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Abstract: This study aims to identify the best model for the stunting rate by applying and comparing several methods 

based on the Tobit quantile regression method's modification. The stunting rate dataset is left censored and violated 

with linear model assumptions; thus, Tobit quantile approaches are used. The Tobit quantile regression is adjusted by 

combining it with the Bayesian approach since the Bayesian method can produce the best model in small-size samples. 

Three kinds of modified Tobit quantile regression methods considered here are the Bayesian Tobit quantile regression, 

the Bayesian Adaptive Lasso Tobit quantile regression, and the Bayesian Lasso Tobit quantile regression. This article 

implements the skewed Laplace distribution as the likelihood function in Bayesian analysis. This study used the data 

of 3534 stunting children obtained from the Health Departments of several districts and municipals in West Sumatra, 

Indonesia. The result of this study indicated that Bayesian Lasso quantile regression performed well compared to the 
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other two methods. Criteria of better method are based on a smaller absolute bias and a shorter Bayesian credible 

interval which are obtained from the simulation study and empirical study. This study also found that exclusive 

breastfeeding give impact to stunting rate only at middle quantiles, while comorbidity tend to affect all distribution of 

stunting rate. 

Keywords: stunting rate; bayesian tobit quantile regression; bayesian adaptive lasso tobit quantile regression; 

bayesian lasso tobit quantile regression. 

2020 AMS Subject Classification: 62F15. 

 

1. INTRODUCTION 

One-third of all deaths in children under five are caused by malnutrition [1]. Malnutrition has 

serious health, social, and economic consequences throughout one's life and across generations, 

making it as the leading risk factor among children under the age of five worldwide [2].  Low 

height-for-age, also known as stunting, is a key indicator of chronic malnutrition because it reflects 

a failure to reach linear growth potential. Globally, depending on the precise definition and 

estimate, between 171 million and 314 million children under five are currently classified as 

stunted, with 36 African and Asian countries bearing 90% of this burden. West Sumatra, a province 

in Indonesia, has a higher stunting rate than the WHO's tolerance, which is above 20%. Therefore, 

the stunting problem has become a priority issue by the government of West Sumatra that has to 

be handled and solved soon. 

The stunting rate variable is a so-called limited dependent variable whose distribution is mostly 

continuous but has a point mass at one or more specific values, such as zero. The Tobit model is 

one of statistical approach to models limited dependent variables[3].Tobit regression has become 

one of the most commonly used statistical tools utilized by researchers to describe the relationship 

between a non-negative response variable and a set of covariates [4–6]. The Tobit regression has 

been routinely applied in medicine, biology, ecology, economics, and social sciences [7–11]. This 

model can be viewed as a linear regression model with a latent continuous response y∗. Consider 

the standard Tobit regression model 

  𝑦𝑖 = 𝑚𝑎𝑥{0, 𝑦𝑖
∗},   𝑖 = 1, … , 𝑛, 
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  𝑦𝑖
∗ = 𝑥𝑖

′ 𝛽 + 𝜀𝑖,                   (1) 

where 𝜀𝑖 ′𝑠  are residuals with 𝜀𝑖 ~𝑁(0, 𝜎2), 𝒙𝒊 = (𝑥𝑖1, … , 𝑥𝑖𝑘)′ , and 𝛽 = (𝛽1, … , 𝛽𝑘)′ . The 

observed stunting rate is assumed to be related to the latent value by the following: 

𝑦𝑖 = {
𝑦𝑖

∗, 𝑖𝑓 𝑦𝑖
∗ > 0,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

The response variable can be written as 𝑦𝑖 = 𝑚𝑎𝑥{0, 𝑦𝑖
∗}, unknown parameter 𝛽 is estimated 

using the maximum likelihood method. Although the asymptotic theory for maximum likelihood 

has been well studied in Tobit models [12], a Bayesian method produces exact inference even if n 

is small [13–15].  Alhamzawi and Yu [6] applied a Bayesian approach to the Tobit regression 

model using the normal density for the residuals and generating 𝛽  from its full conditional 

posterior distribution using a Gibbs sampler. Alhamzawi and Ali [16] proposed adaptive lasso in 

Tobit quantile regression using the Bayesian technique. Alhamzawi and Yu [6] suggested a 

Bayesian technique for coefficient estimation in (TobitQReg) model utilizing g-prior distribution 

with ridge parameter. Alhamzawi [4,5] proposed a Bayesian elastic net penalty in (TobitQReg). 

Mallick and Yi [11]  provided a new technique for achieving Bayesian Lasso in a traditional 

regression model by scale mixture of uniform formulation of the Laplace density.  

The objective of this paper was to find the association between demographic, socioeconomic, and 

health factors of the stunting rate of children under 3 years in West Sumatra, Indonesia by applying 

Bayesian Tobit quantile regression and its modified techniques. The current analysis expects to 

improve the structure of successful intervention measures designed to tackle the stunting rate or 

reduce the prevalence of stunting and improve child health. 

