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Abstract. Multi-state models with discrete-time Markov assumptions are widely used in epidemiology. However,

this model has a memoryless property, making it less suitable for specific applications. One solution to this problem

is to use additional assumptions by paying attention to the sojourn time in a particular state, which brings this model

into a semi-Markov form. This paper aims to model the spread of infectious diseases by combining Markov and

semi-Markov assumptions in one multi-state model known as a hybrid Markov/semi-Markov model. The first step

is to check whether the SVIRD epidemic model satisfies the Markov assumptions. If not, then the SVIRD epidemic

model uses a hybrid Markov/semi-Markov assumption. The second step is to test the semi-Markov hypothesis for

each transition in the SVIRD model. Usually, the distribution is Geometric for semi-Markov sojourn times, but if

the hypothesis is rejected, it uses the discrete Weibull distribution or negative Binomial. The hybrid Markov/semi-

Markov model aims to reduce the complexity of the model in terms of the number of parameters to be estimated

by only taking into account the sojourn time for transitions that do not meet the Markov assumptions. The final

step is to make predictions by modifying the cohort state transition model by generating the number of individuals

infected with an infectious disease at time t +1.
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1. INTRODUCTION

The spread of infectious diseases can be modeled using deterministic and stochastic models

according to Andersson and Britton [1]. The main purpose of communicable disease modeling

is to analyze the spread, as well as provide solutions to the government about what actions

can be taken to control the spread of the disease. As happened at the end of 2019, there was

an outbreak of the coronavirus that spread throughout the world to cause a pandemic. The

number of people infected has resulted in inadequate hospital capacity and excessive demand

for healthcare workers. Due to the fact that the number of infected individuals is tied to the

description and prediction of a group of susceptible individuals in a specific region, the spread

of which is unexpected at the individual level, statistical patterns may be formed that lead to the

usage of stochastic models.

One assumption of the Markov model is that the length of time a person spends in state i

before moving to state j depends only on state i. Additionally, the sojourn time distribution

exhibits a memoryless property, implying that it does not account for the length of probable

occupancy in a specific condition. In the Markov model, the distribution of sojourn time is

Geometrically distributed. However, in reality, such assumptions might result in implausible

constraints. An alternative model that frames this concern is the semi-Markov model, which

can be viewed as an extension of the Markov model. Discrete-time semi-Markov models have

gained traction in recent years due to their usefulness in a number of different contexts, such

as survival and reliability analysis by Barbu and Limnios [2], disability insurance by Stenberg,

Manca, and Silvestrov [3], and credit risk by Vassiliou and Vasileiou [4] and Amico, Janssen,

and Manca [5].

Most mathematical models for reliability assume that time is continuous. But in reality, the

system has a discrete life span. Such as systems that work on demand, that work on a cy-

cle basis, or that are only monitored at certain times (such as once a month or every day).

In other words, all of this life is intrinsically discrete. The same is true of the spread of

COVID-19, where the number of infected people is reported on a daily basis which can be seen

on Worldometer (https://www.worldometers.info/coronavirus/). Previously conducted research

on COVID-19 includes the determination of reproductive numbers using transition intensity
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by Zuhairoh, Rosadi, and Effendie [6] and the prediction of COVID-19 distribution with the

Richards curve model by Zuhairoh and Rosadi [7]. Bracquemond and Gaudoin [8] provides

a good overview of the discrete probability distributions utilized in reliability theory. Addi-

tionally, insights from discrete-time semi-Markov models contribute to the application of time

continuous semi-Markov models by Wu, Zheng, and Chen [9].

In recent years, discrete-time Markov models have become more widely used. As in the

research Emmert and Allen [10] which investigated the spread of disease in a structured popu-

lation using a discrete-time model. In comparison to semi-Markov processes, continuous-time

and associated inference problems are of greater interest to many individuals. In this research, a

discrete-time semi-Markov model will be employed. The research paper Limnios [11] provides

an introduction to the discrete-time update procedure.

