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Abstract. HIV accounts for more than thirty three million death and approximately thirty eight million infected

cases since it’s inception. The disease unfolds in three stages; Chronic, Acute and fully blown AIDS. Adhering to

preventive protocols such as use of condoms, preventing oneself from unprotected sex and limiting one’s sexual

partners could help minimize the disease spread. In this study, a deterministic model for HIV-AIDS is formulated.

The equilibrium points, local and global stability of the equilibrium points, and HIV reproductive rate were deter-

mined and interpreted. The model was extended to optimal control by simulating the optimality system. This was

done by incorporating the use of condoms and education of susceptible population as intervention strategies. It was

established that the best and most effective control strategy was optimal education and sensitisation of susceptible

population.
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1. INTRODUCTION

The viral infection that thrive in the system of another living organism, especially humans,

was detected in 1981 in the blood-streams of mostly gay men. The disease is identified with
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strains: HIV-1 and HIV-2. The HIV-1 is recognized as the lethal strain, causing pandemic in

humans. The disease is transmissible when a contact of susceptible human is made with the

infected person through unprotected and unnatural canal activity.

HIV accounts for more than 33 million death and 37.7 million infected cases since the disease’s

inception [1]. The disease unfolds in three stages; Chronic , Acute and full blown AIDS. The

acute stage is characterized by rash, headache and fever. The acute stage is noted as the first

two weeks to one month where the transmission of virus is very high, and one could easily

get infected when in contact with the infected. The chronic stage is characterize by a decrease

in the virus replication as the infected enters into clinical latency stage, but one can still get

infected with the disease since it could be transferred by the infected. The last stage of the

disease: AIDS happens when the person’s immune system is substantially weakened and can

no longer defend the body against foreign attacking pathogens.

Adhering to the preventive protocols such as use of condoms, preventing oneself from

unprotected sex and limiting one’s sexual partners could help minimize the number of the

infected. However, the use of pharmaceutical drugs such as antiretroviral therapy (ART) may

help reduce the multiplication of the virus and the swift progressing of the disease [2].

[3] proposed a model for the transition period of HIV/AIDS incorporated of weak uninfected

CD4+ cells as T(t). For a weak uninfected CD4+ T cell, the authors estimate a very short

transition period. As a result, when weak CD4+ T-cells engage with HIV, some of these weak

CD4+ T-cells shift directly into the viral class, which is a key factor in the fast spread of HIV.

Another important finding was that the natural recovery of CD4+ T-cells cannot be overlooked

because a large proportion of T cells have recovered. The results of the study through numerical

technique using confirmed the analytical results of the model as several unmeasured parameter

values were assumed and used.

[4] used seven-dimensional nonlinear ordinary differential equation to establish a mathematical

model to analyze the spread of HIV epidemic within an antiretroviral therapy (ART) treatment

as an alternative intervention. In absence of antiretroviral therapy (ART) treatment in the model

showed transition rate among infected compartment reduced. However, model analysis showed

sensitivity of the antiretroviral therapy treatment to the basic reproduction number along the
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numerical simulation. The findings of the study showed stationary in the number of susceptible

humans, leading to a reduction in the number of infected individual who progressed to AIDS

as a result of antiretroviral therapy treatment.

[5] considered new deterministic mathematical model for the transmission dynamics of

HIV/AIDS virus on the role of female sex workers in India. The study employed homotopy

perturbation method to derive an analytical solution to each nonlinear deterministic system

containing initial condition for those individual sub-groups. The analytical solution was

compared with numerical solution obtained by MATLAB function; fourth order Runge-Kutta

method. The analytical results obtained can run sensitivity analysis of the estimated parameters

to better understand the spread mechanism of HIV/AIDS and suggest possible prevention

strategies.

[6] developed new HIV/AIDS deterministic model with compartments categorised into aware

and unaware susceptible individuals, diagnosed and undiagnosed HIV infections. The model

however considered the rate of recruitment of individuals in aware and unaware susceptible

population as a function of engagements through latest media campaign like twitter, tiktok,

telegram, Facebook, etc. while keeping other variables constant.

Epidemiological models generally explain the transmission dynamics of diseases and can

determine the status of infections with time. Models that are incorporated with some control

can determine the best optimal control strategy in combating infections [7, 8, 9, 10].

