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Abstract. Agent-based models can be used to describe a wide range of complex systems, in which the constituent

elements (agents) communicate with one another and the system’s global dynamics are governed by the local

interactions among the agents. Because formal analysis of complex multi-agent systems is challenging, computer

simulations are frequently used to investigate them. While computer simulations are extremely valuable, their

results are not formally validated by the observed behavior. As a result, a mathematical framework for representing

multi-agent systems and formally establishing their properties is required. One such framework is that which

translate the Agent based model to polynomial dynamical system. The aim of this work is to represent our existing

Agent based model for the interaction of proteins within cancer cell using mathematical formulation and to analyze

its dynamic.
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1. INTRODUCTION

Agent-based models (ABMs) are computational simulations that contain a collection of vari-

ables/agents and may take on a finite number of states in a given environment and act according

to local update rules (local transition function) that may be deterministic or stochastic. From
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these local rules, global dynamics emerge. This make the ABMs helpful for understanding the

connections between individual decisions and system behavior. For this reason, ABM can be

used to describe many complex biological processes as multi-agent systems, in which agents

communicate with one another in discrete time steps to produce emergent macro-system behav-

ior [1, 2]. The emergent properties of complex system are characteristics of system that emerge

through the interaction of its components over time which make them unpredictable [3].

Agent-based models allow researchers to investigate a complex system by using simulation

to study the system’s dynamics. Thus AMBs are a method of computing complicated system

analysis by limiting agents to a finite number of states, requiring them to follow a set of rules

and achieving a limited number of outcomes.

While ABMs have become a powerful tool of today’s research and analysis methodologies

and provide a suitable environment for studying complex systems, but there are some drawbacks

in their use. Firstly, simulation results do not formally guarantee the observed behavior. Another

major key obstacle is the lack of standardization in agent-based model description which may

change in different settings. The work of Grimm et. al [4] is an essential step in this direction,

the authors proposes an ODD-based standard protocol for describing ABMs in standard way.

Another significant issue is the lack of rigor in model formulation. The majority of the time, a

description of an ABM is provided in the form of numerous paragraphs describing the agents

and how they interact with each other and what are the rules that govern their actions which is an

exhausting way. This issue would be resolved if there was a rigorous mathematical formulation

of the system and instead of spending several paragraphs to explain the model formulation that

could been given in few equations. Having a model in such a context help in taking advantage of

the general theory that exists and produce results that can be widely applicable. Laubenbacher

et al. proposes one such mathematical framework that models ABMs, is the class of temporal

discrete dynamical systems over finite state sets [5]. Their proposed mathematical framework

is to consider the model’s agents as a collection of variables that take values in a finite set, each

variable is coupled with a local update function, which captures the rules by which each agent’s

state changes over time. These functions get together to form a finite dynamical system (FDS),
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the dynamics of which are represented by the phase space, a directed graph containing the full

state and may be analyzed analytically using techniques like generalized logical analysis.

In [6] the authors propose a mathematical representation for ABMs as polynomial dynamical

systems (PDS) over finite fields. The transition function is expressed in terms of polynomial

functions, allowing the application of computational tools and theoretical results from computer

algebra in analyzing the dynamical properties of models. It was shown that many of the ODD

protocol’s agent-based models may be translated into time-discrete dynamical systems (alge-

braic models) that can be characterized by polynomial functions. Without needing to simulate

the system, this algebraic form can be used to analyze its global dynamics. This approach was

discussed also in [7] where the author proposed an unified framework that concerns all types

of discrete models. It was demonstrated that any k-bounded Petri net and logical model, which

are particular instantiations of algebraic models, may be translated into polynomial dynamical

system.

The framework of algebraic models is more convenient for studying ABMs, as many agent-

based simulations fit to this mathematical framework, as stated in [8]. Furthermore, it anchors

the inquiry in mathematical domains of polynomial algebra and dynamical systems, which offer

rich field of concepts and tools.

The purpose of this work is to analysis our agent based model presented in our previous work

[9]. This ABM shows how 6 different proteins interact inside cancer cell and how their inter-

actions affect tumor cell motility and metastasis. These proteins are: P53, MIR-145, MDM2,

OCT4, MIR-200 and ZEB. For detailed description of the model and its biological background

as well as the agent based simulations see [9].

The remainder of this paper is structured as follows: The biological background of cancer-

related genes and how their expression is regulated is presented in ”ABM for proteins interaction

inside cancer cell” section. In ”ABMs represented as a PDS” section, we translate our ABM to

polynomial dynamical system and we analyze it.

2. ABM FOR PROTEINS INTERACTION INSIDE CANCER CELL

the P53 tumor suppressor protein plays a critical function in cell integrity protection dur-

ing physiological or low-stress conditions. It functions as a transcription factor by binding to
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genes’ regulatory regions and directing their expression, enhancing the production of many

genes involved in apoptosis, cell cycle arrest, and DNA repair [18]. When a cell is stressed,

P53 experiences post-translational alterations that make it more active and gives it the power to

decide whether the cell lives or dies. As a result, under normal conditions, the level of P53 in a

normal cell is tightly regulated by the MDM2 gene, its main inhibitor. The existence of P53 in

high number activate MDM2 to down regulate it.

