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Abstract. This article investigates the stability property of predator-free equilibrium of a predator-prey-scavenger

model with fear effect and quadratic harvesting. The model was proposed by Mohammed Abdellatif Ahmed and

Dahlia Khaled Bahlool (The influence of fear on the dynamics of a prey-predator-scavenger model with quadratic

harvesting, Commun. Math. Biol. Neurosci., 2022, 2022: 62). By applying the standard comparison theorem

and fluctuation lemma, we show that the conditions which ensure the locally asymptotically stable of predator-free

equilibrium are enough to ensure global attractivity. Our result complements and supplements one of the main

results of Mohammed Abdellatif Ahmed and Dahlia Khaled Bahlool.
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1. INTRODUCTION

Mohammed Abdellatif Ahmed and Dahlia Khaled Bahlool [1] proposed the following prey-

predator-scavenger model with quadratic harvesting:

(1)
dX
dT

=
rX

1+ f (Y +Z)
−bX2− a1XY

b1 +X
− a2XZ

b2 +X
,
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dY
dT

=
a3XY
b1 +X

−d1Y −q1E1Y 2,

dZ
dT

=
a4XZ
b2 +X

+a5Y Z−d2Z−q2E2Z2,

where X(t), Y (t), and Z(t) denote the population density of prey, predator and scavenger at time

T , respectively. All the coefficients are positive constants. One could refer to [1] for a more

detailed formulation of the model. The non-dimensional model that corresponds to the system

(1) takes the form

(2)

dx
dt

= x
[ 1

1+w0(w1y+ z)
− x− y

w2 + x
− z

w3 + x

]
,

dy
dt

= y
[ w4x

w2 + x
−w5−w6y

]
,

dz
dt

= z
[ w7x

w3 + x
+w8y−w9−w10z

]
.

The model always exists a predator-free equilibrium Px(1,0,0). Concerned with this equilib-

rium’s local and global stability, the authors obtained the following results.

Theorem A Px is locally asymptotically stable if and only if the following conditions are met:

(3) w4 < w5(w2 +1),

(4) w7 < w9(w3 +1).

Theorem B Suppose that Px is locally asymptotically stable, then it is globally asymptotically

stable if the following conditions are met:

(5)
w5

w4
> w0w1 +

1
w2

,

(6)
w9

w7
>

w8

w7
β1 +w0 +

1
w3

,

where

β1 =
w4(1+w5)

w5
.

Now, let us consider the following example.
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Example 1.1. Consider the following system

(7)

dx
dt

= x
( 1

1+3(y+ z)
− x− y

1+ x
− z

1+ x

)
,

dy
dt

= y
( x

1+ x
−3− y

)
,

dz
dt

= z
( x

1+ x
+ y−3− z

)
.

Here, corresponding to system (2), we choose w0 = w5 = w9 = 3,w1 = w2 = w3 = w4 = w6 =

w7 = w8 = w10 = 1. By simple computation, we have

(8) w4 = 1 < 6 = w5(w2 +1),

(9) w7 = 1 < 6 = w9(w3 +1),

(10)
w5

w4
= 3 < 3+1 = w0w1 +

1
w2

,

(11)
w9

w7
= 3 <

4
3
+3+1 =

w8

w7
β1 +w0 +

1
w3

.

That is, conditions (3) and (4) in Theorem A are satisfied, while none of the conditions (5)

and (6) in Theorem B are met. It follows from Theorem A that the predator-free equilibrium

Px(1,0,0) is locally asymptotically stable. However, since the conditions of Theorem B are not

met, we have no idea of the global stability property of the equilibrium Px(1,0,0). Numeric

simulations (Figures 1–3) show that in this case, Px(1,0,0) is globally asymptotically stable.
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FIGURE 1. Dynamic behaviors of the first component x in

system (7) with the initial conditions (x(0),y(0),z(0)) =

(0.5,1,1.5), (1,0.5,1), (1.5,1.5,0.5), and (2,2,2), respec-

tively.