1.1. HIV-AIDS DATA.

TABLE 1. Number of people tested for viral suppression among those on treatment

Dis-aggregation 2019 2020 2021 2022

Children (0-14 yrs) 4,651 4,734 4,827 4,842

Males (15+ yrs) 21,393 21,778 22,163 22,555

Females (15+ yrs) 66,969 68,175 69,381 70,597

Total 93,013 94,687 96,371 97,994
Source: Ghana Health Service
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TABLE 2. Number of people living with HIV with suppressed viral load

Dis-aggregation 2019 2020 2021 2022

Children (0-14 yrs) 3,176 3,455 3,734 4,023

Males (15+ yrs) 14,611 15,891 17,181 18,471

Females (15+ yrs) 45,739 49,745 53,551 57,367

Total 63,526 69,091 74,466 79,861
Source: Ghana Health Service

TABLE 3. HIV population, new infections and total deaths

Year Populations New infections AIDS Death

2019 342,054 21,206 15,922

2020 346,120 18,928 12,758

2021 349,362 15,323 9,886

2022 352,498 12,383 6,974
Source: Ghana Health Service

2. MODEL FORMULATION

Model divides the total population under study into five compartment of Susceptible, S, Ex-

posed, EH , Fully blown HIV, AH , Infected HIV, IH and Treatment, TH . Recruitment into the

susceptible population is denoted by the rate Λ. λ is the rate at which the exposed individuals

leaves the exposed compartment to the infected compartment. Further, the model assumes that

individuals die as a result of the disease at a rate δ . β is the transmission rate as a results of

contact between susceptible, infected and fully blown HIV individuals. The model assumes that

infected individuals seek medical attention at a rate γ , while a fraction of the infected individ-

uals progressed to fully blown HIV status. Fully blown HIV individuals also seek treatment at

a rate σ . µ is the natural death rate. Table 4 and Table 5 shows the parameters, variables, and

their descriptions used in the model formulation.
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TABLE 4. HIV Model and Parameter description

Parameter Description

Λ The rate at which individuals enter the susceptible population

λ The transmission rate

β Recruitment into the infected component.

α Recruitment into the treated compartment

(1−α) Rate at which people enter fully blown HIV compartment

µ natural death rate

δ HIV death rate.

TABLE 5. HIV Model variable description

Variables Description

S Susceptible HIV population.

EH Exposed HIV individuals.

IH Infected HIV individuals.

TH Treated HIV individuals

RH Recovered HIV individuals

FIGURE 1. Schematic diagram of the HIV Model
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Hence, the system differential equations describing the HIV model in Figure 1 is given by

(1)



d
dt

S = Λ−βS(IH +AH)−µS

d
dt

EH = βS(IH +AH)− (µ +λ )EH

d
dt

IH = λEH− (1− γ)IH− (µ +δ + γ)IH

d
dt

TH = γIH−µTH +σAH

d
dt

AH = (1− γ)IH− (µ +δ +σ)AH

3. MODEL ANALYSIS

3.1. Positivity. The positivity of variables in the model was proven based on the following

theorem;

Theorem 3.1. Let the initial values be S(0), Ec(0), Ic(0), Tc(0), RC(0) and Rc(0) be non-

negative, then the solution set of {S(t),Ec(t), Ic(t),Tc(t) andRc(t)} of ?? is positive and bounded

for all t > 0, whenever they exist.

Proof.

ds
dt

= Λ−βS(Ih +Ah)−µS

ds
dt

≥ − (β IH +βAH +µ)S∫ ds
dt

≥ −
∫

(β IH +βAH +µ)dt

lnS ≥ − (β IH +βAH +µ) t + c

At t = 0,S = S0

lnS0 ≥c

lnS ≥ − (β IH +βAH +µ) t + lnS0

ln
(

S
S0

)
≥ (β IH +βAH +µ) t

S
S0

≥ e−(β IH+βAH+µ)t
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As t→ ∞

S
S0

≥ 0

S ≥ 0

Doing same for the entire compartments gives

EH ≥ 0

IH ≥ 0

TH ≥ 0

AH ≥ 0. �

3.2. Region of feasibility.

Theorem 3.2. The positive solution is a positively invariant set of the model and is given by

ϕ = {S,EH , IH ,AH ,TH ,∈ R5
+ : N ≤ Λ

µ
,µ 6= 0}

N = S+EH + IH +AH +TH(2)

dN
dt

=
dS
dt

+
dEH

dt
+

dIH

dt
+

dAH

dt
+

dTH

dt
(3)

dN
dt

= Λ−µN−δ IH−θAH(4)

dN
dt

≤ Λ−µN

dN
Λ−µN

≤ dt

dN

−µ

(
N− Λ

µ

) ≤ dt

dN(
N− Λ

µ

) ≤ −µdt

∫ dN(
N− Λ

µ

) ≤
∫
−µdt

ln
(

N− Λ

µ

)
≤ −µdt + c
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At t = 0,N = N0

ln
(

N0−
Λ

µ

)
quad≤ c

ln
(

N− Λ

µ

)
≤ −µt + ln

(
N0−

Λ

µ

)

ln

(
N− Λ

µ

N0− Λ

µ

)
≤ −µt

(
N− Λ

µ

N0− Λ

µ

)
≤ e−µt

As t→ ∞(
N− Λ

µ

N0− Λ

µ

)
≤ 0

N− Λ

µ
≤ 0

N ≤ Λ

µ
(5)

Therefore, the positive solution set is an invariant set of the model and is given by

(6) ϕ =

(
S,EH , IH ,AH ,TH ε Rs

+ : N≤Λ

µ

)
.