The growing amount of MDM2 expression in certain human tumors could possibly be due to

the control mechanisms of MDM2 transcript translation. Certain microRNAs (MIRNAs) such

as MIR-145 and MIR-200 are involved in this regulatory mechanism. MIR-145 and MIR-200

belong to a category of non-coding RNAs known as significant regulators of gene expression.

MIR-145 inhibits MDM2 translation [21] which increases P53 expression and activity, whereas

P53 activates MIR-200 and MIR-145 [19, 20].

The involvement of cancer stem cells (CSCs) in tumor spread and resistance is crucial. The

ability to destroy tumors is used to evaluate several novel anti-cancer medicines. If the cancer

stem cells are not eradicated by the therapy medicine, cancer cells will quickly reappear and

develop such resistant to the prior medicine. The epithelial-mesenchymal transition (EMT),

considered as critical phase in tumor growth and metastasis, is one of the processes that causes

cancer stem cells to develop (CSCs). The Octamer-binding transcription factor 4 (OCT4) and

Zinc-finger E-box binding protein (ZEB) are two stem cell genes implicated in this process. P53

controls EMT by inhibiting ZEB and OCT4 expression via MIR-200 and MIR-145 [22]. MIR-

200 and ZEB are coupled in a reciprocal feedback loop that suppresses each other’s expression

[23]. The same can be said about MIR-145 and OCT4 and MIR-145 and ZEB. MIR-200 is

activated directly by OCT4 which bind to promoter regions [24]. P53, ZEB, and OCT4 are

example of genes that have self-activations as well.

All these genes and types of regulation that govern their interactions are described by a gene

regulatory network of the Model of gene regulatory network for cancer and development pre-

sented in [10], which includes six nodes (genes) and sixteen edges as it is shown in Figure

1.
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FIGURE 1. The gene regulatory network is represented in this diagram. Activa-

tion regulations are represented by green lines, whereas repression regulations

are represented by red lines.

The 6 types of cell proteins in our ABM simulations move around a NetLogo grid that mimics

space inside a tumor cell at a speed of one patch each time step. Our results and observations

suggest that the MIR200 family appears to play a significant role in the metastatic process by

suppressing the expression of key angiogenesis components. One of our simulations using the

NetLogo software platform is shown in Figure 2. This simulation begins with the same number

of proteins interacting with one another for 6000 minutes. For more details on simulations and

results, see [9].
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Simulated patterns

t = 0 min t = 20 min t = 6000 min

FIGURE 2. The interaction of proteins inside a tumor cell. N0(P53) =

N0(MDM2) = N0(OCT 4) = N0(MIR145) = N0(MIR200) = N0(ZEB) = 1000.

3. ABMS REPRESENTED AS A PDS

The ABM consists of rules that govern how the system evolves from one state to another, so

this process may be considered as a finite dynamical system (FDS)

f : Fn −→ Fn

Let a1,a2, . . . ,an be a set of variables representing model entities (agents) and take values in

a finite set F , where the elements of F reflect their states. There is a local update function fi for

each variable ai, which specifies the method by which the variable ai is updated at each time

step. These functions are grouped into a dynamical system



AGENT-BASED MODEL OF PROTEINS INTERACTION INSIDE CANCER CELL 7

φ = ( f1, . . . , fn) : Fn −→ Fn

We don’t have many mathematical tools to analyze f since f is considered as only a set of

functions. A number system’s algebraic structure is then imposed on F [5, 6, 7] in order to

have a more powerful set of tools. As a result, the description of an ABM as a set of functions

became a mapping between vector spaces over the finite field F . Once the set F carries such

structure, then it become possible to use a fundamental property of finite fields [7] :

for any local function g, there exists a polynomial k such that g(a1, . . . ,an) = k(a1, . . . ,an) where

(a1, . . . ,an) ∈ Fn and F is a finite filed with p elements.

The following formula is used to find the polynomial form of k

(1) k(a1, . . . ,an) = ∑
c∈Fn

g(c)
n

∏
j=1

(
1− (a j− c j)

p−1
)

The right side of the formula is computed modulo p.

Since f = ( f1, . . . , fn) is represented using its coordinate functions, with fi being polynomial

function, then we may call f : Fn −→ Fn a polynomial dynamical system (PDS) over F of

dimension n.

The phase space of φ is commonly used to represent the dynamics of f , which is a directed

graph on the vertex set Fn. There is a directed edge from v to w where v and w ∈ Fn if and only

if φ(v) = w. On the other hand, the dependency graph is another graph that is frequently related

with PDS. It is also called the wiring diagram, and it is a directed graph with the variables as

vertices; if ai appears in f j, then there is an edge from i to j.