FIGURE 2. Dynamic behaviors of the second component y

in system (7) with the initial conditions (x(0),y(0),z(0)) =

(0.5,1,1.5), (1,0.5,1), (1.5,1.5,0.5), and (2,2,2), respec-

tively.
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FIGURE 3. Dynamic behaviors of the third component z

in system (7) with the initial conditions (x(0),y(0),z(0)) =

(0.5,1,1.5), (1,0.5,1), (1.5,1.5,0.5), and (2,2,2), respec-

tively.

Above example showed that in the system (2), conditions (5) and (6) in Theorem B are not

the essential ones to ensure the globally asymptotically stable of the predator-free equilibrium

Px.

Now, one genuine issue is finding suitable sufficient conditions to ensure the globally asymp-

totically stable of equilibrium Px(1,0,0). This paper aims to put forward some studies on this

direction. Indeed, we will prove the following result.

Theorem 1.1 Assume that (3) and (4) are satisfied, then the predator-free equilibrium Px(1,0,0)

is globally attractive.

Remark 1.1. Theorem 1.1 shows that the conditions (5) and (6) in Theorem B are both re-

dundant. The conditions which ensure the local stability of the predator-free equilibrium are

enough to ensure its globally attractive.

The rest of the paper is organized as follows. We will prove Theorem 1.1 in the next section.

We end this work with a brief discussion. For more works on the predator-prey system with

fear effect, one could refer to [1]-[23] and the references cited therein.
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2. PROOF OF THEOREM 1.1

Lemma 2.1[11] If a > 0,b > 0 and ẋ≥ b−ax, when t ≥ 0 and x(0)> 0, we have

liminf
t→+∞

x(t)≥ b
a
.

If a > 0,b > 0 and ẋ≤ b−ax, when t ≥ 0 and x(0)> 0, we have

limsup
t→+∞

x(t)≤ b
a
.

Lemma 2.2[12][Fluctuation Lemma] Let x(t) be a bounded differentiable function on [α,∞).

Then there exist sequences τn→ ∞ and σn→ ∞ such that

(i) x
′
(τn)→ 0 and x(τn)→ limsup

t→∞

x(t) = x as n→ ∞;

(ii) x
′
(σn)→ 0 and x(σn)→ liminf

t→∞
x(t) = x as n→ ∞.

Proof of Theorem 1.1. For ε > 0 enough small, without loss of generality, from (3) and (4) we

may assume that

(12)
w7(1+ ε)

w3 +1+ ε
+w8ε < w9,

(13)
w4(1+ ε)

w2 +1+ ε
< w5

and

(14)
1

1+w0(w1ε + ε)
− ε

w2
− ε

w3
> 0

hold.

From the positivity of the solution of system (2) and the first equation of system (2), it follows

that

(15)

dx
dt

= x
[ 1

1+w0(w1y+ z)
− x− y

w2 + x
− z

w3 + x

]
≤ x

[ 1
1+w0(w1y+ z)

− x
]

≤ x
[
1− x

]
.
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Applying Lemma 2.1 to the above inequality leads to

(16) limsup
t→+∞

x(t)≤ 1.

Hence, for aforementioned ε > 0, there exists a T1 > 0 such that

(17) x(t)< 1+ ε for all t > T1.

From the second equation of (2) and (17), it follows that

(18)

dy
dt

= y
[ w4x

w2 + x
−w5−w6y

]
≤ y

[ w4(1+ ε)

w2 +1+ ε
−w5−w6y

]
≤ y

[ w4(1+ ε)

w2 +1+ ε
−w5

]
.

Hence, it follows from (13) and (18) that

(19) y(t)< y(T1)exp
{( w4(1+ ε)

w2 +1+ ε
−w5

)
(t−T1)

}
→ 0 as t→+∞.