 

2. PRELIMINARIES 

2.1. Bayesian Tobit Quantile Regression 

Given a sample of independent observations 𝒚 = (𝑦1, … , 𝑦𝑛)  and associated k covariates =

(𝑥1, … , 𝑥𝑘) , the latent variable 𝑦𝑖
∗ is modeled as follows: 

𝑦𝑖
∗ = 𝜂𝜏(𝑥𝑖|𝜃) + 𝑢𝜏𝑖 ,    𝑢𝜏𝑖 ~ 𝐹𝜏𝑖 , subject to 𝐹𝜏𝑖(0|𝑥𝑖) = 𝜏,      (2) 

where 𝜂𝜏(. |𝜃) is the 𝜏th quantile conditional of 𝑦𝑖
∗ given 𝑥𝑖 with the parameters 𝜃 ∈ 𝚯, and the 
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random error 𝑢𝜏𝑖 follows a cumulative distribution function 𝐹𝜏𝑖 whose 𝜏th quantile conditional 

on 𝑥𝑖 equals zero. Assuming linear model 𝜂𝜏(𝑥𝑖|𝜃) = 𝑥𝑖
′ 𝛽𝜏(𝛽𝜏 ∈ ℝ𝑘), an intuitive estimator for 

the Tobit quantile is: 

arg 𝑚𝑖𝑛𝛽𝜏
∑ 𝜌𝜏(𝑦𝑖 − 𝑚𝑎𝑥{0, 𝑥𝑖

′ 𝛽𝜏})𝑛
𝑖=1             (3) 

where 𝜌𝜏(𝑠) = {
𝑠𝜏,            𝑠 ≥ 0,
𝑠(𝜏 − 1), 𝑠 < 0.

                           (4) 

Since Eq. (3) is not differentiable at the origin, there is no closed form solution for 𝜷 and the 

minimization of (2) can be achieved by a linear programming algorithm [17]. However, in high 

dimensional censored data problems, the algorithm of [17] might be inefficient [18–20]. From a 

Bayesian perspective,  Yu and Stander [19] suggested a Bayesian formulation of Tobit quantile 

regression employing a skewed Laplace distribution (SLD) for the errors as a “working model”. 

The SLD connects the Bayesian analysis to standard frequentist tobit quantile regression, which 

proceeds semiparametrically using 𝜌𝜏 as a loss function [21,22]. Let 𝑢𝑖 follow a 𝑆𝐿𝐷 (0, 𝜃, 𝜏), 

where the parameters are the location, precision, and skewness, respectively. The density of the 

SLD for the error term (𝑢𝑖) is written explicitly as 

𝑓(𝑢𝑖) = 𝜏(1 − 𝜏)𝜃𝑒𝑥𝑝{−𝜃𝜌𝜏(𝑢𝑖)}.                                                                                     (5) 

Under the above density, the joint distribution of 𝒚∗ = (𝑦1
∗, … , 𝑦𝑛

∗)′ given 𝑿 = (𝑥1, … , 𝑥𝑛)′ is 

𝑓(𝒚∗|𝑿, 𝛽, 𝜃) = 𝜏𝑛(1 − 𝜏)𝑛𝜃𝑛𝑒𝑥𝑝 {−𝜃 ∑ 𝜌𝜏(𝑦𝑖
∗ − 𝑥𝑖

′𝛽)

𝑛

𝑖=1

}.                                          (6) 

2.2. Bayesian Tobit Quantile Regression with Adaptive Lasso and Lasso 

The Bayesian approach for the Tobit regression model using the normal density for the residuals 

and generating 𝛽  from its conditional posterior distribution using a Gibbs sampler has been 

proposed by Alhamzawi & Ali [16]. According to the Tobit model, only an unknown subset of 

predictors is important in the model, so the problem of covariate selection is to select these active 

covariates. Various approaches to dealing with covariate selection in quantile regression models 

have been proposed recently. Because of its susceptibility to overfitting issues, the least absolute 
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shrinkage and selection operator (Lasso) method [23,24] has received much attention over the 

years. The Lasso is obtained for the quantile model by minimizing the following formula: 

 𝑚𝑖𝑛𝛽 ∑ 𝜌𝜏(𝑦𝑖 − 𝑚𝑎𝑥{0, 𝑥𝑖
′ 𝛽𝜏}) + 𝜆 ∑ |𝛽𝑗|𝑘

𝑗=1 ,𝑛
𝑖=1                                                               (7) 

where𝜆 ≥ 0. Rather than minimizing the above regularization problem for the Tobit model, we 

solve it by constructing a Bayesian framework. Here, 𝜆 ∑ |𝛽𝑗|𝑘
𝑗=1  is called the penalty for the 

selection and estimation of quantile coefficients. Meanwhile, we also consider Tobit quantile 

regression with the adaptive Lasso penalty, which solves the following [25–27]: 

𝑚𝑖𝑛𝛽 ∑ 𝜌𝜏(𝑦𝑖 − 𝑚𝑎𝑥{0, 𝑥𝑖
′ 𝛽𝜏}) + ∑ 𝜆𝑗|𝛽𝑗|

𝑘

𝑗=1

,

𝑛

𝑖=1

                                                                  (8) 

where𝜆𝑗  are non-negative adaptive weight and 𝜆𝑗|𝛽𝑗|  is known as the adaptive penalty for 

selecting and estimating quantile coefficients. As the penalty parameters (𝜆𝑗 , 𝑗 = 1, … , 𝑘) increase 

the Tobit quantile regression coefficients of independent variables are continuously shrunk toward 

0 and due to the adaptive penalty form (∑ 𝜆𝑗|𝛽𝑗|𝑘
𝑗=1 ), some coefficients of independent variables 

can be set exactly to 0. 