There are various advantages and disadvantages to using Markov and semi-Markov models,

the main one being that Markov models are simpler and more visible. This simplifies the inter-

pretation and understanding of conventional Markov models when used to simulate the spread

of infectious diseases, for example. Simultaneously, the semi-Markov model allows quantifica-

tion of duration under certain circumstances, due to a wider distribution of transit times. This

provides a justification for developing a hybrid model that combines the two techniques as Ver-

beken and Guerry [12] has done in the case of manpower planning.

The contribution of this study is to build a multi-state model in the spread of infectious

diseases and then estimate the model parameters formed by first seeing whether a multi-state

model meets the Markov assumptions or not. Furthermore, if the model does not meet the

Markov assumptions, a semi-Markov test is carried out to see the distribution of sojourn time

at each transition that occurs so that a hybrid Markov/semi-Markov model can be applied. This

study combines Markov and semi-Markov models applied to the epidemic model of infectious

diseases, which uses six states: susceptible, vaccinated, infected vaccinated, infected unvacci-

nated, recovered, and deceased. In conclusion, a theorem is established to anticipate the number

of COVID-19 instances during the subsequent period by modifying the cohort state transition

model.
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The strengths and weaknesses of Markov and semi-Markov models for modeling the spread

of infectious diseases are discussed in Section 1. Section 2 introduces a hybrid Markov/semi-

Markov model, a combination of Markov and semi-Markov models with Geometric, negative

Binomial, and discrete Weibull sojourn time distributions. One of the advantages of a hybrid

Markov/semi-Markov model is that it captures a fixed effect duration, which is useful when try-

ing to estimate as few parameters as possible. Consequently, the hybrid Markov/semi-Markov

model facilitates the advancement of the semi-Markov model even when there is a lack of

data. In section 2, we also describe a predictive model for the spread of infectious diseases. In

Section 3, we apply the SVIRD epidemic model to COVID-19 data and then test whether the

model meets the Markov assumptions. If not, the transition probability will be calculated using

a statistical test assuming a hybrid Markov/semi-Markov. Furthermore, in Section 4, predicting

COVID-19 cases in the short term with the prediction equation of the SVIRD epidemic model.

Finally, Section 5 contains the conclusions from the discussion presented previously.

2. HYBRID MARKOV/SEMI-MARKOV MODEL

A hybrid Markov/semi-Markov model is presented for each pair of (i, j) whether the transi-

tion from state i to state j can be considered a Markov or semi-Markov transition. The first step

in building a hybrid Markov/semi-Markov model is to test the multi-state model to determine

whether it meets the Markov assumptions. The Markov process introduced by a mathematician

named Andrei A. Markov in 1906 is a stochastic process from the previous time that has no

influence on the future time if the present time is known. Suppose Xt is a stochastic process that

has a discrete-state space S = {1,2, . . . ,m}. In general, according to Haberman and Pitacco

[13] for any sequence of time points t1 < t2 < · · ·< tn−1 < tn which corresponds to the state set

i1, i2, . . . , in−1, in, then the probability conditional must fulfill.

Pr(Xtn = in|Xt1 = i1, . . . ,Xtn−1 = in−1) = Pr(Xtn = in|Xtn−1 = in−1)(1)

If in−1 = i, in = j and in+1 = k then the first-order or 1-step transition probability can be written

as follows.

(2) Pr(Xtn = j|Xt1 = i1,Xt2 = i2, . . . ,Xtn−1 = i) = Pr(Xtn = j|Xtn−1 = i) = pi j
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A second-order or higher-order Markov chain is a Markov chain that depends on two or more

of the previous values. According to Shamshad et. al. [14], the probability of a second-order

transition or a 2-step transition can be written as follows.

(3) Pr(Xtn+1 = k|Xt1 = i1, . . . ,Xtn−1 = i) = Pr(Xtn+1 = k|Xtn = j,Xtn−1 = i) = pi jk

Markov property tests need to be performed to verify whether the transition probability is

Pr{Xt+1 = k|Xt = j,Xt−1 = i} from the current state to the next does not depend on the previous

state. Written in the notation pi jk which is the probability to state k with the previous condition

that there has been a transition from state i to j (i≤ j≤ k). If the Markov property applies, then

pi jk = p jk. Three tests can be used to test the properties of Markov, namely:

(1) Test based on a contingency table,

(2) Tests to verify whether a chain of a given order,

(3) Test to verify if the transition probability is constant over time.