For aforementioned ε > 0, from (19), there exists a T2 > T1 such that

(20) y(t)< ε for all t > T2.

For t > T2, from the third equation in (2), (17), and (20), we have

(21)

dz
dt

= z
[ w7x

w3 + x
+w8y−w9−w10z

]
.

≤ z
[ w7(1+ ε)

w3 +1+ ε
+w8ε−w9−w10z

]
≤ z

[ w7(1+ ε)

w3 +1+ ε
+w8ε−w9

]
.

Hence, it follows from (12) and (21) that

(22) z(t)≤ z(T2)exp
{( w7(1+ ε)

w3 +1+ ε
+w8ε−w9

)
(t−T2)

}
→ 0 as t→+∞.

For aforementioned ε > 0, from (22), there exists a T3 > T2 such that

(23) z(t)< ε for all t > T3.
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For t > T3, it follows from the first equation of (2), (17), (20), and (23) that

(24)

dx
dt

= x
[ 1

1+w0(w1y+ z)
− x− y

w2 + x
− z

w3 + x

]
≥ x

[ 1
1+w0(w1ε + ε)

− x− ε

w2
− ε

w3

]
.

Applying Lemma 2.1 to (24), leads to

(25) liminf
t→+∞

x(t)≥ 1
1+w0(w1ε + ε)

− ε

w2
− ε

w3
> 0.

It follows from (17) that x(t) is bounded. Let x = liminf
t→+∞

x(t), then from (25) we have x > 0.

According to Fluctuation Lemma there exist sequences σn → +∞ such that x
′
(σn)→ 0 and

x(σn)→ liminf
t→∞

x(t) = x as n→ ∞. From (19) and (22) one could easily see that y(σn)→

0,z(σn)→ 0 as n→ ∞. From the first equation of (2), we have

(26) 0= lim
n→+∞

x
′
(σn)= lim

n→+∞
x(σn)

( 1
1+3(y(σn)+ z(σn))

−x(σn)−
y(σn)

1+ x(σn)
− z(σn)

1+ x(σn)

)
.

Since x > 0, above equality is equivalent to

(27) lim
n→+∞

( 1
1+3(y(σn)+ z(σn))

− x(σn)−
y(σn)

1+ x(σn)
− z(σn)

1+ x(σn)

)
= 0.

Therefore,

(28) x = 1.

(28) together with (16) leads to

(29) 1 = liminf
t→+∞

x(t)≤ limsup
t→+∞

x(t)≤ 1.

That is,

(30) lim
t→+∞

x(t) = 1.

(19), (22), and (30) shows that Px(1,0,0) is globally attractive. This ends the proof of Theorem

1.1. �
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3. DISCUSSION

Recently, Mohammed Abdellatif Ahmed and Dahlia Khaled Bahlool [1] proposed a predator-

prey-scavenger model with fear effect and quadratic harvesting. The authors investigated the

local and global stability of the equilibria; However, probably due to the complexity of the

system, the conditions obtained by the authors to ensure the global stability of the equilibrium

points of the system are complicated and difficult to verify. We observe that the authors inves-

tigated the global stability of the equilibrium points by constructing some suitable Lyapunov

functions. This method makes it possible obtain sufficient conditions to guarantee the global

stability of the equilibrium points, but such conditions may not be optimal. Some additional

requirements are unavoidable, but for the system itself, it can indeed be redundant. By applying

the differential inequality and fluctuation Lemma, we can show that the conditions in [1] to

ensure the global stability of the predator-free equilibrium are redundant. It seems that this is

the first time that the fluctuation Lemma be applied to the predator-prey system with fear effect.

We hope we can do more work in this direction.

AUTHORS’ CONTRIBUTIONS

All authors contributed equally to the writing of this paper. All authors read and approved the

final manuscript.

ACKNOWLEDGEMENTS

The authors would like to thank two anonymous reviewers for their valuable comments, which

greatly improve the final expression of the paper.