3.3. Disease-free equilibrium. The disease free equilibrium points of the HIV model is given

by f0 = (S0,EH0 , IH0,TH0,AH0) = (
Λ

µ
,0,0,0,0).

3.4. HIV reproductive rate, R0. Using the approach in [11, 12, 13, 14, 15, 16], the infection

compartments are as follows

d
dt

EH = βS(IH +AH)− (µ +λ )EH

d
dt

IH = λEH− (1− γ)IH− (µ +δ + γ)IH

d
dt

TH = γIH−µTH +σAH(7)

d
dt

AH = (1− γ)IH− (µ +δ +σ)AH
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The matrices F and V are generated from the infection compartments 7 as

F =


βS(IH +AH)

0

0

0

 , V =


(µ +λ )EH

(µ +δ + γ)IH +(1− γ)IH−λEH

µTH− γIH−σAH

(µ +δ +σ)AH− (1− γ)IH

(8)

The Jacobian of matrix F is given by

F =


0 βS βS 0

0 0 0 0

0 0 0 0

0 0 0 0

(9)

Evaluating matrix F at the disease-free equilibrium f0 = (S0,EH0, IH0,TH0,AH0) =

(
Λ

µ
,0,0,0,0) gives the corresponding matrix

F =



0 β
Λ

µ
β

Λ

µ
0

0 0 0 0

0 0 0 0

0 0 0 0


(10)

Similarly, finding the Jacobian of matrix v gives

V =


(µ +λ ) 0 0 0

−λ (µ +δ + γ)+(1− γ) 0 0

0 −γ −σ µ

0 −(1− γ) 0 (µ +δ +σ)

(11)

When V is evaluated at the disease-free equilibrium f0 = (S0,EH0 , IH0,TH0,AH0) =

(
Λ

µ
,0,0,0,0), we get

V =


(µ +λ ) 0 0 0

−λ (µ +δ + γ)+(1− γ) 0 0

0 −γ −σ µ

0 −(1− γ) 0 (µ +δ +σ)

(12)
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The inverse of v matrix, v−′

v−′ =



−1
a

0 0 0

− b
ac

1
c

0 0

(bdh−b f g)
aceh

−(dh− f g)
ceh

1
e
− f

eh

bd
ach

− g
ch

0
1
h



(13)

with

a= (µ+λ ), b= λ , c= (µ+δ +γ)+(1−γ), d = γ , e= σ , f = µ , g= (1−γ), h= (µ+δ +σ)

therefore

(14) FV−′ =



0 β
Λ

µ
β

Λ

µ
0

0 0 0 0

0 0 0 0

0 0 0 0





−1
a

0 0 0

− b
ac

1
c

0 0

(bdh−b f g)
aceh

−(dh− f g)
ceh

1
e
− f

eh

bd
ach

− g
ch

0
1
h



R0 =
βΛλ

µ(µ +λ )
(
(µ +δ + γ)+(1− γ)

) + βΛ(λγ(µ +δ +σ)− (λ µ(1− γ))

µ(λ +µ)((µ +δ + γ)+(1− γ))σ(µ +δ +σ)

(15)

3.5. Endemic Equilibrium. Considering the model equation 1, an endemic equilib-

rium exist when S,EH , IH ,TH andAH are not equal to zero. The endemic equilibrium

h1 = (S∗,E∗H , I
∗
H ,T

∗
H ,A

∗
H) is therefore given as

S∗ =
Λ(

β (I∗H +A∗H)+µ
)

E∗H =
βS∗(I∗H +A∗H)

(µ +λ )



OPTIMAL PREVENTION OF HIV-AIDS 11

I∗H =
λE∗H

(1− γ)+(µ +δ + γ)

T ∗H =
γI∗H +σA∗H

µ

A∗H =
(1− γ)I∗H
µ +δ +σ

Local stability of the disease free equilibrium. The section presents the stability analysis

of model equation 1 at the disease-free equilibrium. The linearization method is adopted in

studying the asymptomatic stability of model equation 1 at the disease-free equilibrium [17, 18].

