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Abstract. In this paper, we propose a mathematical model that describes the dynamics of viral infection with

both modes of transmission, virus-to-cell and cell-to-cell by taking into account the non-cytolytic cure of infected

cells, the lytic and non-lytic humoral immune response. We first prove the non-negativity and boundedness of the

solutions of the proposed model. Furthermore, the dynamical behaviors of the model including the local and global

stability of equilibria are rigorously investigated.

Keywords: viral immunology; cell-to-cell transmission; mathematical modeling; Lyapunov function; stability.

2010 AMS Subject Classification: 34D20, 34D23, 37N25, 92B05.

1. INTRODUCTION

The human body is exposed permanently to pathogenic agents, such as viruses which can

induce viral infections. Viruses once entered the cell, they take over its machinery and metabo-

lism to support their replication. Furthermore, viruses can spread by two different modes, either
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through cell-to-cell by contact of infected cells with healthy ones [1, 2, 3], or through classi-

cal virus-to-cell infection. In response to a viral infection, the organism initiates the immune

system. There are two broad types of immune responses, the innate immunity and the adaptive

immune response also called specific response. The last type of immunity has two arms, the

cellular immunity based on cytotoxic T lymphocyte (CTL) cells which kill infected cells, and

the humoral one that exercised by antibodies in order to neutralize the viruses.

During viral infection, infected cells can be killed or can also return to the uninfected state

by loss of all covalently closed circular DNA (cccDNA) from their nucleus. Guidotti et al. [4]

demonstrated that noncytopathic antiviral mechanisms contribute to viral clearance during acute

viral hepatitis by purging hepatitis B virus (HBV) replicative intermediates from the cytoplasm

and cccDNA from the nucleus of infected cells. The cure of infected cells are considered by

many authors to model the dynamics of various viral infections [5, 6, 7, 8]. On the other hand,

the immune response occurs in two ways, a lytic which kills the infected cells, and the another

non-lytic which consists of inhibiting the infection transmission [9]. Antibodies are produced

by B cells and proliferate as a result of stimulation by the virus, they play an important role in

the immune system and participate significantly in lytic and non-lytic antiviral activity [10].

Based on the above biological and mathematical considerations, we propose a mathemati-

cal model that incorporates both modes of transmission, cure of infected cells as well as lytic

and non-lytic humoral immune response. This model is formulated by the following nonlinear

system

(1)



U ′(t) = λ −dUU− β1UV
1+q1A

− β2UI
1+q2A

+ εI,

I′(t) =
β1UV

1+q1A
+

β2UI
1+q2A

−dII− εI,

V ′(t) = kI−dVV − rVA,

A′(t) = ρVA−dAA,

where the uninfected cells (U) are generated at rate λ , die at rate dUU and become infected

either by free virus particles at rate β1UV or by direct contact with infected cells at rate β2UI.

The two modes of transmission are inhibited by non-lytic humoral immune response at rate 1+

q1A and 1+q2A, respectively. The infected cells (I) die at rate dII and return to the uninfected
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state by loss of cccDNA from their nucleus at rate εI. Free viruses (V) are produced by infected

cells at rate kI, cleared at rate dVV and neutralized by antibodies at rate rVA. Antibodies develop

in response to free virus at rate ρVA and decay at rate dAA.

It is important to note that if q1 = q2 = 0, then we find the model studied in [8]. Also, if

β2 = 0, then we get the model investigated by Dhar et al. in [7].

The remainder of this paper is outlined as follows. In the next section, we establish some

preliminary results including the non-negativity and boundedness of solutions of system (1) as

well as we discuss the existence of equilibria. In Section 3, we establish sufficient conditions

for the local stability of the three equilibrium points. Section 4 is devoted to global stability of

equilibria. The paper ends with a conclusion presented in Section 5.

2. PRELIMINARY RESULTS

Theorem 2.1. All solutions for (1) with non-negative initial conditions, remain non-negative

and bounded for all t ≥ 0.

Proof. We have

dU
dt
|U=0 = λ + εI ≥ 0, for all I ≥ 0,

dI
dt
|I=0 =

β1UV
1+q1A

≥ 0, for all U,V,A≥ 0,

dV
dt
|V=0 = kI ≥ 0, for all I ≥ 0,

dA
dt
|A=0 = 0.