A second test is used in this paper because it uses theoretical assumptions. According to

Anderson and Goodman [15], the test to verify whether a chain is of second-order or not is

defined as follows:

H0 : p1 jk = p2 jk = · · ·= pm jk = p jk, j,k = 1,2, . . . ,m.

H1 : that it is of second-order

The chi-square test statistic for the null hypothesis (H0) is

(4) χ
2
j = ∑

i,k
n∗i j

(p̂i jk− p̂ jk)
2

p̂ jk

where

(5) n∗i j = ∑
k

ni jk =
T−1

∑
t=1

ni j(t)

χ2
j has the normal limiting distribution with (m−1)2 degrees of freedom if H0 is true.

Consider now the joint hypothesis that pi jk = p jk where i, j,k = 1,2, . . . ,m. By computing

the sum, a test of this joint hypothesis can be obtained.

(6) χ
2 =

m

∑
j=1

χ
2
j = ∑

j,i,k
n∗i j

(p̂i jk− p̂ jk)
2

p̂ jk
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The standard limiting distribution has m(m−1)2 degrees of freedom.

Due to its simplicity, the homogeneous time Markov model is used in various domains and

applications. In addition, the estimates made have relatively few parameters and are not very

demanding of data availability. However, Markov chains cannot consider the duration of stay;

it is also less flexible because there is a memoryless property which means sojourn time is

Geometric distribution. This issue is solved by the semi-Markov model.

If it does not meet the Markov assumptions, then proceed with second step, which is to

estimate the sojourn time distribution for each transition between states. The second step is

known as the semi-Markov hypothesis test. Similar to the Markov process, a semi-Markov

process can transition from one state to another. To be more precise, the length of time spent in

each state before moving to the next is a random variable that is independent of the next state

of the new process.

A stochastic process Xt := JN(t) is called a semi-Markov process if it considers the sojourn

time in state i before transitioning to state j, where this sojourn time is a random variable with

a cumulative distribution function Fi j(t).

(7) Fi j(t) = Pr(Hn ≤ h|Jn = i,Jn+1 = j), t ≥ 0

where Hn = Tn+1−Tn.

The main difference for the Markov model is that the sojourn time distribution f can be any

discrete probability distribution, combining the possible lengths of the sojourn. The Markov

model with the P = (pi j : i, j ∈S ) transition matrix can be called a semi-Markov model with a

Geometric distribution of sojourn times where

(8) qi j(k) =


pi j pii(k−1), if i 6= j and k ∈ N

0, elsewhere.

Then the semi-Markov hypothesis is tested at the level of the sojourn time distribution hi j.

The transition from state i to j satisfies the Markov assumption if the sojourn time is geometri-

cally distributed. Under the geometric hypothesis, the equation hi j(2) = hi j(1)(1−hi j(1)) and a

significant deviation from hi j(1)(1−hi j(1))−hi j(2) should be seen as evidence to the contrary,

that is, evidence in favor of a more general distribution of sojourn times. The statistical test
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used according to Stenberg, Manca, and Silvestrov [3] is as follows.

(9) Ŝi j =

√ni j(ĥi j(1)(1− ĥi j(1))− ĥi j(2))√
ĥi j(1)(1− ĥi j(1))2(2− ĥi j(1))

ĥi j(t) is the maximum likelihood estimator of the probability hi j(t)

(10) ĥi j(t) =
ni j(t)

ni j

where ni j(t) is the total number of individuals who transition from state i to state j at time t.

Based on the Geometric hypothesis H0, the statistical test Ŝi j has an asymptotic normal dis-

tribution. With a significance level of α = 0.05, so will reject H0 if and only if |Ŝi j| > 1.96.

Because this test makes it possible to make decisions about the ∀ fi j sojourn time distribution

that allows the application of a hybrid Markov/semi-Markov model.

A hybrid Markov/semi-Markov model is a semi-Markov model that combines the sojourn

time distribution from the classical Markov model for the pair (i, j) with a negative Binomial or

discrete Weibull distribution from the semi-Markov model. The reason for choosing negative

Binomial or discrete Weibull is because it is a generalization of the Geometric distribution.