The Jacobian matrix at disease free equilibrium becomes

JB =



−β (IH +AH)−µ 0 −βS 0 −βS

0 −(µ +λ ) βS 0 βS

0 λ −(1− γ)− (µ +δ + γ) 0 0

0 0 γ −µ σ

0 0 (1− γ) 0 −(µ +δ +σ)


(16)

When JB is evaluated at the disease-free equilibrium point f0 = (S0,EH0, IH0,TH0,AH0) =

(
Λ

µ
,0,0,0,0), we get

(17) (JB1) =



−µ 0 −β
Λ

µ
0 −β

Λ

µ

0 −(µ +λ ) β
Λ

µ
0 β

Λ

µ

0 λ −(1− γ)− (µ +δ + γ) 0 0

0 0 γ −µ σ

0 0 (1− γ) 0 −(µ +δ +σ)


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Hence

(18)

(JB1−l)=



−µ− l 0 −β
Λ

µ
0 −β

Λ

µ

0 −(µ +λ )− l β
Λ

µ
0 β

Λ

µ

0 λ −
(
(1− γ)+(µ +δ + γ)

)
− l 0 0

0 0 γ −µ− l σ

0 0 (1− γ) 0 −(µ +δ +σ)− l


Clearly, l1 =−µ , l2 =−µ .

Matrix A is the remaining matrix of (JB1− l), given by

(19)



−(µ +λ )− l β
Λ

µ
β

Λ

µ

λ −
(
(1− γ)+(µ +δ + γ)

)
− l 0

0 (1− γ) −(µ +δ +σ)− l



Referring to 19, the model system 1 is locally unstable since according to Gershgorin circle,

matrix 1 should be diagonally dominant matrix. But |− (µ +λ )− l| 6> β
Λ

µ
.

3.6. Global Stability of the Disease-free equilibrium. We investigate the global asymptotic

stability of the model system 1 by using the Castillo-Chavez’s method. This is presented as

follows;

Consider

d p1

dt
= B(p1, p2),(20)

d p2

dt
=C(p1, p2),

with p1 and p2 denote number of uninfected and infected individuals respectively. Thus, we

denote p1 =
(
S
)
∈ R2 and p2 =

(
EH , IH ,TH ,AH

)
∈ R4. The disease-free equilibrium f0 for the
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model system (1) is given by f0 = (p0
1,0). Thus, the global stability at D0 exists based on these

conditions

• Given
d p1

dt
= Y (p1,0),z0

1 is globally asymptotically stable.

• X(p1, p2) = Dw2−Ĉ(p1, p2), where Ĉ(p1, p2)≥ 0 for (p1, p2) ∈∈,

where D =Wy2C(z0
1,0) is an M-matrix, with a positive off-diagonal entries and τ is the feasible

biological region of model (1). When the above conditions are satisfied by model system (1),

then the underlying theorem holds.

Theorem 3.3. When R0 < 1 and the above two conditions are satisfied by model (1), then, the

equilibrium point f0 = (p0
1,0) is globally asymptotically stable.

Proof. From model (1), we can deduce
d p1

dt
= Y (p1, p2)

d p1

dt
=

(
Λ−βS(IH +AH)−µS

)
,

(21)

Hence Y (p1,0) becomes,

H(y1,0) =
(

Λ−µS0

)
,

X(p1, p2) =



βS(IH +AH)− (µ +λ )EH

λEH− (1− γ)IH− (µ +δ + γ)IH

γIH−µTH +σAH

(1− γ)IH− (µ +δ +σ)AH


The Jacobian of X(p1, p2) is given by

(22) Jd f =



−(µ +λ ) βS 0 βS

λ −((1− γ)+(µ +δ + γ)) 0 0

0 γ2 −µ σ

0 (1− γ) 0 −(µ +δ +σ)


Hence using the expression

(23) X(p1, p2) = Dw2−W̃ (p1, p2)
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we deduce the following

X(p1, p2) =



−(µ +λ ) βS0 0 βS0

λ −((1− γ)+(µ +δ + γ) 0 0

0 γ2 −µ σ

0 (1− γ) 0 −(µ +δ +σ)





EH

IH

TH

AH


-



D1w̃(p1, p2)

D2w̃(p1, p2)

D3w̃(p1, p2)

D4w̃(p1, p2)


Applying the equation 23, and solving for the expression w̃(p1, p2) gives

βS(IH +AH)− (µ +λ )EH

λEH − (1− γ)IH − (µ +δ + γ)IH

γIH −µTH +σAH

(1− γ)IH − (µ +δ +σ)AH


−



βS0(IH +AH)− (µ +λ )EH

λEH − (1− γ)IH − (µ +δ + γ)IH

γIH −µTH +σAH

(1− γ)IH − (µ +δ +σ)AH =


=



D1w̃(p1, p2)

