚12 passes over the value  �̅�12  =
𝑚9�̅�+𝑚10�̅�

1+𝑚2�̅�+𝑚3�̅�
, if and 

only if the following condition is satisfied. 

 �̅�31 ≠ 0,                                      (47) 

where  �̅�31 is computed in the proof. 

Proof: The Jacobian matrix at (𝜀2, �̅�12  ) can be represented by:  
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𝐽3 = 𝐽(𝜀2, �̅�12  ) = (

−�̅� −�̅� − 𝑚1�̅� −
1

1+𝑚2�̅�+𝑚3�̅�

−𝑚7�̅� −𝑚6�̅� −𝑚4𝑚5�̅� −
𝑚8�̅�

1+𝑚2�̅�+𝑚3�̅�

0 0 0

) = (𝑎𝑖𝑗)3×3
, 

Due to the existence of a zero eigenvalue, say �̅�33 = 0, PFEP becomes a non-hyperbolic point at 

𝑚12 = �̅�12, whereas the other two eigenvalues have negative real portions under the condition 

(23a). 

Let ℒ3 = (ℓ31, ℓ32, ℓ33)
𝑇 be the eigenvector conjugate with the eigenvalue �̅�33 = 0.   

Thus 𝐽3ℒ3 = 0, gives that: 

ℒ3 = (Α1ℓ33, Α2ℓ33, ℓ33)
𝑇,   

where  Α1 =
𝑎12𝑎23−𝑎22𝑎13

𝑎11𝑎22−𝑎21𝑎12
 ,  Α2 =

𝑎21𝑎13−𝑎11𝑎23

𝑎11𝑎22−𝑎21𝑎12
, and ℓ33 ≠ 0 is any real number. 

Now, let Θ3 = (ϑ31, ϑ32, ϑ33)
𝑇 represents the eigenvector conjugate with the eigenvalue �̅�33 =

0 of the matrix 𝐽3
𝑇.  

Thus, 𝐽3
𝑇Θ3 = 0  gives that Θ3 = (0,0, ϑ33)

𝑇, where ϑ33 ≠ 0 is any real number. Now, since:  

 
𝜕𝐹

𝜕𝑚12
= 𝐹𝑚12

(𝑋,𝑚12) = (0, 0 , −z)𝑇 ⇛ 
𝜕𝐹

𝜕𝑚12
= 𝐹𝑚12

(𝜀3, �̅�12) = (0, 0 ,0)𝑇. 

Therefore, Θ3
𝑇𝐹𝑚12

(𝜀3, �̅�12) = 0, then the first requirement for the transcritical bifurcation is met. 

Moreover, since  

 𝐷𝐹𝑚12
(𝑋,𝑚12) = (

0 0 0
0 0 0
0 0 −1

) ⇛ 𝐷𝐹𝑚12
(𝜀3, �̅�12)ℒ3 = (0, 0, −ℓ33)

𝑇. 

Then, Θ3
𝑇𝐷𝐹𝑚12

(𝜀3, �̅�12)ℒ3 = −ϑ23ℓ33 ≠ 0. 

Also, by using equation (46), it is obtained that:  

  𝐷2𝐹(𝜀3, �̅�12)(ℒ3, ℒ3) = [�̅�𝑖1]3×1, 

where 

�̅�11 = −2(Α1ℓ33)
2 − 2 Α1Α2ℓ33

2 − 2(𝑚1 +
(1 + 𝑚3�̅�)

(1 + 𝑚2�̅�+𝑚3�̅�)2
)Α1ℓ33

2

+
  2 𝑚3�̅�

(1 + 𝑚2�̅�+𝑚3�̅�)2
 Α2ℓ33

2 + 2𝑚1
2�̅�ℓ33

2,
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�̅�21 = −2𝑚7 Α1Α2ℓ33
2 + 2

𝑚2𝑚8�̅�

(1 + 𝑚2�̅�+𝑚3�̅�)2
 Α1ℓ33

2 + 2𝑚4𝑚5
2�̅�ℓ33

2 − 2𝑚6(Α2ℓ33)
2

−2 [𝑚4𝑚5 +
𝑚8(1 + 𝑚2�̅�)

(1 + 𝑚2�̅�+𝑚3�̅�)2
] Α2ℓ33

2,

 

�̅�31 = −2 
𝑚3(𝑚2𝑚10−𝑚3𝑚9)�̅�

(1 + 𝑚2�̅�+𝑚3�̅�)3
 (Α2ℓ33)

2 + 2
𝑚10 + (𝑚2𝑚10−𝑚3𝑚9)�̅�

(1 + 𝑚2�̅�+𝑚3�̅�)2
Α2ℓ33

2

− 2𝑚11ℓ33
2 + 2

𝑚9 + (𝑚3𝑚9 − 𝑚2𝑚10)�̅�

(1 + 𝑚2�̅�+𝑚3�̅�)2
 Α1ℓ33

2.

 

Therefore, condition (47) yields that: 

 Θ3
𝑇𝐷2𝐹(𝜀3, �̅�12)(ℒ3, ℒ3) = ϑ23�̅�31 ≠ 0.  

Hence a transcrtical bifurcation take place. 