The probability mass function of each distribution used is written in Nakagawa and Yoda

[16]. Here is the relationship between the 3 distributions selected as the distribution of sojourn

time of each transition that occurs between states.

(1) Discrete Weibull distribution (X ∼ dwei(x; p,β ))

f (x) = (1− p)xβ

− (1− p)(x+1)β

x = 0,1,2, . . .

If the value of β = 1 then it will be a Geometric distribution.

(2) Negative Binomial distribution (X ∼ nbin(x; p,n))

f (x) =

 n+ x−1

x

 pn(1− p)x, x = 0,1,2, . . .

If the value of n = 1 then it will be a Geometric distribution.

(3) Geometric distribution (X ∼ geo(x; p))

f (x) = p(1− p)x x = 0,1,2, . . .
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After determining the transition probabilities between states, the last step is to make predic-

tions of infected cases at t +1 using Theorem 1. The prediction equation for disease vectors in

the semi-Markov model is just an extension of the disease vector prediction equation in Markov

sets. In the last case P(t) equals for every t. Thus, in order to get the disease vector prediction

equation for the hybrid Markov/semi-Markov model, we may develop the Theorem 1 where

pi j(t) will depend on t because of the sojourn time distribution associated with (i, j) where the

Markov hypothesis does not apply.

Theorem 1. Suppose the known probability of transition from state i to j is written with pi j. If

there is an infected vector at time t with I(t), susceptible vector at time t with S(t), vaccinated

vector at time t with V(t), and R(t) for the recovered vector as well as D(t) for the vector

deceased at time t, then for the semi-Markov system the prediction equation for individuals

infected with infectious diseases at time t +1 is obtained as follows.

I(t +1) =
m

∑
i=1

niIs(t)piIs +
m

∑
j=1

(
nIs j(t +1)pIs−nIs j(t +1)pIs j

)
+

m

∑
i=1

niIv(t)piIv +
m

∑
j=1

(
nIv j(t +1)pIv−nIv j(t +1)pIv j

)
(11)

Proof. It is known that the SVIRD epidemic model consists of five states, namely susceptible,

vaccinated, infected, recovered, and deceased. So it can be written as follows.

S(t)+V(t)+ Is(t)+ Iv(t)+R(t)+D(t) = N

The infected state will increase if there is a transition from a susceptible or vaccinated state.

Meanwhile, it will decrease if there is a transition to a recovered or deceased state. Both state-

ments can be written as

I(t +1) = S(t)−S(t +1)+ I(t)−R(t +1)−D(t +1)

Meanwhile, the value of S(t +1) is obtained from

pi j(t) = Pr(Jn+1 = j,Tn+1−Tn = t|Jn = i,Tn+1−Tn > t−1)

=
Pr(Jn+1 = j,Tn+1−Tn = t|Jn = i)

Pr(Tn+1−Tn > t−1|Jn = i)
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=
Pr(Jn+1 = j,Tn+1−Tn = t|Jn = i)
1−Pr(Tn+1−Tn ≤ t−1|Jn = i)

=
qi j(t)

1−∑i∈S qii(t)

If we know the number of individuals in each state at time t, then ni j(t) is a binomial random

variable with parameters ni(t) and pi j. So that the following expected value is obtained.

n̄i j(t) = n̄i(t−1)pi j

Likewise, the number of people who leave the infected state due to recovery or death is denoted

by ni,k+1(t) with the following expected value.

n̄i,k+1(t) = n̄i(t−1)wi j = n̄i(t−1)(ri j +di j)

Meanwhile, the number of newly infected people who come from vulnerable states is denoted

n0 j(t+1) with an expected value of S(t+1)s j. So the following prediction equation is obtained.