D2w̃(p1, p2)

D3w̃(p1, p2)

D4w̃(p1, p2)



w̃(p1, p2) =



β IH(S0−S) βAH(S0−S)

0 0

0 0

0 0


It can be seen that, the total population of model (1) is bounded by S0. It follows that

S,EH , IH ,TH ,AH ≤ S0, and β IHS≤ β IHS0, βAHS≤ βAHS0 which implies Ŵ(p1, p2) is positive

definite. Additionally, matrix Jd f is undoubtedly an M-matrix, with the off-diagonal entries

positive. Hence, the requirement of the two conditions are met, which is a proof of the globally

asymptotically stability of f0. �

3.7. Local stability of the endemic equilibrium. Considering the state model 1, the subsec-

tion examines stability at endemic equilibrium by linearising the model equation 1 and evaluat-

ing the resulting matrix at the endemic equilibrium [19, 20].

Hence

(24)



−β (IH +AH)−µ 0 −βS 0 −βS

0 −(µ +λ ) βS 0 βS

0 λ −(1− γ)− (µ +δ + γ) 0 0

0 0 γ −µ σ

0 0 (1− γ) 0 −(µ +δ +σ)


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When 24 is evaluated at the endemic equilibrium h1 = (S∗,E∗H , I
∗
H ,T

∗
H ,A

∗
H), we get

(25) Jy =



−β (I∗H +A∗H)−µ 0 −βS∗ 0 −βS∗

0 −(µ +λ ) βS∗ 0 βS∗

0 λ −(1− γ)− (µ +δ + γ) 0 0

0 0 γ −µ σ

0 0 (1− γ) 0 −(µ +δ +σ)


Now, |Jy−n| gives

(26) Jy =



l11 0 −βS∗ 0 −βS∗

0 −(µ +λ )−n βS∗ 0 βS∗

0 λ l11 0 0

0 0 γ −µ−n σ

0 0 (1− γ) 0 −(µ +δ +σ)−n


where

l11 =−
(
β (I∗H +A∗H)+µ

)
−n

l12 =−
(
(1− γ)+(µ +δ + γ)

)
−n

Hence, n =−µ

The remaining matrix of Jy becomes

(27) Jp =


l11 0 −βS∗ −βS∗

0 −(µ +λ )−n βS∗ βS∗

0 λ l12 0

0 0 (1− γ) −(µ +δ +σ)−n


By observation, the matrix Jp is not strictly diagonally dominant, since |−(µ+λ )−n| 6> βS∗.

Hence, the HIV model system 1 is not lacally stable.

3.8. Global Stability of the endemic equilibrium. We examine the global stability of the

endemic equilibrium of the HIV model (1) by constructing a suitable Lyapunov function for

model system model (1). The analysis is given as follows

Theorem 3.4. Given that S = S∗, EH = E∗H , IH = I∗H , TH = T ∗H , and AH = A∗H , then, the endemic

equilibrium E∗n of the HIV model (1)is globally asymptotically stable in R+5 whenever R0 > 1
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Proof. We define a lyapunov function L : {(S,EH , IH ,TH ,AH ,) ∈Φ |S,EH , IH ,TH ,AH > 0}→ R

given by

L(S,EH , IH ,TH ,AH) =
(
S−S∗−S∗ln

S
S∗
)
+
(
EH−E∗H−E∗H ln

EH

E∗H

)
+
(
IH− I∗H− I∗H ln

IH

I∗H

)
+
(
TH−T ∗H−T ∗H ln

TH

T ∗H

)
+
(
AH−A∗H−A∗H ln

AH

A∗H

)
The time derivative of L becomes

dL
dt

=
(S−S∗

S

)dS
dt

+
(EH−E∗H

EC

)dEH

dt
+
(IH− I∗H

IH

)dIH

dt
+
(TH−T ∗H

TH

)dTH

dt
+
(AH−A∗H

AH

)dAH

dt

dL
dt

=
(S−S∗

S

)(
Λ−βS(IH +AH)−µS

)
+
(EH−E∗H

EC

)(
βS(IH +AH)− (µ +λ )EH

)
+
(IH− I∗H

IH

)(
λEH− (1− γ)IH− (µ +δ + γ)IH

)
+
(TH−T ∗H

TH

)(
γIH−µTH +σAH

)
+
(AH−A∗H

AH

)(
(1− γ)IH− (µ +δ +σ)AH

)
dL
dt

=
(S−S∗

S

)(
Λ−β (S−S∗)((IH− I∗H)+(AH−A∗H))−µ(S−S∗)