Theorem (13): If the condition (26b) is met, then a transcritical bifurcation of the system (3) at 

the FPYFEP happens when the parameter 𝑚1 passes over the value �̿�1 =
(1+𝑚3�̅̅�)(1−�̅̅�)−�̿�

�̿�(�̅̅�(1+𝑚3�̅̅�)+�̿�)
, if and 

only if the following condition is satisfied. 

 �̿�11 ≠ 0,                           (48) 

where  �̿�11 is computed through the proof. 

Proof: At the FPYFEP the Jacobian matrix, with 𝑚1 = �̿�1, can be written as:  

𝐽4 =  𝐽(𝑚1 = �̿�1) = (
0 0 0

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

),         

where 𝑏𝑖𝑗; 𝑖 = 2,3. 𝑗 = 1,2,3 are written in the Jacobian matrix that given by (24).      

Hence the determinant of the matrix 𝐽4 is equal to zero. Therefore two eigenvalues of 𝐽4 with 

negative real portions are existing under the condition (26b), while the third eigenvalue is given 

by �̿�41 = 0, and hence the FPYFEP is a non-hyperbolic point. 

Let  ℒ4 = (ℓ41, ℓ42, ℓ43)
𝑇 be the eigenvector conjugate with the eigenvalue �̿�41 = 0.  

Thus, 𝐽4ℒ4 = 0 , gives that  ℒ4 = (ℓ41, H1ℓ41, H2ℓ41)
𝑇 ,  where H1 =

𝑏23𝑏31−𝑏21𝑏33

𝑏22𝑏33−𝑏23𝑏32
  ,  H2 =

𝑏21𝑏32−𝑏22𝑏31

𝑏22𝑏33−𝑏23𝑏32
 , and ℓ41 ≠ 0 is any real number. 

Now, let  Θ4 = (ϑ41, ϑ42, ϑ43)
𝑇 denotes the eigenvector conjugate with the eigenvalue �̿�41 = 0 
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of the matrix 𝐽4
𝑇.  

Thus, 𝐽4
𝑇Θ4 = 0  gives that Θ4 = (ϑ41, 0,0, )𝑇, where ϑ41 ≠ 0 is any real number.       

Moreover, it is observed that:   

 
𝜕𝐹

𝜕𝑚1
= 𝐹𝑚1

(𝑋,𝑚1) = (
−𝑥𝑧

(1+𝑚1𝑧)2
, 0, ,0)𝑇 ⟹ 𝐹𝑚1

(𝜀4, �̿�1) = (0,0, 0)𝑇. 

Therefore, it is obtained that Θ4
𝑇𝐹𝑚1

(𝜀4, �̿�1) = 0 , which means the first requirement for the 

transcritical bifurcation is met. Moreover, since  

  𝐷𝐹𝑚1
(𝑋,𝑚1) = (

−𝑧

(1+𝑚1𝑧)2
0

−𝑥(1−𝑚1𝑧)

(1+𝑚1𝑧)3

0 0 0
0 0 0

) ⇛ 𝐷𝐹𝑚1
(𝜀4, �̿�1)ℒ4 = (

−�̿�

(1+�̿�1�̿�)2
ℓ41, 0, 0)

𝑇

. 

Consequently, we obtain that: 

Θ4
𝑇𝐷𝐹𝑚1

(𝜀4, �̿�1)ℒ4 =
−�̿�

(1+�̿�1�̿�)2
ℓ41ϑ41 ≠ 0. 

Now, by using equation (46), it is obtained that: 

  𝐷2𝐹(𝜀4, �̿�1)(ℒ4, ℒ4) = [�̿�𝑖1]3×1, 

where:  

 
�̿�11 = −2 [1 −

𝑚2�̿�

(1+𝑚3�̿�)2
] ℓ41

2 − 2 [1 −
𝑚3�̿�

(1+𝑚3�̿�)2
] H1ℓ41

2

−2(
�̿�1

(1+�̿�1�̿�)2
+

1

(1+𝑚3�̿�)
)H2ℓ41

2
 

�̿�21 = −2
𝑚2

2𝑚8�̿�𝑧̿

(1+𝑚3�̿�)3
ℓ41

2 − 2(𝑚7 − 
𝑚2𝑚8𝑧̿(1−𝑚3�̿�)

(1+𝑚3�̿�)3
)H1ℓ41

2                          

+2
𝑚2𝑚8�̿�

(1+𝑚3�̿�)2
 H2ℓ41

2 + 2
𝑚4𝑚5

2�̿�

(1 + 𝑚5𝑧̿)
3
ℓ3

2 − 2 [𝑚6 −
𝑚3𝑚8𝑧̿

(1+𝑚3�̿�)3
] ℓ2

2

−2 [
𝑚4𝑚5

(1 + 𝑚5𝑧̿)2
+

𝑚8

(1+𝑚3�̿�)2
]H1H2ℓ41

2,

 

�̿�31 = −
2𝑚2𝑧̿[𝑚9 + (𝑚3𝑚9 − 𝑚2𝑚10)�̿�]

(1+𝑚3�̿�)3
ℓ41

2 − 2 
𝑚3𝑚10𝑧̿

(1+𝑚3�̿�)3
 H1

2ℓ41
2            

+2
𝑚2𝑚10(1+𝑚3�̿�)𝑧̿ + 𝑚3𝑚9(1−𝑚3�̿�)𝑧̿

(1+𝑚3�̿�)3
 H1ℓ41

2 −  2𝑚11H2
2ℓ41

2

+2
𝑚10

(1+𝑚3�̿�)2
H1H2ℓ41

2 + 2
𝑚9 + (𝑚3𝑚9 − 𝑚2𝑚10)�̿�

(1+𝑚3�̿�)2
 H2ℓ41

2.