Thereby, our ABM could be described as a polynomial dynamical system f : F6 −→ F6

where F = F2 = {0,1} is Boolean field made up of two elements that represent the state of a

gene as either ON (1) or OFF (0). Because F is over F2, all calculation are done ”modulo 2”.

Here a1, a2, a3, a4, a5 and a6 represent respectively the model agents P53, MDM2, MIR-145,

MIR-200, OCT4 and ZEB.

The variable a1 has values based entirely on those of the variables a2 and a4 and it self a1 .

In this case the truth table contains the following information.
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a1 a2 a4

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Using the formula (1) and the values in table 1, we want to find a polynomial over F2 that re-

turns the value of a1 for the given values of a2, a4, and a1. The following polynomial represents

this truth table:

(2) f1(a1,a2,a4)= (1−a1)(1−a2)(1−a4)+(1−a1)a2a4+a1(1−a2)(1−a4)+a1(1−a2)a4+a1a2a4

which may be simplified to

(3) f1(a1,a2,a4) = 1+a2 +a4 +a1a4 +a1a2a4

Similar constructs can be used for each of the variables. Thus the polynomial dynamical

system is given by:

f = ( f1, f2, f3, f4, f5, f6)

where 

f1(a1,a2,a4) = 1+a2 +a4 +a1a4 +a1a2a4

f2(a1,a5) = 1

f3(a1,a5,a6) = 1+a5 +a6 +a1a6 +a1a5a6

f4(a1,a5,a6) = 1+a5 +a6 +a1a6 +a1a5a6

f5(a1,a3,a5) = 1+a3 +a5 +a1a5 +a1a3a5

f6(a3,a4,a6) = 1+a4 +a6 +a3a6 +a3a4a6

The dependency graph in Figure 1 shows the interdependence of the variables. The directed

graph in Figure 2 represents the dynamics of the function f = ( f1, f2, f3, f4, f5, f6) where the
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state space P( f ) of f has four components of size 18, 35, 6 and 5, containing four limit cycles:

3 of length 1 and 1 of length 2. This graph was generated using the software package DVD

[17].

a1

a2

a3

a4

a5

a6

FIGURE 3. The wiring diagram of the function f

FIGURE 4. The phase space of the function f with 26 = 64 nodes

To determine the steady states of the PDS, we have to solve a system of polynomial equations:

f1−a1 = 0, f2−a2 = 0, f3−a3 = 0, f4−a4 = 0, f5−a5 = 0, f6−a6 = 0

which is equivalent to solving the system :

1+a2 +a4 +a1a4 +a1a2a4−a1 = 0

1−a2 = 0

1+a5 +a6 +a1a6 +a1a5a6−a3 = 0

1+a5 +a6 +a1a6 +a1a5a6−a4 = 0

1+a3 +a5 +a1a5 +a1a3a5−a5 = 0

1+a4 +a6 +a3a6 +a3a4a6−a6 = 0
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Now we consider the ideal I =< fi(a)− ai : i = 1, . . . ,n >. Using the Macaulay2 package,

we aim to determine this ideal’s Grobner basis. We start by defining the polynomials ring,

then the ideal formed by the polynomials we want to be zero, and at the end, we determine the

Grobner basis generators for this ideal. The generators build an equivalent system that allows

for backward substitution [7].

Thus, we can now find the equivalent system that allows for backward substitution:

1+a1 = 0

1+a2 = 0

1+a3 = 0

1+a4 = 0

a5a6 +a5 = 0

The solutions of this system are:

S1 = (1,1,1,1,0,0), in a component of size 35.

S2 = (1,1,1,1,0,1), in a component of size 6.

S3 = (1,1,1,1,1,1), in a component of size 18.

The first steady state corresponds to the state where there is no stem cell genes OCT4 and ZEB

involved in tumor progression and metastasis process. The second one is the state where OCT4

proteins implicated in the EMT induction are absent. The third steady state corresponds to the

state where all the proteins are present and try to regulate each other.

4. CONCLUSION

Discrete models, including ABMs, are important method for modeling many complex sys-

tems such as tumor formation and growth. The issue of providing mathematical framework to

ABMs has been investigated by several authors [5, 6, 7, 8] where the ABM has been translated

into polynomial dynamical systems and the agent interactions are described by polynomials in

numerous variables over a finite field. This representation makes polynomial algebra’s theoret-

ical concepts, algorithms, and software accessible for the study of such systems.
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In this paper we have used the mathematical framework proposed in [5, 6, 7, 8] in order to

give mathematical formalism and to compute all steady states and limit cycles of our ABM [9]

which describe the impact of local proteins interactions between six types of proteins inside

cancer cell on tumor cell motility and metastasis. It’s worth noting that in ABM analysis we

have focused on finding the steady states not because it’s the only application of ABM’s mathe-

matical structure, but because it may be reformulated without much difficulty into the algebraic

issue of solving polynomial equations.
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