)
+
(EH−E∗H

EC

)(
β (S−S∗)((IH− I∗H)+(AH−A∗H))− (µ +λ )(EH−E∗H)

)
+
(IH− I∗H

IH

)(
λ (EH−E∗H)− (1− γ)(IH− I∗H)− (µ +δ + γ)(IH− I∗H)

)
+
(TH−T ∗H

TH

)(
γ(IH− I∗H)−µ(TH−T ∗H)+σ(AH−A∗H)

)
+
(AH−A∗H

AH

)(
(1− γ)(IH− I∗H)− (µ +δ +σ)(AH−A∗H)

)
dL
dt

=
(
Λ
(S−S∗

S

)
−β

((S−S∗)2

S

)
((IH− I∗H)+(AH−A∗H))−µ

((S−S∗)2

S

))
+
(
β (S−S∗)

(EH−E∗H
EC

)
((IH− I∗H)+(AH−A∗H))− (µ +λ )

((EH−E∗H)
2

EC

))
+
(
λ (EH−E∗H)

(IH− I∗H
IH

)
− (1− γ)

((IH− I∗H)
2

IH

)
− (µ +δ + γ)

((IH− I∗H)
2

IH

))
+
(
γ(IH− I∗H)

(TH−T ∗H
TH

)
−µ

((TH−T ∗H)
2

TH

)
+σ(AH−A∗H)

(TH−T ∗H
TH

))
+
(
(1− γ)(IH− I∗H)

(AH−A∗H
AH

)
− (µ +δ +σ)

((AH−A∗H)
2

AH

))
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dL
dt

=
(
Λ−Λ

(S∗

S

)
−β

((S−S∗)2

S

)
((IH− I∗H)+(AH−A∗H))−µ

((S−S∗)2

S

))
+
(
β (S−S∗)

(EH−E∗H
EC

)
((IH− I∗H)+(AH−A∗H))− (µ +λ )

((EH−E∗H)
2

EC

))
+
(
λ (EH−E∗H)

(IH− I∗H
IH

)
− (1− γ)

((IH− I∗H)
2

IH

)
− (µ +δ + γ)

((IH− I∗H)
2

IH

))
+
(
γ(IH− I∗H)

(TH−T ∗H
TH

)
−µ

((TH−T ∗H)
2

TH

)
+σ(AH−A∗H)

(TH−T ∗H
TH

))
+
(
(1− γ)(IH− I∗H)

(AH−A∗H
AH

)
− (µ +δ +σ)

((AH−A∗H)
2

AH

))
Applying the expression z = z1− z2 gives

z1 = Λ+
(
β (S−S∗)

(EH−E∗H
EC

)
((IH− I∗H)+(AH−A∗H))+

(
λ (EH−E∗H)

(IH− I∗H
IH

)
+
(
γ(IH− I∗H)

(TH−T ∗H
TH

)
+σ(AH−A∗H)

(TH−T ∗H
TH

))

z2 = Λ
(S∗

S

)
+β

((S−S∗)2

S

)
((IH− I∗H)+(AH−A∗H))+µ

((S−S∗)2

S

)
+(µ +λ )

((EH−E∗H)
2

EC

)
+(1− γ)

((IH− I∗H)
2

IH

)
+(µ +δ + γ)

((IH− I∗H)
2

IH

)
+µ

((TH−T ∗H)
2

TH

)
+(µ +δ +σ)

((AH−A∗H)
2

AH

)
We notice that the inequality z1 < z2 holds, which means that

dL
dt
≤ 0 if z1 < z2. Hence, it

follows that
dL
dt

= 0 when S = S∗, EH = E∗H , IH = I∗H , TH = T ∗H , and AH = A∗H . Therefore the

largest compact invariant set {S,EH , IH ,TH ,AH ∈ Φ :
dL
dt

= 0} is the singleton En, where En is

the endemic equilibrium. Hence from [21, 22, 23, 24], En is globally asymptotically stable in

Φ . �

4. OPTIMAL CONTROL MODEL

The subsection 4 formulates an optimal control model for the HIV disease after analysing the

non control model to identify control strategies that would help to minimize the disease. In view

of achieving this purpose, we add control of condom use u1 and education of the susceptible
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individuals u2 to the non-control model.