According to Proposition B.7 of [11], we deduce that the solutions U , I, V and A are non-

negative.

To prove the boundedness of solutions, we consider the following function

X(t) =U(t)+ I(t)+
dI

2k
V (t)+

rdI

2kρ
A(t).

Then

X ′(t) = λ −dUU− dI

2
I(t)− dIdV

2k
V − rdIdA

2kρ
A

≤ λ −dX(t),
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where d = min{dU ,
dI
2 ,dV ,dA}. Hence,

limsup
t→+∞

X(t)≤ λ

d
.

Then U(t), I(t), V (t) and A(t) are bounded. This completes the proof. �

Next, we define two threshold parameters and establish the existence of three equilibrium

points for (1). It is clear that the point P0(U0,0,0,0), with U0 =
λ

dU
, is the unique infection-free

equilibrium of model (1). Then we define the first threshold parameter which represents the

basic reproduction number R0 of model (1) as follows:

(2) R0 =
λ (kβ1 +dV β2)

dU dV (dI + ε)
= R01 +R02,

where R01 =
λkβ1

dU dV (dI + ε)
and R02 =

λβ2

dU(dI + ε)
are the basic reproduction numbers associ-

ated to the virus-to-cell and cell-to-cell transmission modes, respectively.

In absence of humoral immune response and R0 > 1, the model (1) has the unique equilib-

rium point called the immune free-equilibrium and labeled by P1(U1, I1,V1,0), where

U1 =
λ

dUR0
, I1 =

λ (R0−1)
dIR0

, V1 =
λk(R0−1)

dV dIR0
.

In presence of humoral immune response, we have V =
dA

ρ
, I =

1
dI
(λ − dUU) and A =

1
r

(
kρ

dAdI
(λ −dUU)−dV

)
.

Since A ≥ 0, we have U ≤ 1
dU

(
λ − dV dAdI

kρ

)
. Hence, there is no biological equilibrium if

U >
1

dU

(
λ − dV dAdI

kρ

)
or

1
dU

(
λ − dV dAdI

kρ

)
≤ 0. We set u∗ =

1
dU

(
λ − dV dAdI

kρ

)
and we

define on the closed interval [0,u∗] the function h as follows

h(U) = β1V2
U

1+q1g(U)
+β2

U f (U)

1+q2g(U)
− (dI + ε) f (U),

where f (U) =
1
dI
(λ −dUU) and g(U) =

1
r

(
kρ

dAdI
(λ −dUU)−dV

)
.

Then we have h(0) =−(dI + ε)
λ

dI
< 0 and
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h′(U) = β1V2
1+q1g(U)−q1g′(U)U

(1+q1g(U))2

+β2
1+q2g(U)−Uq2g′(U)

(1+q2g(U))2 f (U)

+

(
β2

U
1+q2g(U)

− (dI + ε)

)
f ′(U).

When the humoral immune response has not established, we have from the last equation of

model (1) that ρV1−dA ≤ 0. Then we define the second threshold parameter which represents

the antibody immune response reproduction number as follows

(3) RA
1 =

ρV1

dA
.

Since h(u∗) =
dV dId2

A
k2ρ2dU

(kβ1 + β2dV )
(
RA

1 − 1
)
, we deduce that when RA

1 > 1 there exists a

U2 ∈ (0,u∗) such that h(U2) = 0. By the equalities

dI + ε = β1
U2V2

(1+q2A2)I2
+β2

U2

1+q2A2
and g(U2) = A2,

we obtain

h′(U2) = β1V2
(1+q1A2−q1g′(U2)U2

(1+q1A2)2 +β2
1+q2A2−Uq2g′(U2)

(1+q2A2)2 f (U2)−
(

β1
U2V2

(1+q1A2)I2

)
f ′(U2).

As g′(U2)< 0 and f ′(U2)< 0, we have h′(U2)> 0. This establishes the uniqueness of U2 and

therefore our system has another infection equilibrium called the infection equilibrium with

humoral immune response P2(U2, I2,V2,A2), where

I2 =
1
dI
(λ −dUU2), V2 =

dA

ρ
, A2 =

1
r

(
kρ

dIdA
(λ −dUU2)−dV

)
.