 

Therefore, using condition (48) yields that  
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 Θ4
𝑇𝐷2𝐹(𝜀4, �̿�1)(ℒ4, ℒ4) = ϑ41�̿�11 ≠ 0 

Hence a transcrtical bifurcation take place. 

Theorem (14): If the condition (29b) is met, then a transcritical bifurcation of the system (3) at 

the SPYFEP happens when the parameter 𝑚7 passes over the value �̂�7 =
1

�̂�
[

𝑚4

(1+𝑚5�̂�)
−

𝑚8�̂�

(1+𝑚2�̂�)
], 

if and only if the following condition is satisfied. 

 𝛾21 ≠ 0,                           (49) 

where 𝛾21 is computed in the proof. 

Proof: The Jacobian matrix at (𝜀7, �̂�7 ) can be written as:  

𝐽5 = 𝐽(𝜀5, �̂�7) = [

𝑐11 𝑐12 𝑐13

0 0 0
𝑐31 𝑐32 𝑐33

], 

where 𝑐𝑖𝑗; 𝑖 = 1,3. 𝑗 = 1,2,3 are the Jacobian matrix elements that given by (27).      

Hence the determinant of the matrix 𝐽5 is equal to zero. Therefore it has two eigenvalues with 

negative real portions under the condition (29b), while the third eigenvalues is �̂�51 = 0, and hence 

the SPYFEP is a non-hyperbolic point. 

Let  ℒ5 = (ℓ51, ℓ52, ℓ53)
𝑇 be the eigenvector conjugate with the eigenvalue �̂�51 = 0.  

Thus, 𝐽5 ℒ5 = 0 , gives that ℒ5 = (𝐷1ℓ52, ℓ52, D2ℓ52)
𝑇 , where D1 =

𝑐13𝑐32−𝑐12𝑐33

𝑐11𝑐33−𝑐13𝑐31
  , D2 =

𝑐12𝑐31−𝑐11𝑐32

𝑐11𝑐33−𝑐13𝑐31
, and ℓ52 ≠ 0 is any real number. 

Now, let Θ5 = (ϑ51, ϑ52, ϑ53)
𝑇 denotes to the eigenvector conjugate with the eigenvalue �̂�51 =

0, of the matrix  𝐽5
𝑇.  

Thus, 𝐽5
𝑇Θ5 = 0 gives that Θ5 = (0, ϑ52, 0)𝑇, where ϑ52 ≠ 0 is any real number.  

Now, since:  

 
𝜕𝐹

𝜕𝑚7
= 𝐹𝑚7

(𝑋,𝑚7) = (0,−𝑥𝑦 ,0)𝑇 ⇛ 
𝜕𝐹

𝜕𝑚7
= 𝐹𝑚7

(𝜀5, �̂�7) = (0, 0 ,0)𝑇. 

Therefore, Θ5
𝑇𝐹𝑚7

(𝜀5, �̂�7) = 0, hence the system (3) has no saddle-node bifurcation. Moreover, 

since  

𝐷𝐹𝑚7
(𝑋,𝑚7) = (

0 0 0
−𝑦 −𝑥 0
0 0 0

) ⇛ 𝐷𝐹𝑚7
(𝜀5, �̂�7)ℒ5 = (0, �̂�ℓ52, 0)𝑇. 
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Then, Θ5
𝑇𝐷𝐹𝑚7

(𝜀5, �̂�7)ℒ5 = �̂�ℓ52ϑ52 ≠ 0. 

Also, by using equation (46), it is obtained that:  

 𝐷2𝐹(𝜀5, �̂�7)(ℒ5, ℒ5) = [𝛾𝑖1]3×1, 

where,  

𝛾11 = −2 [1 −
𝑚2�̂�

(1+𝑚2�̂�)3
] (𝐷1ℓ52)

2 − 2 [1 −
𝑚3�̂�(1−𝑚2�̂�)

(1+𝑚2�̂�)3
] 𝐷1ℓ52

2 −
2𝑚3

2�̂��̂�

(1+𝑚2�̂�)3
ℓ52

2       

−2 [
𝑚1

(1+𝑚1�̂�)2
+

1

(1+𝑚2�̂�)2
] 𝐷1𝐷2ℓ52

2 +
  2 𝑚3�̂�

(1+𝑚2�̂�)2
 𝐷2ℓ52

2 +
2𝑚1

2�̂�

(1+𝑚1�̂�)3
(𝐷2ℓ52)

2
. 