(12) n j(t +1) =
m

∑
i=1

ni j(t)+n0 j(t +1)−wi j(t +1)

Given R(t+1),D(t+1),n0 j(t+1) with expected values R(t+1)r j and D(t+1)d j. The expected

value from the equation (12) is obtained.

n̄ j(t +1) =
m

∑
i=1

n̄i(t)pi j +S(t +1)s j−R(t +1)r j−D(t +1)d j

So that the SVIRD epidemic model is obtained

nIs(t +1) =
m

∑
i=1

niIs(t)piIs +
m

∑
j=1

(
nIs j(t +1)pIs−nIs j(t +1)pIs j

)
The same proof holds for nIv(t +1), until obtained

nIv(t +1) =
m

∑
i=1

niIv(t)piIv +
m

∑
j=1

(
nIv j(t +1)pIv−nIv j(t +1)pIv j

)
�
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3. SVIRD EPIDEMIC MODEL

The SVIRD epidemic model has six states, Susceptible, Vaccinated, and Infected, divided

into two states: infected without vaccination and infected after being vaccinated, Recovered,

and Deceased. This model has random variables S(t),V (t), Is(t), Iv(t), R(t), and D(t), whose

meanings are explained in Table 1. An illustrative representation of the mathematical model

can be seen in Figure 1. It can also be seen in the transitions that occur between states. Here,

it is assumed that vaccination effectively prevents an individual from dying, meaning that death

comes from individuals who are not vaccinated only. In addition, this model assumes that there

is immunity in individuals infected with the disease, so there is no transition out of the recovered

state.

1: S

2: V

3: Is

4: Iv

5: D

6: R

η

β

(1−δ )β γ

α

θ

FIGURE 1. SVIRD epidemic model
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TABLE 1. Basic notation

Notation Description

S(t) Number of susceptible at time t

V (t) Number of vaccinated at time t

Is(t) Number of infected from the susceptible state at time t

Iv(t) Number of infected from the vaccinated state at time t

R(t) Number of recovered at time t

D(t) Number of deceased at time t

β Infection rate

η Vaccination rates

δ Efficacy rates

γ Recovery rate after vaccination

θ Recovery rate without vaccination

α Mortality rate

If using the Markov assumption, the following parameter estimates are obtained based on the

results of previous research on Zuhairoh, Rosadi, and Effendie [17]. Meanwhile, if it does not

meet the Markov assumption, then use the semi-Markov assumption by finding the distribution

of sojourn time for each transition using the equation (9).

Theorem 2. The estimated value of each parameter from the discrete-time SVIRD epidemic

model can be obtained by the maximum likelihood method, which is written in Zuhairoh, Rosadi,

and Effendie [17].

(1) Vaccination rate

η̂ =
Nηkl

Nηkk

(2) Infection rate

β̂ =
Nβkl

Nβkk

(3) Efficacy rate

δ̂ =
Nδkl

Nδkk
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(4) Mortality rate

α̂ =
Nαkl

Nαkk

(5) Recovery rate without vaccination

θ̂ =
Nθkl

Nθkk

(6) Recovery rate after vaccination

γ̂ =
Nγkl

Nγkk

where Nηkl ,Nβkl
,Nδkl

,Nαkl ,Nθkl ,Nγkl represents the total individuals that transitioned from state

k to l and Nηkk ,Nβkk
,Nδkk

,Nαkk ,Nθkk ,Nγkk represents the total individuals living in state k divided

by the total population minus the number of individuals transitioning between states.

The subjects in this study were people infected with COVID-19 disease in Indonesia. The

data is sourced from https://covid19.go.id/peta-sebaran, where the data used are the number of

people who tested positive for COVID-19, the number who recovered, the number who died,

and the number of people vaccinated each day. State vaccinated in this model uses data of

individuals who have been vaccinated up to the second dose. Here we will see the average

value of the efficacy of vaccines that have been used in Indonesia. This is in line with the

WHO recommendation on giving two doses of vaccine to get better efficacy. There are five

types of vaccines used in this model, namely Sinovac, Sinopharm, Pfizer, AstraZeneca, and

modern, which are then searched for the average effectiveness by looking at the proportion of

each vaccine used in Indonesia.