3. LOCAL STABILITY

In this section, we establish sufficient conditions for the local stability of the three equilibrium

points.
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The Jacobian matrix, J(P), of system (1) at a point P(U, I,V,A) is given by

J(P) =


−dU − β1V

1+q1A −
β2I

1+q2A − β2U
1+q2A + ε − β1U

1+q1A
q1β1UV
(1+q1A)2 +

β2q2UI
(1+q2A)2

β1V
1+q1A + β2I

1+q2A
β2U

1+q2A −dI− ε
β1U

1+q1A − q1β1UV
(1+q1A)2 − β2q2UI

(1+q2A)2

0 k −dV − rA −rV

0 0 ρA ρV −dA

 .

Theorem 3.1. The infection-free equilibrium P0 is locally asymptotically stable if R0 < 1 and

becomes unstable if R0 > 1.

Proof. The characteristic equation at P0 is given by

(4) (x+dA)(x+dU)(x2 +a1x+a2) = 0,

where a1 = dI + ε +dV − λβ2
dU

and a2 = dV (dI + ε− λβ2
dU

)− λkβ1
dU

.

Note that x1 =−dA < 0 and x2 =−dU < 0 are the roots of the equation (4). Also,

a1 = (dI + ε)(1−R02)+dV > 0 and a2 = dV (dI + ε)(1−R0)> 0, when R0 < 1.

According to Routh-Hurwitz criterion [12, Theorem 4.4], the other two roots of the equation

(4) have negative parts when R0 < 1. Hence, P0 is locally asymptotically stable if R0 < 1.

When R0 > 1, we have a2 < 0. Hence, the characteristic equation (4) admits at least one

positive root. Thus, P0 is unstable when R0 > 1. �

Theorem 3.2. The immune-free equilibrium P1 is locally asymptotically stable if RA
1 < 1 <R0

and unstable if RA
1 > 1.

Proof. The characteristic equation at the equilibrium point P1 is given by

(5) (x−ρV1 +dA)(x3 +a1x2 +a2x+a3) = 0,

where

a1 = dU +dV +(dI + ε)
R01

R0
+

dU(dI + ε)

dI
(R0−1),

a2 = dU dV +dU(dI + ε)
R01

R0
+

dU(dI + ε)

dI
(dI +dV )(R0−1),

a3 = dV dU(dI + ε)(R0−1).
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Assume that RA
1 < 1 < R0. We have

ρV1−dA = dA(R
A
1 −1)< 0,

a1a2−a3 = dU dV (dU +dV )+dU(dV +dU)(dI +dε)
R01

R0
+

d2
U(dI + ε)2

d2
I

(dI +dV )(R0−1)2

+
d2

U(dI + ε)2

dI

R01

R0
(R0−1)+

dU(dI + ε)

dI
(2dU dV +d3

V +dU dI)(R0−1)

+

[
dU(dI + ε)2 R2

01

R2
0
+dU dV (dI + ε)

R01

R0
+

dU(dI + ε)2

dI
(dI +dV )

R01

R0
(R0−1)

]
> 0.

From Routh-Hurwitz criterion, we deduce that all roots of the equation (5) have negative real

parts. Hence, the immune-free equilibrium P1 is locally asymptotically stable when RA
1 < 1 <

R0.

If RA
1 > 1, then ρV1− dA is a positive root of the characteristic equation (5). Therfore, the

immune-free equilibrium P1 becomes unstable when RA
1 > 1. �

Theorem 3.3. If RA
1 > 1, dU ≤ dI ≤

3
2

dU , A2≤
β1

ρq1
, U2≤

r
q2β2

and (dI+ε)I2−dUU2≥ 0, then

the infection equilibrium with humoral immune response P2 is locally asymptotically stable.

Proof. The characteristic equation at P2 is given by

(6) x4 +C1x3 +C2x2 +C3x+C4 = 0,

where

C1 =

(
dU +

β1V2

1+q1A2
+

β2I2

1+q2A2
+

kI2

V2
+

β1U2V2

(1+q1A2)I2

)
,

C2 =

(
du

(
kI2

V2
+

β1U2V2

(1+q1A2)I2

)
+

(
β1V2

1+q1A2
+

β2I2

1+q2A2

)
(dI +

kI2

V2
)+ρA2rV2

)
,

C3 = ρA2rV2
β1U2V2

(1+q1A2)I2
+ρA2k

(
q1β1U2V2

(1+q1A2)2 +
q2U2I2

(1+q2A2)2

)
+dU ρA2rV2 +(ρA2rV2 +dI

kI2

V2
)

(
β1V2

1+q1A2
+

β2I2

1+q2A2

)
,

C4 = dIρA2rV2

(
β1V2

1+q1A2
+

β2I2

1+q2A2

)
+dU ρA2

V2

I2

(
rV2

β1U2

1+q1A2
+ k

I2

V2

(
q1β1U2V2

(1+q1A2)2 +
q2β1U2I2

(1+q2A2)2

))
.

