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Abstract. A novel mathematical model is constructed in this article to understand the impact of active case findings

and treatment to suppress the spread of lymphatic filariasis. The model is constructed as a nine-dimensional

system of ordinary differential equations which considering the effect of misdiagnosis in the screening process.

The analytical study was carried out to analyze the existence and stability of the equilibrium points, the control

reproduction number, and the nonexistence of backward bifurcations in the model. Our analytical results show that

the condition of free-filariasis will always be established if the control reproduction number is less than one. On

the other hand, we always have a unique and stable endemic equilibrium if and only if the control reproduction

number is greater than one. Our sensitivity analysis has shown that a combination of active case detection, duration,

and successful probability of treatment could effectively reduce the intensity of lymphatic filariasis spread in the

population.
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1. INTRODUCTION

Lymphatic filariasis is one of the world’s oldest and most debilitating infectious diseases.

This disease is the second largest cause of permanent and long-term disability in the world af-

ter mental disability [1]. In 1997, WHO designated lymphatic filariasis as a disease that had

become a public health problem in the world. Lymphatic filariasis is indicated to have existed

since 1500 BC [2]. The replica illustration indicates this in the funeral temple of Queen Hat-

shepsut, depicting the daughter of Punt suffering from elephantiasis in her legs. Later, photos

of women with swelling in their lower legs and men with swelling in their scrotum around

1100–1200 AD were found in Japan [3].

After much research, microfilariae have been found in fluids in the scrotum, urine, blood,

arms, lymph nodes, and the abdomen of mosquitoes. Furthermore, adult male filarial worms

were discovered by Sibthrope. Furthermore, Shichiro Hida found adult male filarial worms in

the left side of the seminiferous gland (the ducts in the male genital organs) in 1903 [3]. The

case of lymphatic filariasis in Indonesia was first discovered in 1889 by Haga and Van Eecke

in Jakarta, namely by finding sufferers of scrotal lymphatic filariasis. In 1937, Brug reported

that filarial worms of the species that cause lymphatic filariasis in Indonesia are Wuchereria

bancrofti and Brugia malayi [4].

In 2018, 51 million people worldwide were infected with lymphatic filariasis [5]. Meanwhile,

in Indonesia, in 2018, there were 10,681 cases of lymphatic filariasis. Then, in 2019, lymphatic

filariasis cases in Indonesia increased to 10,758 cases and spread across 34 provinces [6].

Lymphatic filariasis is included in vector-borne diseases. Vector-borne disease is a human

disease caused by parasites and transmitted by vectors. Vectors are living organisms that can

act as intermediaries between infectious pathogens and humans or animals [7]. Filariasis is a

disease that attacks the ducts and lymph nodes, is caused by filarial worms, and is transmitted

by mosquitoes [5]. Three species of worms cause lymphatic filariasis, namely Wuchereria

bancrofti, Brugia malayi, and Brugia timori [5]. There are 23 species of mosquitoes from

five genera, namely Mansonia, Anopheles, Culex, Aedes, and Armigeres, which are vectors of

lymphatic filariasis [4].
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The spread of lymphatic filariasis involves mosquitoes and humans. When a mosquito con-

taining infective larvae (microfilaria stage 3) bites a human, the human will be infected with

the microfilaria. Next, the infective larvae grow into adult worms, which can reproduce to pro-

duce new microfilariae. The collection of adult filarial worms can cause the flow of lymph

gland secretions to become obstructed. Humans can transmit lymphatic filariasis to other hu-

mans through mosquitoes when the microfilariae are in the peripheral blood, and the human is

already at the stage of acute infection [4].

There are three stages of lymphatic filariasis development: the incubation stage, the acute

stage, and the chronic stage. During the incubation stage, the patient will not show any symp-

toms. Then, in the acute stage, clinical symptoms experienced by sufferers can include recurrent

fever, headache, and feeling weak. As for the chronic stage, sufferers can experience swelling in

several body parts, such as the legs, arms, and scrotum. If not handled properly, this disease can

cause disability and psychosocial stigma, impacting the productivity of sufferers and decreasing

their quality of life [4].

In lymphatic filariasis endemic areas, the majority of lymphatic filariasis sufferers do not

show symptoms but are positive for microfilariae [4]. From this, the process of screening to

determine whether there are microfilariae in a person’s body is one of the efforts in controlling

lymphatic filariasis. Screening is a process to identify someone who looks healthy but is at risk

of contracting a disease so that early treatment can be carried out [8].

Each screening test kit has a different sensitivity and is not 100% accurate. The test kit will

be stable if used before expiration and stored at the specified temperature [9]. So, its stability

can be disturbed if the test kit is not stored at a fixed temperature or duration.

Based on studies from various countries, most of the test accuracy and consistency did not

work as well as expected because the tests were carried out in various conditions by local

technicians [10]. In Indonesia, inaccurate test results are caused by low-quality diagnostic test

kits [11]. Furthermore, the antigen level is low enough that it cannot be detected, and the test

results can produce false negatives in individuals [10]. It can be seen that in the screening

process, there is a possibility of misdiagnosis. This can cause the undetected stage of human

infection to become more severe, and the spread of lymphatic filariasis continues to occur.