This research uses COVID-19 cases, so not all states are connected to each other. The tran-

sitions in the SVIRD epidemic model can be seen in Figure 1 which consists of only six transi-

tions. The aim is to estimate the number of infected individuals in the short term. The limitations

of the problem in this study have been previously stated that we assume that people who have

received at least 2 doses of vaccination will not die from COVID-19.
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The first step is to test whether the SVIRD epidemic model meets Markov properties or not

using the equation (4), with the following hypothesis.

H0 : p1 jk = p2 jk = · · ·= p6 jk = p jk, j,k = 1,2, . . . ,6.

H1 : is a second order Markov chain

Then define a significance level of α = 0.05. H0 states that the Markov property is satisfied.

This model uses six states, so the test statistic χ2
i jk is distributed χ2 with degrees of freedom

6(5)2 under the null hypothesis. From the calculation of the value of χ2
i jk obtained as follows.

χ
2
i jk = ∑

i, j,k
ni j

(p̂i jk− p̂ jk)
2

p̂ jk

= n12
(p̂124− p̂24)

2

p̂24
+n13

(p̂135− p̂35)
2

p̂35
+n13

(p̂136− p̂36)
2

p̂36
+

n24
(p̂246− p̂46)

2

p̂46

= 299.73

where χ2
tab = χ2

(0.05;150) = 179.58. Because the value of χ2
i jk > χ2

tab then H0 is rejected. So it is

obtained that the SVIRD epidemic model does not meet the Markov characteristics.

The second step is testing the semi-Markov hypothesis at the ĥi sojourn time distribution

using COVID-19 data, using the equation (10) and applying the Ŝi j in the equation (9) for each

SVIRD epidemic model transition. The results are summarized in Table 2.

Ŝ12 =

√
n12(ĥ12(1)(1− ĥ12(1))− ĥ12(2))√
ĥ12(1)(1− ĥ12(1))2(2− ĥ12(1))

=

√
667861

(
667861
1298911

(
1− 667861

1298911

)
−
(

667861
1298911

))
√

667861
1298911

(
1− 667861

1298911

)2(
2− 667861

1298911

)
= −3051.075597
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TABLE 2. Statistical test results Ŝi j

State S V Is Iv R D

S - −3051.08 −18.73 0 0 0

V 0 - 0 −6.25 0 0

Is 0 0 - 0 0.13 −196.55

Iv 0 0 0 - −1108.91 0

R 0 0 0 0 - 0

D 0 0 0 0 0 -

Under the Geometric H0 hypothesis, the Si j test statistic is asymptotically Normal distri-

bution. At the α = 0.05 significance level, the null hypothesis (H0) is rejected if |Ŝi j| > 1.96.

Based on the results in Table 2, it is found that only h35 fulfills the Markov assumption while the

other transitions use semi-Markov assumptions. The more common sojourn time distributions

than the Geometric distribution are the negative Binomial distribution and the discrete Weibull

distribution. So in this study, divided into 3 cases as follows.

(1) h35 has a Geometric distribution, while the other transition sojourn times have a negative

Binomial distribution.

(2) h35 has a Geometric distribution, while the other transition sojourn times have a discrete

Weibull distribution.

(3) h35 has a Geometric distribution, while the other transition sojourn times have a negative

Binomial or discrete Weibull distribution.

TABLE 3. AIC value of each discrete-time model

Model Distribution AIC

Markov Geom 386.6896

semi-Markov
nbinom 435.2654

dweibull 297.8675

Hybrid Markov/semi-Markov

Geom-nbinom 373.6303

Geom-dweibull 311.9556

Geom-nbinom-dweibull 188.5243
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The Table 3 shows the best model used for making short-term predictions, from the Akaike

information criterion (AIC) value, the best model is the hybrid Markov/semi-Markov model,

that is, if it does not meet the geometric assumptions, then it can be selected. whether to use the

negative Binomial distribution or the discrete Weibull.

4. PREDICTION MODEL WITH HYBRID MARKOV/SEMI-MARKOV ASSUMPTION

According to the Theorem 1, predictions can be made for individuals infected with COVID-

19 in the short term using the transition probabilities in Table 4. For the SVIRD epidemic model,

the infected state is influenced by four conditions, namely the transition from the susceptible

and vaccinated state and the transition to the recovered and deceased state. While the transition

using only Markov assumptions is the transition from infected to cured. So for discrete time the

following prediction results are obtained for t = 27, namely March 1, 2022 and t = 28, namely

March 2, 2022. The prediction results for the next 10 days can be seen in the Table 5.