Hence,

C1 = dU + c1 + c2 + c3, C2 = dU(c1 + c2)+dIc3 + c1c3 + c4,
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C3 = (dU + c2 + c3)c4 +dIc1c3 + c1c2c4c5 + c1c4c6c7,

C4 = dIc3c4 +dU c2c4 +dU c1c2c4c5 +dU c1c4c6c7,

where c1 =
kI2

V2
, c2 =

β1U2V2

(1+q1A2)I2
, c3 =

β1V2

1+q1A2
+

β2I2

1+q2A2
, c4 = ρrA2V2, c5 =

q1

r(1+q1A2)
, c6 =

q2

r(1+q2A2)
and c7 =

β2U2

1+q2A2
.

All coefficients C1, C2, C3 and C4 are positive, provided RA
1 > 1. Further, we have

(C1C2 − C3)C3 − C2
1C4 = c3

1c2c3c4c5 + c3
1c2

3dI + c3
1c3c4c6c7 + c3

1c3dIdU + c2
1c2c2

3c4c5 +

c2
1c2c3c4c6c7 + c2

1c2c3dIdU + c2
1c3

3dI + c2
1c2

3c4c6c7 + c2
1c2

3c4 + 2c2
1c2

3dIdU + c2
1c3dId2

U +

c1c2c2
3d2

I + c1c3
3d2

I + c1c2
3d2

I dU + c1c2c4(c2
3 − c4c5dU) + c1c3c4(c2

3 − c6c7d2
U) +

c1c3c4c6c7dU(dI − dU) + c2
1c2

2c4c5(c3 − c4c5) + c2
1c2c3dI(c3 − c4c5) + c2

1c3c4(2dU −

c6c7dI) + c2
1c2c4(c3− c4c5c6c7) + c2

1c2c2
4c5(1− c6c7) + c2

1c2dU(c3dI − c4c5dU) + (c2
1c2

4c6c7 +

c2
1c4d2

U)(1 − c6c7) + c1c2
2c3c4c5(dI − dU) + c1c2

2c4(c3 − c4c5) + c1c2
2dU(c3dI − c5c4dU) +

c1c2c2
3c4c5(dI−dU)+c1c2c3c4(3dU−2dI)+c1c2c3c4(c3−c4c5)+c1c2c3dU(c3dI−c4c5dU)+

c1c2c3c4c5dU(dI−dU)+c1c2c3c4c6c7(dI−dU)+c1c3c2
4(1−c6c7)+c1c2d2

U(c3dI−c4c5dU)+

c1c3c4dU(3dU − 2dI) + (c1c2
4dU + c1c4d3

U)(1− c6c7) + c1c2
3c4c6c7(dI − dU) + c1c2

3c4(3dU −

2dI)+ c1c2c4d2
U(1− c6c7)+ c1c2c2

4(1− c6c7).

Hence, we deduce that if dU ≤ dI ≤
3
2

dU , dU ≤ c3, c4c5 ≤ c3 and c6c7 ≤ 1, then

(C1C2 − C3)C3 − C2
1C4 > 0. It follows from the following equalities c3 − c4c5 =

V2
β1−ρq1A2

1+q1A2
+

β2I2

1+q2A2
, 1− c6c7 = 1− q2β2U2

r(1+q2A2)2 and c3 − dU =
(dI + ε)I2−dUU2

U2

that if dU ≤ dI ≤
3
2

dU , A2 ≤
β1

ρq1
, U2 ≤

r
q2β2

and (dI + ε)I2 − dUU2 ≥ 0, then

(C1C2 −C3)C3 −C2
1C4 > 0. Based on Routh-Hurwitz criterion, we deduce that all roots

of the equation (6) have negative real parts. �

4. GLOBAL STABILITY

In this section, we focus on the global stability analysis of the equilibria P0, P1, and P3.