(28)



d
dt

S = Λ− (1−u1)βS(IH +AH)−µS−u2S

d
dt

EH = (1−u1)βS(IH +AH)+u2S− (µ +λ )EH

d
dt

IH = λEH− (1− γ)IH− (µ +δ + γ)IH

d
dt

TH = γIH−µTH +σAH−u2IH

d
dt

AH = (1− γ)IH− (µ +δ +σ)AH

We consider a quadratic function for the objective functional as in other literature [25]. Here,

we seek to minimize the exposed and infected. The control of personal protection: condom use

u1 would be employed to achieve the above mentioned purpose of minimizing the exposed and

infected population. Hence, the objective functional J is given by

(29) J =
∫ t f

0

[
G1EH +G2IH +

1
2

C1u2
1 +

1
2

C2u2
2

]
.dt

The quantities of objective functional (29) G1 and G2 are the weight coefficients of the exposed,

infected, treatment and asymptomatic population. In addition, the expressions
C1u2

1
2

and
C2u2

2
2

are the cost that comes with minimizing the the exposed and infected population. Hence, we

seek an optimal control u∗1 such that

(30) J(u∗1) = min{J(u1,u2) : (u1,u2) ∈U}

where

(31) U = {(u1,u2)| 0≤ ui ≤ 1, i = 1 lebesgue measurable}

Now, the analytic method of Pontryagin’s maximum principle [?], would be employed to

converts system 28 and 29 into a problem of minimizing the Hamiltonian H with respect to the

controls u1,u2, where

H f =

[
G1EH +G2IH +

1
2

C1u2
1 +

1
2

C2u2
2

]
+λ1{Λ− (1−u1)βS(IH +AH)−µS−u2S}

+λ2{(1−u1)βS(IH +AH)+u2S− (µ +λ )EH}
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+λ3{λEH− (1− γ)IH− (µ +δ + γ)IH}

+λ4{γIH−µTH +σAH}

+λ5{(1− γ)IH− (µ +δ +σ)AH}.(32)

Theorem 4.1. There exists an optimal control U∗ = (u∗1,u
∗
2) ∈U such that

(33) J (u∗1,u
∗
2) = min

U
J (u1,u2),

subject to the control system (28) with the initial conditions.

Proof. By the work of [26], the existence of optimal control is proved. We observe that the state

and control variables are non-negative. We also observe that in minimizing the control problem,

the necessary and convexity of the objective functional in u1 are satisfied. The control space

U = {u|u1,u2 are measurable, 0≤ u1,u2 ≤ umax < ∞, t ∈ [0, t f ]}

is also convex and closed by definition. The optimal system is bounded which verifies the com-

pactness needed for the existence of the optimal control. Also, the integrand in functional 29,[
G1EH +G2IH +

1
2

C1u2
1+

1
2

C2u2
2

]
is convex on the control u. Therefore, we see that there exist

a constant k > 1, positive numbers u1,u2 such that,

J(u1,u2)≥ u1
(
|u1,u2|2

)k
2 −u2.

Hence, there exist an optimal control. In the quest to find the optimal solution, the Pontrya-

gin’s maximum principle [27, 21] is applied to the Hamiltonain 32 such that if (w,u) is an

optimal solution of the optimal control problem, then there exist a non-trivial vector function

λ = (λ1 . . . λ6) satisfying the below equation

(34)

dz
dt

=
∂H(t,w,u,λ )

∂λ

0 =
∂H(t,w,u,λ )

∂u
dλ

dt
=−∂H(t,w,u,λ )

∂ z

Hence, the necessary condition associated to the Hamitonian (32) is applied.



20 OTOO, EDUSEI, GYAN, GYAMFI, OSMAN

Theorem 4.2. Given that S,EH , IH ,TH and AH are optimal state solutions with associated con-

trol variables (u∗1,u
∗
2) for the optimal control problem 28 and ??, then there exist adjoint vari-

ables λi for i = 1, . . . ,6, satisfying

λ
′
1 =−

∂H
∂S

= (λ1−λ2)(1−u1)β (IH +AH)+(λ1−λ2)u2 +µλ1

λ
′
2 =−

∂H
∂EH

=−G1 +(λ2−λ3)+µλ

λ
′
3 =−

∂H
∂ IH

=−G2 +(λ1−λ2)(1−u1)βS+(λ3−λ4)γ +(λ3−λ5)(1− γ)+(δ +µ)λ3

λ
′
4 =−

∂H
∂TH

= µλ4

λ
′
5 =−

∂H
∂AH

= (λ1−λ2)(1−u1)βS+(λ5−λ4)σ +(µ +δ )λ5(35)

with boundary condition

(36) λi(t f ) = 0, i = 1,2, . . . ,5

The optimal control u∗1 are given by

u′1 = min

{
1,max

{
0,

(
(λ2−λ1)

βS(IH +AH)

C1

)}}

u′2 = min

{
1,max

{
0,

(
(λ1−λ2)