Now, if we assume the error 𝜀, follow the ALD with a scale parameter 𝜃(𝜃 > 0) is: 

   𝑓(𝜀|𝜏) =
𝜏(1−𝜏)

𝜃
𝑒𝑥𝑝{−𝜃−1𝜌𝜏(𝑢𝑖)}.                                                                                       (9) 

We also assign a Laplace prior distribution for 𝜋(𝛽𝜏|𝜆1, 𝜆2, … , 𝜆𝑘) = ∏
𝜆𝑗

2

𝑘
𝑗=1 𝑒𝑥𝑝{−𝜆𝑗|𝛽𝜏|} on 

the regression coefficients, then the conditional distribution of the regression coefficients is: 

      𝑃(𝛽𝜏|𝒚, 𝑿, 𝝀) ∝ 𝑒𝑥𝑝{− ∑ 𝜌𝜏(𝑦𝑖 − 𝑚𝑎𝑥{0, 𝑥𝑖
′ 𝛽𝜏}) + ∑ 𝜆𝑗|𝛽𝑗|𝑘

𝑗=1
𝑛
𝑖=1 },                           (10)  

where𝝀 = (𝜆1, 𝜆2, … , 𝜆𝑘)′. Under this setting, maximizing the posterior estimator of 𝛽𝜏 in Eq. 

(10) is equivalent to minimizing Eq. (8). 

 

3. SIMULATION STUDIES 

In this section, the performance of the Bayesian Tobit Quantile Regression (BTQR) and its 

modifications, i.e; Bayesian Adaptive Lasso Tobit Quantile Regression (as BALTQR) and 
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Bayesian Lasso Tobit Quantile Regression (BLTQR) are investigated and compared by 

simulations. The goal of this simulation study here is to reveal the performance of all three 

proposed methods and their associated algorithm in recovering the true parameters. The methods 

are evaluated based on the median of mean absolute deviations, referred to as 𝑀𝑀𝐴𝐷, and the 

standard deviation of 𝑀𝑀𝐴𝐷 . 𝑀𝑀𝐴𝐷 is estimated using this formula: 𝑀𝑀𝐴𝐷 =

𝑚𝑒𝑑𝑖𝑎𝑛 (𝑚𝑒𝑎𝑛(|𝑿�̂� − 𝑿𝜷𝑡𝑟𝑢𝑒|)), where �̂� is the posterior mean of 𝜷. 𝑀𝑀𝐴𝐷 and its standard 

deviation are estimated over 200 replications. Model selection performance is evaluated based on 

the credible intervals for the approaches in the comparison. 

Table 1. Absolute Bias of Posterior Mean for the Simulated Data in Simulation 1, ε~N(0,1). 

Method �̂�1 �̂�2 �̂�3 �̂�4 �̂�5 �̂�6 �̂�7 �̂�8 

𝛽𝑇𝑟𝑢𝑒 1 0 1.2 0 0.8 0 0 0 

Quantile 𝜏 = 0.10 

BTQR 0.2418 0.1438 0.0585 0.2274 0.3349 0.3449 0.1051 0.1204 

BALTQR 0.0132 0.0445 0.2418 0.1604 0.4176 0.2117 0.0999 0.0641 

BLTQR 0.0176 0.0432 0.2786 0.1579  0.4155 0.2049 0.1265 0.0752 

Quantile 𝜏 = 0.25 

BTQR 0.3293 0.0175 0.1476 0.2286 0.1920 0.3568 0.0357 0.1738 

BALTQR 0.1344 0.0065 0.0948 0.1721 0.2746 0.2235 0.0349 0.1079 

BLTQR 0.0723 0.0347 0.0689  0.1735 0.3033 0.2015 0.0418 0.0952 

Quantile 𝜏 = 0.50 

BTQR 0.2034 0.0147 0.0525 0.1273 0.0765 0.2184 0.0485 0.1428 

BALTQR 0.0928 0.0078 0.0435 0.0662 0.1465 0.1567 0.0292 0.1050 

BLTQR 0.0543 0.0042 0.0933 0.0603 0.1896 0.1470 0.0330 0.1032 

Quantile 𝜏 = 0.75 

BTQR 0.0908 0.0104 0.0302 0.1570 0.0314 0.0565 0.0733 0.1546 

BALTQR 0.0428 0.0043 0.0272 0.1083 0.0206 0.0327 0.0510 0.1125 

BLTQR 0.0095 0.0009 0.0657 0.0973 0.0541 0.0285 0.0481 0.1020 

Quantile 𝜏 = 0.90 

BTQR 0.0622 0.0699 0.1900 0.0942 0.0724 0.0382 0.1262 0.0230 

BALTQR 0.1189 0.0607 0.1944 0.0768 0.0693 0.0252 0.1101 0.0192 

BLTQR 0.1239 0.0552  0.1452  0.0808 0.0460 0.0337 0.1242 0.0169 

In this section, eight predictors 𝑥1, … , 𝑥8 were simulated independently from 𝑁8(𝟎, 𝚺) . We 

simulated 100 observations from the model 𝑦𝑖 = 𝑚𝑎𝑥{0, 𝑦𝑖
∗}, where the response variable 𝑦𝑖