𝛾21 = −2 [�̂�7 − 
𝑚2𝑚8�̂�

(1+𝑚2�̂�)2
] 𝐷1ℓ52

2 − 2 [𝑚6 −
𝑚3𝑚8�̂�

(1+𝑚2�̂�)2
] ℓ52

2 − 2 [
𝑚4𝑚5

(1+𝑚5�̂�)2
+

𝑚8

(1+𝑚2�̂�)
]𝐷2ℓ52

2
, 

𝛾31 = −
2𝑚2𝑚9�̂�

(1 + 𝑚2�̂�)3
(𝐷1ℓ52)

2 − 2 
𝑚3[𝑚10�̂� + (𝑚2𝑚10−𝑚3𝑚9)�̂�]

(1 + 𝑚2�̂�)3
 ℓ52

2          

−2
𝑚2𝑚10(1 + 𝑚2�̂�)�̂� + 𝑚3𝑚9(1 − 𝑚2�̂�)�̂�

(1 + 𝑚2�̂�)3
 𝐷1ℓ52

2 −  2𝑚11(𝐷2ℓ52)
2

+2
𝑚10 + (𝑚2𝑚10−𝑚3𝑚9)�̂�

(1 + 𝑚2�̂�)2
𝐷2ℓ52

2 + 2
𝑚9

(1 + 𝑚2�̂�)2
 𝐷1𝐷2ℓ52

2.

 

Then, using conditions (49) yields:  

 Θ5
𝑇𝐷2𝐹(𝜀5, �̂�7)(ℒ5, ℒ5) = ϑ42𝛾21 ≠ 0.  

Hence, in the sense of Sotomayor, a transcrtical bifurcation take place. 

Theorem (15): If the conditions (30a)-(30d) are met, then a saddle-node bifurcation of the system 

(3) at the CEP happens when the parameter 𝑚11  passes over the value 𝑚11
∗ =

𝑑12𝑑23𝑑31−𝑑13𝑑22 .𝑑31−𝑑32(𝑑11𝑑22−𝑑13𝑑21)

𝑧∗(𝑑11𝑑22−𝑑12𝑑21)
, if and only if the following condition is satisfied. 

𝐵3γ11
∗ + 𝐵4γ21

∗ + γ31
∗ ≠ 0,                      (50) 

where the symbols of condition (50) are computed in the proof. 

Proof: The Jacobian matrix at CEP with 𝑚11 = 𝑚11
∗  can be written as:  

𝐽6 = 𝐽(𝜀6,𝑚11
∗ ) = (

𝑑11 𝑑12 𝑑13

𝑑21 𝑑22 𝑑23

𝑑31 𝑑32 𝑑33
∗
), 

where the elements 𝑑𝑖𝑗 , 𝑖, 𝑗 = 1,2,3 are given in the Jacobian matrix (31) with 𝑑33
∗ = 𝑑33(𝑚11

∗ ). 

Direct computation shows that the determinant of 𝐽6 is equal to zero. Hence the matrix 𝐽6 has a 
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zero eigenvalue given by 𝜆63
∗ = 0 , with two negative real portions eigenvalues 𝜆61,62 =

−𝐴1±√𝐴1
2−4𝐴2

2
 , where 𝐴1 > 0  and 𝐴2 > 0  are given in Eq. (32). Therefore, the CEP is a non-

hyperbolic point. 

Let  ℒ6 = (ℓ61, ℓ62, ℓ63)
𝑇 be the eigenvector conjugate with the eigenvalue 𝜆63

∗ = 0.  

Thus, 𝐽6 ℒ6 = 0 , gives that ℒ6 = (𝐵1ℓ63, B2ℓ63, ℓ63)
𝑇 , where B1 =

𝑑12𝑑23−𝑑13𝑑22

𝑑11𝑑22−𝑑12𝑑21
  , B2 =

𝑑13𝑑21−𝑑11𝑑23

𝑑11𝑑22−𝑑12𝑑21
< 0, and ℓ63 ≠ 0 is any real number. 

Now, let Θ6 = (ϑ61, ϑ62, ϑ63)
𝑇 denotes to the eigenvector conjugate with the eigenvalue 𝜆63

∗ =

0, of the matrix 𝐽6
𝑇.  

Thus, 𝐽6
𝑇Θ6 = 0  gives that Θ6 = (𝐵3ϑ63, 𝐵4ϑ63, ϑ63)

𝑇 , where 𝐵3 =
𝑑21𝑑32−𝑑22𝑑31

𝑑11𝑑22−𝑑21𝑑12
 , 𝐵4 =

𝑑12𝑑31−𝑑11𝑑32

𝑑11𝑑22−𝑑21𝑑12
< 0, with ϑ63 ≠ 0 is any real number.  

Moreover, it is observed that:   

 
𝜕𝐹

𝜕𝑚11
= 𝐹𝑚11

(𝑋,𝑚11) = (0, 0, −𝑧2)𝑇 ⟹ 𝐹𝑚11
(𝜀6, 𝑚11

∗ ) = (0, 0 , −𝑧∗2)𝑇. 

Therefore, Θ6
𝑇𝐹𝑚11

(𝜀6,𝑚11
∗ ) = −ϑ63𝑧

∗2 ≠ 0 , Hence the first condition of a saddle node 

bifurcation is met. 