FUNDING

The research was supported by the Natural Science Foundation of Fujian Province

(2020J01499).

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.



10 SIJIA LIN, QIANQIAN LI, QUN ZHU, FENGDE CHEN

REFERENCES

[1] M.A. Ahmed, D.K. Bahlool, The influence of fear on the dynamics of a prey-predator-scavenger model with

quadratic harvesting, Commun. Math. Biol. Neurosci. 2022 (2022), 62. https://doi.org/10.28919/cmbn/7506.

[2] Y. Huang, Z. Zhu, Z. Li, Modeling the Allee effect and fear effect in predator–prey system incorporating a

prey refuge, Adv. Differ. Equ. 2020 (2020), 321. https://doi.org/10.1186/s13662-020-02727-5.

[3] Z. Xiao, Z. Li, Stability analysis of a mutual interference predator-prey model with the fear effect, J. Appl.

Sci. Eng. 22 (2019), 205-211. https://doi.org/10.6180/jase.201906 22(2).0001.

[4] L. Lai, X. Yu, M. He, Z. Li, Impact of Michaelis–Menten type harvesting in a Lotka–Volterra predator–prey

system incorporating fear effect, Adv. Differ. Equ. 2020 (2020), 320. https://doi.org/10.1186/s13662-020-0

2724-8.

[5] M. He, Z. Li, Stability of a fear effect predator-prey model with mutual interference or group defense, J. Biol.

Dyn. 16 (2022), 480–498. https://doi.org/10.1080/17513758.2022.2091800.

[6] T. Liu, L. Chen, F. Chen, Z. Li, Stability analysis of a Leslie–Gower model with strong Allee effect on prey

and fear effect on predator, Int. J. Bifurcation Chaos. 32 (2022), 2250082. https://doi.org/10.1142/s0218127

422500821.

[7] Y. Huang, Z. Li, The stability of a predator-prey model with fear effect in prey and square root functional

response, Ann. Appl. Math. 36 (2020), 186-194. http://global-sci.org/intro/article detail/aam/18096.html.

[8] L. Lai, Z. Zhu, F. Chen, Stability and bifurcation in a predator–prey model with the additive Allee effect and

the fear effect, Mathematics. 8 (2020), 1280. https://doi.org/10.3390/math8081280.

[9] J. Chen, X. He, F. Chen, The influence of fear effect to a discrete-time predator-prey system with predator

has other food resource, Mathematics. 9 (2021), 865. https://doi.org/10.3390/math9080865.

[10] Z. Zhu, R. Wu, L. Lai, et al. The influence of fear effect to the Lotka–Volterra predator–prey system with

predator has other food resource, Adv. Differ. Equ. 2020 (2020), 237. https://doi.org/10.1186/s13662-020-0

2612-1.

[11] F. Chen, Z. Li, Y. Huang, Note on the permanence of a competitive system with infinite delay and feedback

controls, Nonlinear Anal., Real World Appl. 8 (2007), 680–687. https://doi.org/10.1016/j.nonrwa.2006.02.0

06.

[12] F. Chen, Y. Chen, J. Shi, Stability of the boundary solution of a nonautonomous predator–prey system with

the Beddington–DeAngelis functional response, J. Math. Anal. Appl. 344 (2008), 1057–1067. https://doi.or

g/10.1016/j.jmaa.2008.03.050.

[13] Z. Zhu, Y. Chen, Z. Li, F. Chen, Stability and bifurcation in a Leslie-Gower predator-prey model with Allee

effect, Int. J. Bifurcation Chaos. 32 (2022), 2250040. https://doi.org/10.1142/s0218127422500407.