4 I.H. FEBIRIANA, V. ADISAPUTRI, P.Z. KAMALIA, D. ALDILA

Mathematical models have been used by many researchers to understand how diseases may

spread among populations; please see [12, 13, 14, 15, 16, 17, 18, 19, 20] for some examples.

In the lymphatic filariasis transmission model, there are several research models for the spread

of lymphatic filariasis. The authors in [21] introduced a mathematical model for lymphatic fi-

lariasis transmission. In this model, they consider a delay in the infection period and conclude

that focusing on early treatment is more important than late treatment. The authors in [22]

consider a lymphatic filariasis transmission model with mass treatment after pre-testing inter-

vention. A quarantine and treatment model for lymphatic filariasis was introduced by authors in

[23]. Using sensitivity analysis, the authors conclude that mosquito mortality rates are the most

sensitive parameter. In [24], the authors introduced mathematical models for lymphatic filari-

asis in Caraga Region, the Philippines. Using the Latin Hypercube Sampling (LHS) or Partial

Rank Correlation Coefficient (PRCC) method, it was shown that the infected human population

is most sensitive to treatment coverage (i.e., how much of the population receives treatment)

and treatment rates (i.e., how effective the antifilarial drugs are in reducing the parasite density

in infected humans). In [25], the authors consider the long-term effect of the medical treatment

in lymphatic filariasis, and it is shown that the current medical treatment strategy will be able

to reduce the long-term level of incidences. The authors in [26] consider the logistic growth in

periodic environments of mosquitoes and model the transmission of lymphatic filariasis. The

authors in [27] show that the effectiveness of the strategy to achieve filariasis control will be

determined by successfully addressing two key factors: the need to maintain high community

treatment coverages and the need to include vector control measures, especially in areas of high

endemicity. Recently, the authors in [28] developed a filariasis model by considering two im-

portant factors, namely the treatment and bed-net use. Please see [29, 30, 31, 32] for more

references on the mathematical model for filariasis transmission.

Based on the above description, we understand that early detection by screening is an impor-

tant intervention to handle the rapid transmission of filariasis. However, not many mathematical

models consider these factors. Furthermore, it is also possible that this screening failed to detect
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filariasis in humans. Therefore, we introduce a novel mathematical model for filariasis trans-

mission by considering some important factors, such as early screening, misdiagnosis, and the

first and second doses of treatment.

The organization of the paper is as follows: We introduce our mathematical model in Sec-

tion 2. Model analysis about the equilibrium points, control reproduction number, and local

stability of equilibrium points are given in Section 3. Some numerical experiments are also pro-

vided in Section 3 to identify the impact of some crucial parameters on the control reproduction

number. Lastly, we provide some discussion and conclusions in Section 4.

2. MODEL CONSTRUCTION

We construct our model in this section by considering some important factors, such as

detected-undetected cases, symptomatic-asymptomatic cases, and active case findings. Let hu-

man and mosquito populations be divided based on their health conditions, as shown in Table 1.

Hence, the total human population is given by

Nh(t) = S(t)+E(t)+Et(t)+ Ia(t)+ It(t)+ Ic(t)+R(t),

and for mosquito population given by Nv(t) =U(t)+V (t).

TABLE 1. Description of variables used in System (1).

Variable Description

S(t) The number of susceptible humans for lymphatic filariasis at time t

E(t) The number of undetected exposed individuals at time t

Et(t) The number of detected exposed individuals at time t

Ia(t) The number of asymptomatic infected individuals at time t

It(t) The number of symptomatic, detected, and treated infected individuals at time t

Ic(t) The number of chronically infected individuals at time t

R(t) The number of recovered individuals at time t

U(t) The number of susceptible mosquitoes at time t

V (t) The number of infected mosquitoes at time t

Nh(t) The total human population at time t

Nv(t) The total mosquito population at time t
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The model construction process is based on Figure 1 and is described. We assume that the

recruitment rate in the human and mosquito populations (Λh and Λv, respectively) is always

born as a susceptible individuals. Infections in humans occur due to a successful bite from

infected mosquitoes, with the average number of bites per day being θ1 and the probability of

a successful infection being β1. We assume that infection with lymphatic filariasis in humans

has an incubation period of δ
−1
1 . Hence, we have the δ present transition rate from E to Ia

due to the incubation of the filaria worm in the human body. We assume that an exposed

individual cannot be detected without any testing. Hence, we assume that there is an effort by

the government, with a rate of u, to conduct the lymphatic filariasis test, with a probability of

humans being successfully detected is a. In our model, we assume that all exposed individuals

will get an early treatment, which gives them a chance to be recovered with a probability of p

after a treatment period of δ
−1
2 . Exposed individuals who failed in treatment ((1− p)Et) will go

to the infected compartment and will get an advanced treatment. There is a transition from Ia to

It due to the active finding with the lymphatic filariasis test. Without any treatment or detection,

an infected individual in Ia will increase the infection status in Ic at a rate of ηa. Similar to

treatment for Et , we assume that treatment for It does not always eliminate lymphatic filariasis

from It . Hence, after treatment duration η
−1
t , q proportion of It will be recovered, while 1−q

will go to the chronic compartment Ic. We assume that the immunity from lymphatic filariasis

is not permanent. Hence, there is a transition from R to S due to waning immunity.