∗ is 
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generated from 𝑦𝑖
∗ = 𝑥𝑖

′ 𝜷 + 𝑒𝑖 .  Three different distributions for 𝑒𝑖  were simulated from the 

following distributions: 𝑁(0,1), 𝑡(3)  distribution with three degrees of freedom, and 

𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0.5 , 1). Three cases for 𝜷 were considered: 

a. Simulation 1 (sparse case): 𝜷 = (1, 0, 1.2, 0, 0, 8, 0, 0, 0, 0)′ 

b. Simulation 2 (very sparse case): 𝜷 = (3, 0, 0, 0, 0, 0, 0, 0)′ 

c. Simulation 3 (dense case): 𝜷 = (0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80)′ 

We consider four choices of θ, 0.10, 0.25, 0.50, and 0.75. Under the three error distributions 

𝑁(0,1), 𝑡(3) and 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0.5 , 1)  the censored levels of 𝒚  were 30%, 50%, and 30%, 

respectively.  

Table 2. Absolute Bias of Posterior Mean for the Simulated Data in Simulation 2, ε~N(0,1). 

Method �̂�1 �̂�2 �̂�3 �̂�4 �̂�5 �̂�6 �̂�7 �̂�8 

𝛽𝑇𝑟𝑢𝑒 3 0 0 0 0 0 0 0 

Quantile 𝜏 = 0.10 

BTQR 0.4670 0.1066 0.3714 0.1632 0.2714 0.3854 0.2657 0.1281 

BALTQR 0.2685 0.1124 0.2741 0.1158 0.1812 0.2768 0.1300 0.0400 

BLTQR 0.2142 0.1198 0.2117 0.1483 0.2014 0.2691 0.1878 0.0115 

Quantile 𝜏 = 0.25 

BTQR 0.1927 0.0560 0.2282 0.0221 0.1400 0.2898 0.1147 0.0270 

BALTQR 0.0545 0.0003 0.1704 0.0227 0.0545 0.2355 0.0530 0.0227 

BLTQR 0.0239 0.0008 0.1484 0.0246 0.0540 0.2135 0.0692 0.0313 

Quantile 𝜏 = 0.50 

BTQR 0.0570 0.1078 0.2156 0.0195 0.0335 0.1209 0.0198 0.0473 

BALTQR 0.0245 0.0535 0.1591 0.0116 0.0239 0.1079 0.0265 0.0291 

BLTQR 0.0361 0.0466 0.1632 0.0163 0.0086 0.0866 0.0337 0.0161 

Quantile 𝜏 = 0.75 

BTQR 0.0789 0.1537 0.1701 0.0020 0.1626 0.0536 0.0586 0.0930 

BALTQR 0.0217 0.1108 0.1364 0.0006 0.1195 0.0488 0.0340 0.0843 

BLTQR 0.0205 0.1038 0.1439 0.0129 0.1375 0.0511 0.0384 0.0725 

Quantile 𝜏 = 0.90 

BTQR 0.1882 0.1488 0.1909 0.0211 0.2972 0.0753 0.0174 0.1073 

BALTQR 0.2114 0.1232 0.1820 0.0278 0.2552 0.0717 0.0098  0.0727 

BLTQR 0.2311 0.1206  0.1652  0.0105  0.2786 0.0710  0.0171 0.0872 
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For each error distribution, we simulate 200 data sets assuming the sample size is n = 100. We fit 

the models at four different quantiles, 𝜏 = 0.10, 0.25, 0.50, 0.75, and 0.95. The MCMC algorithms 

are run for 17,000 iterations, discarding the first 2000 as burn-in. Methods are evaluated based on 

the smallest value of absolute bias of parameter models. The results for each simulation at selected 

quantiles for each parameter from Normal distribution are presented in Tables 1, 2, and 3. Other 

results are saved by the author provided by request. 