Moreover, by using equation (46), it is obtained that: 

 𝐷2𝐹(𝜀6, 𝑚11
∗ )(ℒ6, ℒ6) = [γ𝑖1

∗]3×1, 

where  

γ11
∗ = −2 [1 −

𝑚2𝑧∗(1+𝑚3𝑦∗)

(1+𝑚2𝑥∗+𝑚3𝑦∗)3
] (𝐵1ℓ63)

2 − 2 [1 −
𝑚3𝑧∗(1−𝑚2𝑥∗+𝑚3𝑦∗)

(1+𝑚2𝑥∗+𝑚3𝑦∗)3
] 𝐵1𝐵2ℓ63

2

−
2𝑚3

2𝑥∗𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)3
(𝐵2ℓ63)

2 − 2(
𝑚1

(1+𝑚1𝑧∗)2
+

(1+𝑚3𝑦∗)

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
)𝐵1ℓ63

2

+
  2 𝑚3𝑥∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
 𝐵2ℓ63

2 +
2𝑚1

2𝑥∗

(1+𝑚1𝑧)3
ℓ63

2,

  

γ21
∗ = −2

𝑚2
2𝑚8𝑦∗𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)3
(𝐵1ℓ63)

2 − 2(𝑚7 − 
𝑚2𝑚8𝑧∗(1+𝑚2𝑥∗−𝑚3𝑦∗)

(1+𝑚2𝑥∗+𝑚3𝑦∗)3
)𝐵1𝐵2ℓ63

2           

+2
𝑚2𝑚8𝑦∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
 𝐵1ℓ63

2 − 2 [𝑚6 −
𝑚3𝑚8𝑧∗(1+𝑚2𝑥∗)

(1+𝑚2𝑥∗+𝑚3𝑦∗)3
] (𝐵2ℓ63)

2

+2
𝑚4𝑚5

2𝑦∗

(1+𝑚5𝑧)3
ℓ63

2 − 2 [
𝑚4𝑚5

(1+𝑚5𝑧∗)2
+

𝑚8(1+𝑚2𝑥∗)

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
] 𝐵2ℓ63

2,

 .
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γ31
∗ = −

2𝑚2𝑧∗[𝑚9+(𝑚3𝑚9−𝑚2𝑚10)𝑦∗]

(1+𝑚2𝑥∗+𝑚3𝑦∗)3
(𝐵1ℓ63)

2 − 2 
𝑚3[𝑚10𝑧∗+(𝑚2𝑚10−𝑚3𝑚9)𝑥∗]

(1+𝑚2𝑥∗+𝑚3𝑦∗)3
 (𝐵2ℓ63)

2

−2
(𝑚2𝑥∗−𝑚3𝑦∗)(𝑚2𝑚10−𝑚3𝑚9)𝑧∗+(𝑚2𝑚10+𝑚3𝑚9)𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)3
 𝐵1𝐵2ℓ63

2 −  2𝑚11
∗ ℓ63

2

+2
𝑚10+(𝑚2𝑚10−𝑚3𝑚9)𝑥∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
𝐵2ℓ63

2 + 2
𝑚9+(𝑚3𝑚9−𝑚2𝑚10)𝑦∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
 𝐵1ℓ63

2.

 

Therefore, using the condition (50), it is obtained that  

 [𝐵3γ11
∗ + 𝐵4γ21

∗ + γ31
∗]ϑ63 ≠ 0 

Then a saddle-node bifurcation take place. 

As a parameter reaches a critical point, the Hopf bifurcation refers to the birth or death of a periodic 

solution from equilibrium at a local level. A Hopf bifurcation occurs when a complex conjugate 

pair of eigenvalues of the linearised flow at a given position becomes fully imaginary, according 

to the Poincare-Andronov-Hopf bifurcation theorem. This means that a Hopf bifurcation can only 

occur in two-dimensional systems or higher. The restrictions that guarantee a Hopf bifurcation at 

the CEP are presented in below theorem. 

Theorem (16): Assume that the requirements (30a)-(30d) are met, as well as the following:

 𝑑12𝑑23𝑑31 < min  {𝑑13𝑑22𝑑31, − 𝑑13𝑑21𝑑32 },                              (51a) 

 𝑑12(𝑑11 + 𝑑22) + 𝑑13𝑑32 > 0,                              (51b) 

(𝐴1(𝑚7
∗)𝐴2(𝑚7

∗))
′
< 𝐴3

′(𝑚7
∗),                                        (51c) 

where, 𝑑𝑖𝑗  and 𝐴𝑖  𝑓𝑜𝑟 𝑖, 𝑗 = 1,2,3  are respectively the elements of 𝐽𝜀6
  that given by Eq. (31) 

and the coefficients of the characteristic equation that given by Eq. (32).  Then, as the parameter 

𝑚7 passes through the value 𝑚7
∗ , system (3) experiences a Hopf bifurcation at the CEP, where  

 𝑚7
∗ =

𝜛

𝑦∗[𝑑12(𝑑11+𝑑22)+𝑑13𝑑32]
+

𝑚2𝑚8𝑧∗

(1+𝑚2𝑥∗+𝑚3𝑦∗)2
,  

with   

 
𝜛 = −(𝑑11 + 𝑑22)𝑑11𝑑22−(𝑑11 + 𝑑33)[𝑑11𝑑33 − 𝑑13𝑑31]                            

−(𝑑22 + 𝑑33)[𝑑22𝑑33 − 𝑑23𝑑32] − 2𝑑11𝑑22𝑑33 + 𝑑12𝑑23𝑑31.
 