I(t +1) =
m

∑
i=1

niIs(t)piIs +
m

∑
j=1

(
nIs j(t +1)pIs−nIs j(t +1)pIs j

)
+

m

∑
i=1

niIv(t)piIv +
m

∑
j=1

(
nIv j(t +1)pIv−nIv j(t +1)pIv j

)
I(27) = n13(26)p13 +n24(26)p24 +n35(27)p33−n35(27)p35 +

n36(27)p33−n36(27)p36−n46(27)p46

= 16556(0.354)+8498(1.000)+26357(0.628)−26357(0.225)+

13530(0.628)−13530(0.775)−325(1.000)

= 22667

and

I(t +1) =
m

∑
i=1

niIs(t)piIs +
m

∑
j=1

(
nIs j(t +1)pIs−nIs j(t +1)pIs j

)
+

m

∑
i=1

niIv(t)piIv +
m

∑
j=1

(
nIv j(t +1)pIv−nIv j(t +1)pIv j

)
I(28) = n13(27)p13 +n24(27)p24 +n35(28)p33−n35(28)p35 +

n36(28)p33−n36(28)p36−n46(28)p46
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= 16340(0.354)+8388(1.000)+28371(0.628)−28371(0.225)+

14564(0.628)−14564(0.775)−376(1.000)

= 23089

TABLE 4. Transition parameter estimation of each discrete-time model

Model Transition Distribution p̂i j

Markov

1→ 2 Geometric 0.814
1→ 3 Geometric 0.186
2→ 4 Geometric 1.000
3→ 5 Geometric 0.216
3→ 6 Geometric 0.784
4→ 6 Geometric 1.000

semi-Markov

1→ 2 dweibull 0.784
1→ 3 dweibull 0.215
2→ 4 dweibull 1.000
3→ 5 dweibull 0.270
3→ 6 dweibull 0.730
4→ 6 dweibull 1.000

Hybrid Markov/semi-Markov

1→ 2 dweibull 0.646
1→ 3 dweibull 0.354
2→ 4 dweibull 1.000
3→ 5 Geometric 0.225
3→ 6 nbinomial 0.775
4→ 6 dweibull 1.000

TABLE 5. Hasil Prediction results of the SVIRD epidemic model with discrete-

time hybrid Markov/semi-Markov assumptions

Date Actual Prediction MAPE (%)
1/03/2022 24,728 22,667
2/03/2022 40,920 23,089
3/03/2022 37,259 31,911
4/03/2022 26,347 29,783
5/03/2022 30,156 24,879 19.13
6/03/2022 24,867 27,652
7/03/2022 21,380 24,556
8/03/2022 30,148 23,784
9/03/2022 26,336 23,837
10/03/2022 21,311 23,127
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5. CONCLUSION

This study used discrete-time on a hybrid Markov/semi-Markov model to perform short-term

predictions in people who confirmed positive for COVID-19. Hybrid Markov/semi-Markov

combines Markov and semi-Markov assumptions on one multi-state model. Before determin-

ing the assumptions that will be used in the multi-state model, it is necessary to perform a

chi-square test to see if the model meets the Markov assumptions or not. If not, then an addi-

tional assumption is required that is semi-Markov. The semi-Markov assumption is identical to

sojourn time. Next, tests were performed to see if each transition met Markov or semi-Markov

assumptions where we get the transitions p35 that satisfy the Markov assumption. In contrast,

the other transitions use the semi-Markov assumption.

The sojourn time distribution used in this paper is three, namely Geometric, negative Bino-

mial, and discrete Weibull distribution. So that in the application, it will be tested that each

transition meets the sojourn time distribution, thus producing the appropriate transition prob-

ability. In the end, a prediction is used using the Theorem 1 for positive confirmed cases on

the following day using the result of the subtraction of the number of COVID-19 cases in the

infected state on the day i minus the number of COVID-19 cases on this day i− 1 plus cases

recovered and died on the i day.
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