Table 3. Absolute Bias of Posterior Mean for the Simulated Data in Simulation 3, ε~N(0,1) 

Method �̂�1 �̂�2 �̂�3 �̂�4 �̂�5 �̂�6 �̂�7 �̂�8 

𝛽𝑇𝑟𝑢𝑒 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Quantile 𝜏 = 0.10 

BTQR 0.0476 0.1471 0.1022 0.4039 0.2952 0.1167 0.1646 0.0533 

BALTQR 0.0015 0.1665 0.0357 0.4063 0.2388 0.1304 0.0981 0.0159 

BLTQR 0.0008 0.0914 0.0882 0.3886 0.3051 0.1339 0.0899 0.0187 

Quantile 𝜏 = 0.25 

BTQR 0.1062 0.1474 0.2044 0.3016 0.2697 0.1998 0.1854 0.0046 

BALTQR 0.0463 0.1550 0.2063 0.2821 0.2606 0.1567 0.1040 0.0344 

BLTQR 0.0336 0.0527 0.1015 0.3015 0.1770 0.1954 0.1059 0.0347 

Quantile 𝜏 = 0.50 

BTQR 0.1294 0.0585 0.1660 0.0346 0.1118 0.1635 0.1920 0.0054 

BALTQR 0.0858 0.0604 0.1692 0.0294 0.0403 0.1023 0.0905 0.0546 

BLTQR 0.0704 0.0089 0.0830 0.0050 0.1221 0.1640 0.0891 0.0524 

Quantile 𝜏 = 0.75 

BTQR 0.1142 0.1240 0.1143 0.0511 0.0862 0.1430 0.1269 0.0542 

BALTQR 0.1031 0.0680 0.2114 0.0174 0.0437 0.0872 0.1278 0.0228 

BLTQR 0.0932 0.1204 0.2075 0.0181 0.0352 0.0847 0.1256 0.0544 

Quantile 𝜏 = 0.90 

BTQR 0.0303 0.1930 0.0720 0.0675 0.2351 0.1934 0.0768 0.1640 

BALTQR 0.0047 0.1997 0.1704 0.0269 0.2025 0.1502 0.0261 0.0277 

BLTQR 0.0044 0.1718  0.1353 0.0040  0.1883  0.1354  0.0389 0.0660 

 

Clearly, the biases due to the three approaches are more or less the same (very similar values). 

However, the BLTQR generally behaves much better than the other approaches (BTQR and 

BALTQR) in terms of absolute bias. Across the three simulations, it can be seen that the absolute 
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bias obtained from the BLTQR method is much smaller at selected quantiles than the competing 

approaches. Most noticeably, when 𝜏 = 0.75 the absolute bias generated by all three methods for 

all parameters is much smaller than the absolute bias at a smaller quantile. But, for the most 

extreme quantile (𝜏 = 0.90), the values of absolute bias are generally larger than quantile 𝜏 =

0.75. We then check for the results of the median of mean absolute deviations (MMAD) and the 

standard deviations (SD) of the MAD as presented in Table 4. 

 

Table 4. MADs and Standard Deviations (SD) of MADs for Simulations 1,  

𝛽 = (1, 0, 1.2, 0, 0.8, 0, 0, 0, 0)′ 

Quantile 𝜏th Methods 
MMAD (s.d) 

ε~ℕ(0,1) ε~t (n-1) ε~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0.5 , 1) 

𝜏 = 0.10 

BTQR 1.881 (0.286) 3.886 (0.801) 2.044 (0.298) 

BALTQR 1.712 (0.244) 3.133 (0.626) 1.869 (0.253) 

BLTQR 1.666 (0.240) 2.897 (0.553) 1.865 (0.234) 

𝜏 = 0.25 

BTQR 1.423 (0.231) 3.234 (0.687) 1.504 (0.230) 

BALTQR 1.310 (0.196) 2.596 (0.532) 1.394 (0.201) 

BLTQR 1.270 (0.192) 2.377 (0.471) 1.370 (0.184) 

𝜏 = 0.50 

BTQR 0.883 (0.142) 1.974 (0.495) 0.930 (0.149) 

BALTQR 0.838 (0.114) 1.510 (0.348) 0.887 (0.122) 

BLTQR 0.822 (0.112) 1.303 (0.300) 0.870 (0.115) 

𝜏 = 0.75 

BTQR 0.730 (0.104) 1.413 (0.317) 0.805 (0.112) 

BALTQR 0.710 (0.102) 1.221 (0.246) 0.771 (0.101) 

BLTQR 0.689 (0.099) 1.124 (0.224) 0.757 (0.096) 

𝜏 = 0.90 

BTQR 0.882 (0.130) 2.561 (0.517) 1.193 (0.230) 

BALTQR 0.865 (0.124) 2.462 (0.484) 1.130 (0.206) 

BLTQR 0.862 (0.119) 2.328 (0.435) 1.099 (0.198) 

 

From Tables 4, 5, and, 6 we can observe that for MMADs and SD criteria, the method Bayesian 

Lasso Tobit Quantile Regression (BLTQR) generally performs better than the other methods for 

all the distributions under consideration. In Simulation 1 and 2, the BLTQR method has the 

smallest MMAD in all 15 simulation setups. In Simulation 3, the BLTqr method has the smallest 

MMAD in 14 out of 15 simulation setups. In general, Bayesian Lasso quantile regression performs 

well compared to two other methods, BTQR and BALTQR.  
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Table 5. MADs and Standard Deviations (SD) of MADs for Simulations 2,       

𝛽 = (3, 0, 0, 0, 0, 0, 0, 0)′ 

Quantile 𝜏th Methods 
MAD (SD) 