Proof: According to the form of ∆= 𝐴1𝐴2 − 𝐴3 that given in Eq. (32), it is easy to verify that ∆=

0 at 𝑚7 = 𝑚7
∗ , where 𝑚7

∗ > 0 if the sufficient conditions (51a)-(51b) are met. Therefore, it is 

gotten that  𝐴1(𝑚7
∗)𝐴2(𝑚7

∗) = 𝐴3(𝑚7
∗). Consequently, Eq. (32) at  𝑚7 = 𝑚7

∗  becomes 
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𝑃3(𝜆) = (𝜆 + 𝐴1)(𝜆
2 + 𝐴2) = 0;                                     (52) 

where 𝐴1, and 𝐴2 under the conditions (30a)-(30d) are positive. Now, simple calculation steps 

give that the Eq. (52) has the following roots   

𝜆1 = −𝐴1  and 𝜆2,3 = ±𝑖√𝐴2. 

Note that, when 𝑚7 = 𝑚7
∗ , the first condition of the Hopf bifurcation is satisfied, and then two 

pure imaginary complex conjugate eigenvalues are arise. These complex conjugate eigenvalues in 

the vicinity of 𝑚7
∗   are adopted the form 𝜆2,3 = 𝛿1(𝑚7) ± 𝑖𝛿2(𝑚7) . As a result, in Eq. (32), 

substitute 𝜆 = 𝛿1(𝑚7) + 𝑖𝛿2(𝑚7) , and then take the derivative with regard to the bifurcation 

parameter 𝑚7. After comparing the two sides of the appearing equation and equating their real and 

imaginary components, the following result is obtained: 

Π1(𝑚7)𝛿1
′(𝑚7) + Π2(𝑚7)𝛿2

′(𝑚7) = −Π3(𝑚7),

Π2(𝑚7)𝛿1
′(𝑚7) + Π1(𝑚7)𝛿2

′(𝑚7) = −Π4(𝑚7),
                                (53) 

where:  

Π1(𝑚7) = 3𝛿1
2(𝑚7) + 2𝐴1(𝑚7)𝛿1(𝑚7) + 𝐴2(𝑚7) − 3𝛿2

2(𝑚7), 

Π2(𝑚7) = 6𝛿1(𝑚7)𝛿2(𝑚7)  + 2𝐴1(𝑚7)𝛿2(𝑚7), 

Π3(𝑚7) = 𝛿1
2(𝑚7)𝐴1

′(𝑚7) + 𝐴2
′(𝑚7)𝛿1(𝑚7) + 𝐴3

′(𝑚7) − 𝐴1
′(𝑚7)𝛿2

2(𝑚7), 

Π4(𝑚7) = 2𝛿1(𝑚7)𝛿2(𝑚7)𝐴1
′(𝑚7) + 𝐴2

′(𝑚7)𝛿2(𝑚7). 

Solving the linear system (53), gives that  

𝛿1
′(𝑚7) =

𝑑𝛿1(𝑚7)

𝑑𝑚7
= −

Π3(𝑚7)Π1(𝑚7)+Π4(𝑚7)Π2(𝑚7)

[Π1(𝑚7)]2+[Π2(𝑚7)]2
,

 𝛿2
′(𝑚7) = −

Π4(𝑚7)Π1(𝑚7)−Π3(𝑚7)Π2(𝑚7)

[Π1(𝑚7)]2+[Π2(𝑚7)]2
.                   

                              (54)  

Obviously, we have that 𝛿1(𝑚7
∗) = 0 and 𝛿2(𝑚7

∗) = √𝐴2(𝑚7
∗), then the coefficients of Eq. (53) 

at 𝑚7 = 𝑚7
∗  become:   

Π1(𝑚7
∗) = −2𝐴2(𝑚7

∗), 

Π2(𝑚7
∗) = 2𝐴1(𝑚7

∗)√𝐴2(𝑚7
∗),  

Π3(𝑚7
∗) = 𝐴3

′(𝑚7
∗) − 𝐴1

′(𝑚7
∗)𝐴2(𝑚7

∗), 
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Π4(𝑚7
∗) = 𝐴2

′(𝑚7
∗)√𝐴2(𝑚7

∗).  

Therefore, direct computation gives that 

Π3(𝑚7
∗)Π1(𝑚7

∗) + Π4(𝑚7
∗)Π2(𝑚7

∗) =  −2𝐴2(𝑚7
∗) [𝐴3

′(𝑚7
∗) − (𝐴1(𝑚7

∗)𝐴2(𝑚7
∗))

′
]. 

Hence, the transversality condition 𝛿1
′(𝑚7

∗) > 0 is satisfied under the condition (51c). As a result, 

system (3) experiences Hopf bifurcation at  𝑚7 = 𝑚7 
∗ . 

 

8. NUMERICAL SIMULATION 

In this part, Matlab is used to solve system (3) numerically. To understand the global dynamics of 

the system (3) and the implications of varying their parameters, multiple hypothetical sets of 

parameter values with different initial points are employed. All of the findings are given in the 

form of phase portraits and time series. The sets of parameters used in this study are given in the 

table (2). 