C2

)}}
�

Proof. The adjoint and boundary conditions are derived by applying the Hamiltonian 32. Thus

we equate S = S∗, EH = E∗H , IH = I∗H , TH = T ∗H and AH = A∗H and differentiating the Hamiltonain

with respect to S,EH , IH ,TH and AH to obtain (35). Further, the equations
∂H
∂u1

= 0 are deter-

mined on the interior of the control set and using the optimal conditions and the property of the

control space u1 and u2, and we derive 28. From (28), The control is characterize by solving

the optimal system. Thus, the transversality and the charcterisation of the optimal control (u1)

are use in solving the optimal system [28, 29, 30]. �
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The controls u∗1 and u2 when substituted into the control system (28) gives

d
dt

S = Λ−
(

1−min

{
1,max

{
0,

(
(λ2−λ1)

βS(IH +AH)

C1

)}})
βS(IH +AH)

−(min

{
1,max

{
0,

(
(λ1−λ2)

C2

)}}
)s−µS

d
dt

EH =

(
1−min

{
1,max

{
0,

(
(λ2−λ1)

βS(IH +AH)

C1

)}})
βS(IH +AH)− (µ +λ )EH

d
dt

IH = λEH − (1− γ)IH − (µ +δ + γ)IH

d
dt

TH = γIH −µTH +σAH

d
dt

AH = (1− γ)IH − (µ +δ +σ)AH

(37)

5. NUMERICAL SIMULATIONS

In determining the best control strategy that would help combat the spread of infection, an

iterative scheme that uses a fourth-order Runge-Kutta method to run the optimal system is de-

signed. This approach runs state equation forward and the adjoint system backwards in time.

Iteration runs until a stopping criterion is met, and it stops. Effectiveness of the considered con-

trols on the model are assessed, these controls are paired, and a numerical simulation carried out.

Output plots generated for each considered strategy are carefully assessed for consideration. Ta-

ble 6 shows some of the parameter values used in the numerical simulations that generated these

outputs. Following are the observations from various plots as indicated in Figures 2, 3, 4, 5, 6,

7, 8, and 9.



22 OTOO, EDUSEI, GYAN, GYAMFI, OSMAN

TABLE 6. HIV Model and Parameters
Parameter Baseline Source

Λ 50 [31]

β 1.2450 Estimated

λ 0.025−0.075 [31]

α 0.8205 [31]

µ 0.00025 [31]

δ 0.204 Estimated

γ 0.0345 Estimated

σ 0.225 Estimated

5.1. Strategy 1: Optimal control with use of condoms by both susceptible and infected

populations only. We simulated the optimality system by incorporating the use of condoms

as the only intervention. It can be observed that there have been an exponential decrease in

the number of susceptible and infected populations as shown in Figure 2. This is an indication

of the effectiveness this intervention on control of HIV spread. However, there have a been

small change in population exposed to the HIV infection in the system as shown in Figure 3.

Moreover, there have been a small reduction in population under treatment (anti-antiretroviral

therapy) as indicated in Figure 4 and 5.

FIGURE 2. plot of phase portraits with u1 and u2



OPTIMAL PREVENTION OF HIV-AIDS 23

FIGURE 3. plot of phase portraits with u1 and u2

FIGURE 4. plot of phase portraits with u1 and u2

FIGURE 5. plot of phase portraits with u1 and u2
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5.2. Strategy 2: Optimal control with education of susceptible on complete abstinence.

The optimality system was simulated by incorporating education as the only intervention. It was

observed that there have substantial change in population of susceptible individuals. Moreover,

there have been a reduction in the of individuals getting infected with infection. An indication

of the possibility of this intervention. Figure 6, 7, 8 and 9 show the dynamics of intervention

strategy.

FIGURE 6. plot of phase portraits with u1 and u2

FIGURE 7. plot of phase portraits with u1 and u2
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FIGURE 8. plot of phase portraits with u1 and u2

FIGURE 9. plot of phase portraits with u1 and u2

6. CONCLUSION

In this study, a deterministic model for HIV-AIDS is formulated. The equilibrium points,

local and global stability of the equilibrium points, and HIV reproductive rate were determined

and interpreted. The model was extended to optimal control and it was established that the best

and most effective control strategy was optimal education and sensitisation of susceptible pop-

ulation.

We simulated the optimality system by incorporating the use of condoms as the only inter-

vention. It can be observed that there have been an exponential decrease in the number of

susceptible and infected populations. Then the optimality system was simulated by incorporat-

ing education as the only intervention. It was observed that there have substantial change in
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population of susceptible individuals. Moreover, there have been a reduction in the of individ-

uals getting infected with infection. An indication of the possibility of this intervention.

In combating the infection, more resources should placed on sensitisation and education of the

susceptible population.
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