ε~ℕ(0,1) ε~t (n-1) ε~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0.5 , 1) 

 BTQR 

BALTQR 

2.103 (0.296) 3.923 (0.755) 2.490 (0.410) 

𝜏 = 0.10 1.984 (0.268) 3.462 (0.592) 2.322 (0.357) 

 BLTQR 1.936 (0.254) 3.287 (0.539) 2.312 (0.340) 

 BTQR 1.591 (0.245) 3.254 (0.665) 1.754 (0.284) 

𝜏 = 0.25 BALTQR 1.470 (0.214) 2.814 (0.530) 1.654 (0.258) 

 BLTQR 1.446 (0.204) 2.649 (0.462) 1.643 (0.241) 

 BTQR 1.032 (0.159) 2.060 (0.495) 1.207 (0.232) 

𝜏 = 0.50 BALTQR 1.009 (0.133) 1.764 (0.360) 1.146 (0.186) 

 BLTQR 1.000 (0.130) 1.634 (0.304) 1.119 (0.177) 

 BTQR 0.943 (0.125) 1.749 (0.374) 1.099 (0.185) 

𝜏 = 0.75 BALTQR 0.929 (0.128) 1.605 (0.336) 1.051 (0.169) 

 BLTQR 0.913 (0.122) 1.496 (0.297) 1.029 (0.169) 

 BTQR 1.125 (0.156) 2.517 (0.492) 1.400 (0.249) 

𝜏 = 0.90 BALTQR 1.095 (0.149) 2.374 (0.433) 1.335 (0.222) 

 BLTQR 1.088 (0.147) 2.282 (0.417) 1.307 (0.212) 

 

4. MODELING STUNTING RATE 

All three methods then are applied to construct a model of the stunting rate in West Sumatra, 

Indonesia. The data obtained from Health Office in several districts and cities in West Sumatra is 

regarding the determinants of stunting in August 2021 and February 2022. The response variable 

represents the stunting rate of 3534 stunting children (in cm) from August 2021 to February 2022, 

the summary statistics for the response are provided in Figure 1. The mean stunting rate is 3.42 cm 

and the standard deviation is 3.758. Since the data is related to stunting children, some children 

have zero height gain, thus censored here is about zero.  

While this study assumed ten predictor variables as factors influencing the stunting rate based on 

previous studies. The indicator variables consist of nine categorical variables, as presented in Table 

7, and one numerical variable, i.e., birth weight (𝑋2). After fitting the linear regression model 

using the ordinary least square (OLS) method, it is necessary to check whether the normality 

assumption of the residuals is held or not. To do so, the Chi-square test was performed and the test 

shows that the normality assumption is not held with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 3.56 × 10−8. Additionally, 
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the histogram and the Q-Q plot show that the distribution of the residual may be poor. Similar to 

the simulation studies, all three methods are then compared : BTQR, BALQR, and BTQR. For 

each method, the MAD is recorded, where the 𝑀𝐴𝐷 =
∑ |𝑦𝑖−�̂�𝑖|𝑛

𝑖=1

𝑛
. 

Table 6. MADs and Standard Deviations (SD) of MADs for Simulations 3 

𝛽 = (0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80)′ 

Quantile 𝜏th Methods 
MAD (s.d) 

ε~ℕ(0,1) ε~t (n-1) ε~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0.5 , 1) 

 BTQR 1.991 (0.322) 3.901 (0.749) 2.293 (0.431) 

𝜏 = 0.10 BALTQR 1.847 (0.289) 3.179 (0.605) 2.058 (0.347) 

 BLTQR 1.842 (0.287) 3.102 (0.538) 2.032 (0.350) 

 BTQR 1.501 (0.252) 3.229 (0.660) 1.674 (0.307) 

𝜏 = 0.25 BALTQR 1.375 (0.224) 2.644 (0.516) 1.507 (0.258) 

 BLTQR 1.371 (0.224) 2.513 (0.459) 1.497 (0.251) 

 BTQR 0.972 (0.164) 1.957 (0.472) 1.066 (0.198) 

𝜏 = 0.50 BALTQR 0.919 (0.135) 1.550 (0.329) 0.984 (0.153) 

 BLTQR 0.917 (0.140) 1.407 (0.294) 0.969 (0.158) 

 BTQR 0.827 (0.139) 1.534 (0.340) 0.903 (0.159) 

𝜏 = 0.75 BALTQR 0.789 (0.129) 1.312 (0.250) 0.843 (0.137) 

 BLTQR 0.776 (0.128) 1.234 (0.235) 0.836 (0.136) 

𝜏 = 0.90 

BTQR 1.002 (0.153) 2.536 (0.495) 1.244 (0.238) 

BALTQR 0.966 (0.146) 2.432 (0.467) 1.188 (0.206) 

BLTQR 0.968 (0.145) 2.316 (0.420) 1.183 (0.206) 

 

In this data, we considered four quantiles, these were 0.25, 0.50, 0.75, and 0.90. We ran algorithms 

for 30.000 iterations, discarding the first 1000 as burn-in. The results of the parameter estimated 

and the width of the 95% confidence interval at each quantile for all three methods are provided 

in Table 8. 