Table 2: Hypothetical sets of parameters: 

parameters 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 𝑚10 𝑚11 𝑚12 

Set (1) 0.4 4 3 0.9 0.5 0.9 0.8 1 0.1 0.75 0.2 0.1 

Set (2) 0.5 0.2 0.4 1 0.5 0.2 1.5 1 0.5 0.5 0.1 0.01 

 

The trajectories of system (3) approach asymptotically to the CEP for the set (1), regardless of 

whether the fear exists or not, as shown in Figures 1b and 1a, respectively. However, raising the 

first prey's fear rate or decreasing the second prey's fear rate induces extinction in the first prey, 

and the trajectories of system (3) approach FPYFEP asymptotically, as shown in Figures 1c and 

1d, respectively. 
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Fig. 1: Time series of system (3) trajectories utilizing set (1) of data starting at various initial 

positions. (a) Trajectories are approaching CEP globally at (0.08,0.83,0.32). (b) Trajectories are 

approaching CEP globally at (0.197,0.68,0.192) . (c) Trajectories are approaching FPYFEP 

globally at (0,0.72,0.35). (d) Trajectories are approaching FPYFEP globally at (0,0.77,0.37). 

 

 

 

 

 

 



36 

FIRAS HUSSEAN MAGHOOL, RAID KAMEL NAJI 

It is observed that, rising the value of 𝑚3 in the range 𝑚3 > 6.5 leads to approaching to SAEP 

as shown in Figure 2, for the exemplary value of 𝑚3 = 10.  

 

 

Fig. 2: Phase portrait of system (3) utilizing set (1) of data starting at various initial positions that 

shows the global stability of 𝜀2 = (0,1,0). 
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Note that, while condition (20a) is not satisfied and the system has a zero eigenvalue when 

employing set (1) of data, the SAEP is globally asymptotically stable because condition (20a) is 

satisfied (20b). Now, varying the parameter 𝑚4 in the range 𝑚4 < 0.8 leads to approach FAEP, 

while for the range 𝑚4 > 1, the system approaches to FPYFEP as presented in Figures 3a, 3b with 

3c respectively for exemplary valuesof 𝑚4.   

 

 

 

Fig. 3: The trajectories of system (3) utilizing set (1) of data starting at various initial positions. (a) 

Phase portrait that shows the global stability of 𝜀1 = (1,0,0) using 𝑚4 = 0.75. (b) Phase portrait 

that shows the global stability of 𝜀4 = (0,1.01,0.44) using 𝑚4 = 1.25. (c) Time series for the 

trajectories given in Fig. 3b. 
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Figures 4a-4b and 4c-4d, show the transferring of the trajectories of system (3) between the 

FPYFEP and PFEP as the parameter 𝑚6 transfers between the ranges 𝑚6 < 0.8 and 𝑚6 > 0.9, 

respectively. However, Figures 5a-5b and 6a-6b, demonstrate the existence of stable line of 

equilibrium point 𝑥 + 𝑦 = 1 in the 𝑥𝑦 −plane and the asymptotic stability of the system (3) at 

FAEP when 𝑚7 = 0.9 and 𝑚7 > 0.9, respectively.  

 

 

 

Fig. 4: The trajectories of system (3) utilizing set (1) of data starting at various initial positions. (a) 

Phase portrait that shows the global stability of 𝜀4 = (0,0.85,0.39) using 𝑚6 = 0.75. (b) Time 

series for the trajectories given in Fig. 4a. (c) Phase portrait that shows the global stability of 𝜀6 =

(0.5,0.49,0) using 𝑚6 = 1. (d) ) Time series for the trajectories given in Fig. 4c. 
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Fig. 5: The trajectories of system (3) utilizing set (1) of data starting at various initial positions. (a) 

Phase portrait that shows the existence of stable line in 𝑥𝑦 − plane using 𝑚7 = 0.9 . (b) Time 

series for the trajectories given in Fig. 5a. 

 

Fig. 6: The trajectories of system (3) utilizing set (1) of data starting at various initial positions. (a) 

Phase portrait that shows the global stability of 𝜀1 = (1,0,0) using 𝑚7 = 1. (b) Time series for 

the trajectories given in Fig. 6a. 
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Now, for the parameters 𝑚8 and 𝑚9 in the ranges 𝑚8 < 0.6 and 𝑚9 > 1.4, it is obtained that 

the system (3) approaches asymptotically to FPYFEP and SPYFEP as shown in Figures 7a-7b and 

8a-8b, respectively. 

 

Fig. 7: The trajectories of system (3) utilizing set (1) of data starting at various initial positions. (a) 

Phase portrait that shows the global stability of 𝜀4 = (0,0.77,0.37) using 𝑚8 = 0.5. (b) Time 

series for the trajectories given in Fig. 7a. 

 

Fig. 8: The trajectories of system (3) utilizing set (1) of data starting at various initial positions. (a) 

Phase portrait that shows the global stability of 𝜀5 = (0.33,0,0.92)  using 𝑚9 = 2 . (b) Time 

series for the trajectories given in Fig. 8a. 
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The trajectories of system (3) approach asymptotically to the SAEP when the parameter 𝑤10 is 

varied in the range 𝑤10 ≤ 0.4, as shown in Figure 9. When the parameter 𝑤12 is increased above 

the value of 0.2, the result is similar to that of 𝑤10. While increasing the value of 𝑤11, the value 

of the predator and the first prey gradually reduces as well, and the trajectories eventually converge 

to the SAEP. 

 

Fig. 9: Phase portrait of system (3) utilizing set (1) of data starting at various initial positions that 

shows the global stability of 𝜀2 = (0,1,0), when 𝑤10 = 0.4. 
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With the preceding in mind, the dynamics of the system (3) are numerically studied utilizing set 

(2) of data. The goal is to demonstrate that when alternative hypothetical sets of data are used, 

different sorts of dynamical behavior can be created. However, the theoretical conclusions hold 

true for a variety of data sets.  