Theorem 4.1. If R0≤ 1, then the infection-free equilibrium P0 is globally asymptotically stable.

Proof. We define the Lyapunov function L0 as

L0(U, I,V,A) =U0φ

(
U
U0

)
+ I +

β1

dV
U0V +

β1r
ρdV

U0A+ c((U−U0)+ I)2,
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where φ(x) = x−1− ln(x) for x > 0, and c given by the following equality 2c(dI +dU) =
ε

U0
.

Note that φ(x) ≥ 0 for all x > 0 and φ(x) = 0 if and only if x = 1. Thus, L0(P) ≥ 0 for all

P ∈ IR∗+× IR3
+ and L0(P) = 0 if and only if P = P0. Therefore, for all solution of the model

system (1), we have

dL0

dt
=

(
1−U0

U

)(
λ −dUU− β1

1+q1A
UV − β2

1+q2A
UI + εI

)
+

(
β1

1+q1A
UV +

β2

1+q2A
UI− (dI + ε)I

)
+

β1k
dv

U0I−β1U0V − β1r
dV

U0VA− β1r
ρdV

(ρVA−dAA)

+2c(U−U0 + I)(λ −dUU−dII).

Hence,

dL0

dt
= −

(
dV

U
+2c+

ε

UU0

)
(U−U0)

2− q1A
1+q1A

β1U0V −2cdII2 +(dI + ε)I(R0−1).

Thus, when R0≤ 1, we have dL0
dt ≤ 0 with equality if and only if U =U0, I = 0, V = 0 and A= 0.

Therefore, it follows from LaSalle’s invariance principle that P0 is globally asymptotically stable

when R0 ≤ 1. �

To study the global stability for two infection equilibria P1 and P2, we consider the following

condition

(H)


q1(A−Ai)

(
1+q1A
1+q1Ai

− V
Vi

)
≤ 0,

q1(A−Ai)

(
1+q1A
1+q1Ai

− I
Ii

)
≤ 0,

for all i = 1, 2.

Theorem 4.2. If (H) holds for P1 and RA
1 ≤ 1<R0≤ 1+

dI

ε
, then the immune-free equilibrium

P1 is globally asymptotically stable.

Proof. We consider the Lyapunov functional L1 as follows

L1(U, I,V,A) = U1φ

(
U
U1

)
+ I1φ

(
I
I1

)
+

β1U1V 2
1

kI1
φ

(
V
V1

)
+

β1rU1V1

ρkI1
A+

ε

2(dU +dI)U1
[(U−U1)+(I− I1)]

2.
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Since λ = dUU1 +β1U1V1 +β2U1I1− εI1 = dUU1 +dII1 and kI1 = dVV1, we get

dL1

dt
= −

(
dUU1− εI1 + εI +

εdUU
dU +dI

)
(U−U1)

2

UU1

− εdI

(dU +dI)U1
(I− I1)

2 +
β1rdAU1

ρdV
(RA

1 −1)A

+β1U1V1

(
4−U1

U
− IV1

I1V
− 1

1+q1A
UV I1

U1V1I
− (1+q1A)

)
+β1U1V1

(
−1+(1+q1A)− V

V1
+

1
1+q1A

V
V1

)
+β2U1I1

(
3−U1

U
− 1

1+q2A
U
U1
− (1+q2A)

)
+β2U1I1

(
−1+(1+q2A)− I

I1
+

1
1+q2A

I
I1

)
.

Form the condition (H) and using the equality dUU1− εI1 =
λ

dIR0
(dI + ε − εR0), we deduce

that if RA
1 ≤ 1 <R0 ≤ 1+

dI

ε
, then

dL1

dt
≤ 0 with equality if and only if U =U1, I = I1, V =V1

and A = 0. From LaSalle’s invariance principle, we deduce that P1 is globally asymptotically

stable when RA
1 ≤ 1 < R0 ≤ 1+

dI

ε
. �

Theorem 4.3. Assume that (H) holds for P2. If RA
1 > 1 and dUU2− εI2 ≥ 0, then the infection

equilibrium with humoral immune response P2 is globally asymptotically stable.