After the three methods, BTQR achieves the best prediction accuracy. The width of the 95% 

confidence interval for BLTQR is lower than that of BTQR and BALQR when 𝜏 =

0.10, 0.25, 0.50, and 0.75. Besides, BLTQR does not almost as well as BTQR and BALQR when 

𝜏 = 0.90. Table 9 informs us that for the stunting rate dataset, it can be seen that the MAD of the 

BTQR was about 2.08% and 0.86% lower than that of BTQR and BALQR when 𝜏 = 0.25 , 

respectively. 
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(a) (b) 

Figure 1. Normality assumption checking. (a) Histogram of the OLS residuals for the stunting rate 

dataset, (b) Q−Q plot of the OLS residuals for the stunting rate dataset 

 

5. CONCLUSIONS 

In this article, we construct the model of stunting rate in selected cities and districts in West 

Sumatra, Indonesia using Bayesian Tobit quantile regression and its generalized methods. This 

study compares the result of BTQR, BALTQR, and BLTQR methods using a simulation study and 

an empirical study. The Bayesian Tobit quantile regression and its generalized methods not only 

accommodate the messy attributes of the stunting rate response but also provides a complete 

picture of the covariate effects on the stunting rate distribution. Furthermore, it successfully selects 

and models the important categorical predictors. Our findings are summarized below. First, 

exclusive breastfeeding affects the stunting rate only at the middle quantile, at 𝜏 = 30, 50 . 

Exclusive breastfeeding seems not to be an important factor claimed for the high stunting rate. 

Comorbidity tend to be an important factor in stunting rates not only at lower quantiles but also at 

higher quantiles. The analysis of simulation studies and stunting rate dataset shows strong support 

for the use of Bayesian Lasso Tobit quantile regression to inference for Tobit quantile regression 

models. The proposed method generally behaves much better than the other approaches in terms 

of a width of 95% Bayes confidence interval and absolute bias. The work presented in this paper 

opens the door to new research directions for subset selection and coefficient estimation in quantile 

regression models with right-censored or interval-censored responses. 
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Table 7. Summary Statistics of Category Variables 

Variable Frequency Percentage (%) 

Sex (𝑋1)   

      Female 1550 43.9 

      Male 1984 56.1 

Exclusive breastfeeding (𝑋3)   

      Yes 2393 67.7 

      No 1141 32.3 

Healthy toilet (𝑋4)   

     Yes 2089 59.1 

     No 1445 40.9 

Clean water (𝑋5)   

     Yes 2897 82.0 

     No 637 18.0 

Health and social security (𝑋6)   

     Yes 1270 35.9 

     No 2263 64.1 

Worms (𝑋7)   

     Yes 76 2.2 

     No 3458 97.8 

Immunization (𝑋8)   

     Yes 2645 74.8 

      No 888 25.1 

Smoking (𝑋9)   

     Yes 3169 89.7 

     No 365 10.3 

Comorbidity (𝑋10)   

      Yes 240 6.8 

      No 3294 93.2 

 

Table 8.  Estimates of Model Parameters For The Stunting Data Set 

Independent 

Variable 

Bayesian Tobit QR 
Bayesian Adaptive 

LASSO Tobit QR 

Bayesian LASSO Tobit 

QR 

�̂� 
Width of 

95% CI 
�̂� 

Width of 

95% CI 
�̂� 

Width of 

95% CI 

𝜏 = 0.10 

Intercept -1.2687 3.8435 -1.1763 0.6120 -1.1045 0.5688 

𝑋1 0.0361 1.4296 0.0260 0.6240 0.0182 0.6063 

𝑋2 0.1826 0.9825 0.1450 0.6594 0.1243 0.6154 
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𝑋3 -0.3477* 1.0713 -0.3064* 0.5078 -0.2817 0.6978 