It is observed that, system (3) undergoes a bi-stability behavior between the FPYFEP and SPYFEP 

for the set (2) of data, regardless of whether the fear exists or not, as shown in Figures 10b and 

10a, respectively.  

 

Fig. 10: Phase portrait of system (3) utilizing set (2) of data starting at various initial positions that 

shows bi-stability behavior. (a) For 𝑚1 = 𝑚5 = 0, bi-stability between 𝜀4 = (0,0.25,1.04)  and 

𝜀5 = (0.19,0,0.83). (b)  For 𝑚1 = 0.5,𝑚5 = 0.5, bi-stability between 𝜀4 = (0,0.18,0.74) and 

𝜀5 = (0.15,0,0.62). 

 

 

 

 

 

 

 

 



43 

DYNAMICS OF TWO COMPETING PREY-ONE PREDATOR SYSTEM 

Although the existence of fear does not prevent the bi-stability behavior, it is reduced the 

populations size due to hiding as anti-predator behavior. 

However, the presence of fear in either the first or second prey causes extinction in either the first 

or second prey, and the trajectories of system (3) approach FPYFEP or SPYFEP asymptotically, 

as shown in Figures 11a-11b and 11c-11d, respectively. 

 

 

Fig. 11: The trajectories of system (3) utilizing set (2) of data starting at various initial positions. 

(a) Phase portrait that shows the global stability of 𝜀4 = (0,0.25,1.04) using 𝑚1 = 0.2,𝑚5 = 0. 

(b) Time series for the trajectories given in Fig. 11a. (c) Phase portrait that shows the global 

stability of 𝜀5 = (0.19,0,0.83)  using 𝑚1 = 0,𝑚5 = 0.2 . (d) Time series for the trajectories 

given in Fig. 11c. 
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9. DISCUSSION AND CONCLUSION 

In this study, in the presence of fear, an ecological model based on a three-species food web with 

two competing prey and one predator is built. The solution's dynamical properties (stability, 

persistence, and bifurcation) are studied theoretically. To understand the global dynamics and 

impacts of modifying the system parameters, numerical simulation of the proposed system is 

performed using two alternative sets of hypothetical parameter values. The following findings have 

been presented. 

1. The system (3) exhibits a variety of dynamical behaviors depending on the parameter 

values, including globally asymptotically stable CEP, stable line, bi-stability behavior, 

periodic, and even chaotic behavior. 

2. The system approaches a CEP for an appropriate range of fear rate values in both 

competing preys. While increasing the fear rate in one of the two competing preys above a 

certain value causes extinction in that prey due to lack of food and the trajectories approach 

asymptotically to the opposite planar equilibrium point (see Figure 1). 

3.  Because the second prey is a stronger competitor than the first prey and represents a 

preferred food for the predator, rising the environmental safety rate associated with the 

second prey causes persistence to be lost, and the system's trajectories approach 

asymptotically to SAEP, as shown in Figure 2. 

4. Due to extinction in the predator and first prey as a result of the competitive exclusion 

principle, decreasing the growth rate of the second prey pushes the trajectories of the 

system (3) to approach the SAEP, as shown in Figure 3. While increasing the value of this 

parameter above a certain threshold causes extinction in the first prey, the system's (3) 

trajectories approach the FPYFEP asymptotically.  

5. As illustrated in Figure 4, lowering the intra-specific competition of the second prey below 

a certain threshold induces extinction in the first prey due to the winning of the second prey 

in the competition process, and the trajectories then approach the FPYFEP. However, 

raising the value of this parameter causes extinction in predator species due to the predator's 
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heavy dependence on the second prey for feeding, hence the system's (3) trajectories 

approach the PFEP. 

6. Equating the parameters of growth rate, intra-specific competition, and inter-specific 

competition of the second prey with one another results in a stable line of PFEPs, as shown 

in Figure 5. Furthermore, according to set (1) of parameter values, increasing the value of 

inter-specific competition of second prey causes extinction in second prey and then 

predator due to the predator's feeding dependency on the second prey. As a result, the 

system (3)'s trajectories approach FAEP asymptotically, as seen in Figure 6. 

7. Reduce the predator's attack rate on the second prey or increase the predator's conversion 

rate from the first prey yield to the approaching of the trajectories of system (3) to FPYFEP 

and SPYFEP, respectively, as shown in Figures 7 and 8. 

8. Extinction in predator species is caused by lowering the predator's conversion rate from 

the second prey below a specific value (as shown in Figure 9) or increasing the predator's 

intra-specific competition,  and thus the system's (3) trajectories approach the SAEP. This 

is due to the fact that the competitive exclusion principle leads to extinction in the first prey 

as well. 

9. For the set (2) of parameter values, Figure 10 shows that system (3) undergoes a bi-stability 

behavior between the FPYFEP and SPYFEP, regardless of whether the fear exists or not, 

which indicates the complex dynamics of the system (3). 

10. Finally, The increase in fear rate in either the first or second prey causes extinction in either 

the first or second prey, which stops the bi-stability behavior, and thus the trajectories of 

system (3) approach FPYFEP or SPYFEP asymptotically, as seen in Figure 11. 
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