[14] L. Chen, T. Liu, F. Chen, Stability and bifurcation in a two-patch model with additive Allee effect, AIMS

Math. 7 (2021), 536–551. https://doi.org/10.3934/math.2022034.

https://doi.org/10.28919/cmbn/7506
https://doi.org/10.6180/jase.201906_22(2).0001
https://doi.org/10.1186/s13662-020-02724-8
https://doi.org/10.1186/s13662-020-02724-8
https://doi.org/10.1080/17513758.2022.2091800
https://doi.org/10.1142/s0218127422500821
https://doi.org/10.1142/s0218127422500821
http://global-sci.org/intro/article_detail/aam/18096.html
https://doi.org/10.3390/math8081280
https://doi.org/10.3390/math9080865
https://doi.org/10.1186/s13662-020-02612-1
https://doi.org/10.1186/s13662-020-02612-1
https://doi.org/10.1016/j.nonrwa.2006.02.006
https://doi.org/10.1016/j.nonrwa.2006.02.006
https://doi.org/10.1016/j.jmaa.2008.03.050
https://doi.org/10.1016/j.jmaa.2008.03.050
https://doi.org/10.1142/s0218127422500407
https://doi.org/10.3934/math.2022034


STABILITY OF THE PREDATOR-FREE EQUILIBRIUM 11

[15] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator–prey interactions, J. Math. Biol. 73 (2016),

1179-1204. https://doi.org/10.1007/s00285-016-0989-1.

[16] S.K. Sasmal, Population dynamics with multiple Allee effects induced by fear factors - A mathematical study

on prey-predator interactions, Appl. Math. Model. 64 (2018), 1–14. https://doi.org/10.1016/j.apm.2018.07.

021.

[17] S. Pal, N. Pal, S. Samanta, et al. Effect of hunting cooperation and fear in a predator-prey model, Ecol.

Complex. 39 (2019), 100770. https://doi.org/10.1016/j.ecocom.2019.100770.

[18] J. Wang, Y. Cai, S. Fu, W. Wang, The effect of the fear factor on the dynamics of a predator-prey model

incorporating the prey refuge, Chaos. 29 (2019), 083109. https://doi.org/10.1063/1.5111121.

[19] X. Li, M. Zhang, Integrability and multiple limit cycles in a predator-prey system with fear effect, J. Funct.

Spaces. 2019 (2019), 3948621. https://doi.org/10.1155/2019/3948621.

[20] H. Zhang, Y. Cai, S. Fu, et al. Impact of the fear effect in a prey-predator model incorporating a prey refuge,

Appl. Math. Comput. 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034.

[21] S. Pal, N. Pal, S. Samanta, et al. Fear effect in prey and hunting cooperation among predators in a Leslie-

Gower model, Math. Biosci. Eng. 16 (2019), 5146-5179. https://doi.org/10.3934/mbe.2019258.

[22] X. Wang, X. Zou, Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators,

Bull. Math. Biol. 79 (2017), 1325-1359. https://doi.org/10.1007/s11538-017-0287-0.

[23] X. Wang, Y. Tan, Y. Cai, W. Wang, Impact of the fear effect on the stability and bifurcation of a Leslie-Gower

predator-prey model, Int. J. Bifurcation Chaos. 30 (2020), 2050210. https://doi.org/10.1142/S02181274205

02107.

https://doi.org/10.1007/s00285-016-0989-1
https://doi.org/10.1016/j.apm.2018.07.021
https://doi.org/10.1016/j.apm.2018.07.021
https://doi.org/10.1016/j.ecocom.2019.100770
https://doi.org/10.1063/1.5111121
https://doi.org/10.1155/2019/3948621
https://doi.org/10.1016/j.amc.2019.03.034
https://doi.org/10.3934/mbe.2019258
https://doi.org/10.1007/s11538-017-0287-0
https://doi.org/10.1142/S0218127420502107
https://doi.org/10.1142/S0218127420502107

	1. Introduction
	2. Proof of Theorem 1.1
	3. Discussion
	Authors' Contributions 
	Acknowledgements
	Funding
	Conflict of Interests
	References