𝑋4 -0.3136 1.2417 -0.2541 0.5434 -0.2310 0.5221 

𝑋5 0.4737 1.4367 0.3971 0.5654 0.3701 0.5324 

𝑋6 -0.1363 1.2311 -0.1008 0.5123 -0.0944 0.5023 

𝑋7 -0.2830 3.6124 -0.1464 0.5435 -0.1006 0.5135 

𝑋8 -0.2244 1.3107 -0.1944 0.5100 -0.1729 0.5020 

𝑋9 -0.3404 1.9674 -0.2767 0.5311 -0.2614 0.6123 

𝑋10 -0.4988* 5.3213 -0.4212* 0.9845 -0.3541* 0.9012 

𝜏 = 0.25       

Intercept 1.5957* 0.5641 -0.0578 0.5991 -0.0378 0.5377 

𝑋1 -0.0619 0.7694 -0.0215 0.5343 -0.0283 0.4935 

𝑋2 0.1433 0.6095 0.1098 0.5295 0.0899 0.4925 

𝑋3 -1.1233* 1.2828 -0.5028* 0.6006 -0.4755* 0.6093 

𝑋4 -0.8537* 0.6480 -0.3704* 0.6939 -0.3183 0.6692 

𝑋5 1.8984* 0.4883 0.6802* 0.6495 0.6243* 0.6450 

𝑋6 -0.5210 1.2545 -0.2249 0.5711 -0.2143 0.5553 

𝑋7 -1.5750 3.0846 -0.1444 1.2772 -0.0960 0.9864 

𝑋8 -0.8007* 1.3449 -0.3466* 0.5834 -0.3365* 0.5695 

𝑋9 -1.5706* 1.5987 -0.4666* 0.4847 -0.4550* 0.4911 

𝑋10 -2.3296* 1.1956 -0.5424* 0.7752 -0.4827* 0.7141 

𝜏 = 0.50 

Intercept 2.9126* 3.7640 2.3559* 0.6500 2.3403* 0.6280 

𝑋1 0.0697 1.1307 0.0320 0.5106 0.0267 0.4853 

𝑋2 0.0253 0.7921 0.0181 0.6831 0.0131 0.6335 

𝑋3 -0.6038* 1.1028 -0.2623* 0.5078 -0.2533* 0.4977 

𝑋4 -0.3603 1.2037 -0.1418 0.5592 -0.1235 0.5342 

𝑋5 1.1556* 1.9496 0.3928* 0.7362 0.3728* 0.7223 

𝑋6 -0.2836 1.2647 -0.1110 0.5690 -0.1018 0.5475 

𝑋7 -1.1941 3.3788 -0.1351 1.2954 -0.1058 0.9136 

𝑋8 -0.3353 1.1343 -0.1376 0.4672 -0.1329 0.4519 

𝑋9 -0.6103 1.6955 -0.1708 0.4902 -0.1607 0.4773 

𝑋10 -1.4470 4.3602 -0.3178 1.0286 -0.2971 0.9785 

𝜏 = 0.75 

Intercept 4.1110* 3.7435 4.3342* 0.7151 4.2692* 0.6977 

𝑋1 0.1472 1.2296 0.0655 0.5599 0.0590 0.5443 

𝑋2 0.1317 0.8825 0.1051 0.7680 0.0944 0.7486 

𝑋3 -0.3291 1.2713 -0.1291 0.5476 -0.1300 0.5328 

𝑋4 -0.6301 1.3417 -0.2613 0.6229 -0.2449 0.6162 

𝑋5 0.6141 1.5367 0.1964 0.5637 0.1917 0.5610 

𝑋6 -0.1377 1.2460 -0.0621 0.5566 -0.0589 0.5465 

𝑋7 0.3871 4.5054 0.0357 1.1257 0.0237 1.0560 
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𝑋8 0.1336 1.2907 0.0325 0.5180 0.0259 0.5119 

𝑋9 -0.4827 1.9484 -0.1327 0.5439 -0.1342 0.5382 

𝑋10 3.8867* 5.4623 0.8300* 1.4124 0.7100* 1.3604 

𝜏 = 0.90 

Intercept 5.8011* 4.3136 6.7327 0.9600 6.7022* 0.9572 

𝑋1 0.1916 1.6364 0.0684 0.7508 0.0736 0.7618 

𝑋2 0.4978 1.1053 0.3494 1.0001 0.3671 1.0077 

𝑋3 0.0060 1.6422 -0.0093 0.6922 -0.0115 0.7133 

𝑋4 -1.7255* 1.9737 -0.7378 1.0268 -0.7330* 0.9941 

𝑋5 1.5331* 1.8645 0.5280 0.7699 0.5312* 0.7639 

𝑋6 -0.5466 1.6593 -0.2025 0.7603 -0.2087 0.7684 

𝑋7 1.1635 6.0405 0.0736 1.1796 0.0849 1.2411 

𝑋8 -0.0051 1.6999 -0.0099 0.6909 -0.0092 0.7128 

𝑋9 -1.2002 2.9985 -0.2826 0.8527 -0.3000 0.8753 

𝑋10 5.9451* 3.7166 1.4563 0.9367 1.4322* 0.9302 

 

Table 9. MAD, MSE, and RMSE 

 MAD MSE RMSE 

𝜏 = 0.10 

BTQR 3.8183 25.4302 5.0428 

BALTQR 3.7834 24.1319 4.9124 

BLTQR 3.6516 20.3420 4.5102 

𝜏 = 0.25 

BTQR 3.1183 20.4606 4.5233 

BALTQR 3.0811 20.1629 4.4903 

BLTQR 3.0546 19.9430 4.4658 

𝜏 = 0.50 

BTQR 2.1415 11.6511 3.4134 

BALTQR 2.1389 11.5841 3.4035 

BLTQR 2.1395 11.5916 3.4046 

𝜏 = 0.75 

BTQR 2.6486 13.1781 3.6302 

BALTQR 2.6251 12.9311 3.5960 

BLTQR 2.5989 12.7069 3.5647 

𝜏 = 0.90 

BTQR 4.2395 26.0259 5.1016 

BALTQR 4.1829 25.2056 5.0205 

BLTQR 4.1584 24.9575 4.9957 
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