Proof. To analyze the global stability of P2, we consider the following Lyapunov function:

L2(U, I,V,A) = U2φ

(
U
U2

)
+ I2φ

(
I
I2

)
+

β1U2V2

(1+q1A)kI2
V2φ

(
V
V2

)
+

rβ1U2V2

ρk(1+q1A2)I2
A2φ

(
A
A2

)
+

ε

2(dU +dI)U2
[(U−U2)+(I− I2)]

2.

Hence,

dL2

dt
=

(
1−U2

U

)(
λ −dUU− β1UV

1+qA
− β2UI

1+q2A
+ εI

)
+

(
1− I2

I

)(
β1UV

1+q1A
+

β2UI
1+q2A

− (dI + ε)I
)

+
β1U2V2

(1+q1A2)kI2

(
1− V2

V

)
(kI−dVV − rVA)
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+
β1rU2V2

(1+q1A2)ρkI2

(
1− A2

A

)
(ρVA−dAA)

+
ε

(dU +dI)U1
[(U−U2)+(I− I2)][λ −dUU−dII].

Thus,

By the following equalities

λ =
β1U2V2

1+q1A2
+

β2U2I2

1+q2A2
+dUU2− εI2 = dUU2 +dII2,

dI + ε =
β1U2V2

(1+q1A2)U2
+

β2U2

1+q2A2
,

dV =
kI2

V2
+ rA2,

dA = ρV2,

and by simple computations, we obtain

dL2

dt
=−

(
dUU2− εI2 + εI +

εdUU
dU +dI

)
(U−U2)

2

UU2
− εdI

(dU +dI)U2
(I− I2)

2

+
β1U2V2

1+q1A2

(
4−U2

U
− IV2

I2V
− 1+q1A2

1+q1A
UV I2

U2V2I
− 1+q1A

1+q1A2

)

+
β1U2V2

1+q1A2

(
−1+

1+q1A
1+q1A2

− V
V2

+
1+q1A2

1+q1A
V
V2

)

+
β2U2I2

1+q2A2

(
3−U2

U
− 1+q2A2

1+q2A
U
U2
− 1+q2A

1+q2A2

)

+
β2U2I2

1+q2A2

(
−1+

1+q2A
1+q2A2

− I
I2
+

1+q2A2

1+q2A
I
I2

)
.

Using the arithmetic-geometric inequality, we have

4−U2

U
− IV2

I2V
− 1+q1A2

1+q1A
UV I2

U2V2I
− 1+q1A

1+q1A2
≤ 0,

3−U2

U
− 1+q2A2

1+q2A
U
U2
− 1+q2A

1+q2A2
≤ 0.

Moreover if (H) is holds for P2, then

−1+
1+q2A
1+q2A2

− I
I2
+

1+q2A2

1+q2A
I
I2
≤ 0 and −1+

1+q1A
1+q1A2

− V
V2

+
1+q1A2

1+q1A
V
V2
≤ 0.
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Hence if dUU2− εI2 ≥ 0 and RA
1 > 1, then

dL2

dt
≤ 0 with equality if and only if U = U2,

I = I2, V = V2 and A = A2. It follows from LaSalle’s invariance principle that P2 is globally

asymptotically stable. This completes the proof. �

5. CONCLUSION

In this work, we have proposed and analyzed the dynamics of an immunological viral infec-

tion model with lytic and non-lytic immune response in presence of cell-to-cell transmission

and cure of infected cells. We proved that the proposed model is mathematically and biolog-

ically well-posed. Also, we derived two threshold parameters that are the basic reproduction

number R0 and the antibody immune response reproduction number RA
1 . Such threshold pa-

rameters parameters characterize the dynamics of the model. In addition, the local and global

stability of equilibria are fully established by means of direct and indirect Lyapunov method.

Moreover, the models and results presented in [7, 8] are improved and generalized.

It is known that the adaptive immunity has two important characteristics that are specificity

and memory. The first refers to ability of immune system to target specific pathogens. However,

the second characteristic refers to the ability of immune system to quickly remember the anti-

gens that previously activated it and launch a more intense immune reaction when encountering

the same antigen a second time. Therefore, it will be more interesting to study the effect of

immunological memory on the dynamics of the proposed model by using the new generalized

Hattaf fractional (GHF) derivative and its properties presented [13, 14, 15]. This will be the

main aim of our future works.
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