Table 2: Description of parameters used in System 1.

Λh Natural recruitment rate of the human population human
day

10000
65×365 Estimated

Λv Natural recruitment rate of mosquitoes mosquito
day

10000
21 Estimated

µh Natural human death rate 1
day

1
65×365 [22]

µv Natural mosquito death rate 1
day

1
21 Estimated

β1 The number of bites received by one human from

one mosquito in one day

human
mos×day 1 [22]

Par Description Units Value Ref

Continued on next page
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Table 2: Description of parameters used in System 1. (Continued)

β2 Biting rate of the mosquito to humans 1
day 1 [22]

θ1 Probability of transmission success rate from

mosquito to human

- 0.1 [31]

θ2 Probability of transmission success rate from human

to mosquito

- 0.1 Estimated

ω Rate of loss of immunity in the recovered class 1
day

1
3 [31]

δ1 Progression rate from exposed to acute class 1
day

1
4 [31]

δ2 Treatment rate of the exposed totreatment class 1
day

0.430848
7 [24]

ηa Progression rate from acute to chronic class 1
day

1
365 Estimated

ηt Treatment rate of the acute-treatment class 1
day 0.1 Estimated

ηc Treatment rate of the chronic class 1
day 0.1 Estimated

u Screening rate 1
day 0.9 Estimated

a Probability of humans being successfully detected - 0.8 Estimated

ξt Reducing factor for the number of microfilariae in

the body of infected-acute humans due to treatment

- 0.8 Estimated

ξc Reducing factor for the number of microfilariae in

the body of chronically infected chronic humans due

to treatment

- 0.0555 [23]

p Successful probability of the first dose treatment - 0.8 Estimated

q Successful probability of the second dose treatment - 0.9 [21]

Par Description Units Value Ref
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FIGURE 1. Transmission diagram of the lymphatic filariasis model in System (1).

Based on the transmission diagram in Figure 1 and the description of model derivations be-

fore, the mathematical model for malaria considering the changes in individual awareness is

given by the following system of ordinary differential equations:

dS
dt

= Λh +ωR− βhV S
Nh
−µhS,

dE
dt

=
βhV S

Nh
− (α +δ1 +µh)E,

dEt

dt
= αE− (δ2 +µh)Et ,

dIa

dt
= δ1E− (ηa +α +µh)Ia,

dIt
dt

= (1− p)δ2Et +αIa− (ηt +µh)It ,(1)

dIc

dt
= ηaIa +(1−q)ηtIt− (ηc +µh)Ic,

dR
dt

= pδ2Et +qηtIt +ηcIc− (ω +µh)R,

dU
dt

= Λv−
βvU(Ia +ξtIt +ξcIc)

Nh
−µvU,

dV
dt

=
βvU(Ia +ξtIt +ξcIc)

Nh
−µvV,
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with α = au, and the description of parameters can be seen in Table 2. This system is completed

with non-negative initial conditions:

S(0)> 0,E(0)≥ 0,Et(0)≥ 0, Ia(0)≥ 0, It(0)≥ 0,

Ic(0)≥ 0,R(0)≥ 0,U(0)≥ 0,V (0)≥ 0.

Using the same approach as the authors in [17, 33], we can show that our model always gives

non-negative solutions for all t > 0.

3. MODEL ANALYSIS

In this section, we analyze the existence criteria of all equilibrium points of System 1 and

their relationship with the respective control reproduction number. A numerical experiment

using our model was conducted using MATLAB.

3.1. Analytical results.

3.1.1. The disease-free equilibrium. The disease-free equilibrium point (DFE) is a condition

where a disease is no longer present in a population. Based on this definition, the disease-free

equilibrium point for the lymphatic filariasis spread model in System 1 is obtained when the

solution to System 1 does not change over time, and the number of infected subpopulations is

0, both for the human and mosquito populations.

From this, we can find the values of S,R, and U by substituting E = 0,Et = 0, Ia = 0, It = 0, Ic =

0,V = 0 into dS
dt = 0, dR

dt = 0, and dV
dt = 0. The disease-free equilibrium point of System 1 is

given by

DFE =

(
S0,E0,E0

t , I
0
a , I

0
t , I

0
c ,R

0,U0,V 0
)
=

(
Λh

µh
,0,0,0,0,0,0,

Λv

µv
,0
)
.

3.1.2. The control reproduction number. The control reproduction number is determined from

the spectral radius of the next-generation matrix of the respective model. Using the next-

generation matrix approach [34], the R0 of System 1 is given by,

R0 =

√
ΛhΛvβhβvk

µhµ2
v N2

h (ηa +α +µh)(α +δ1 +µh)(ηt +µh)(δ2 +µh)(ηc +µh)
,(2)
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with k

k = (1− p)((1−q)ηtξc +ξt (µh +ηc))δ2α
2 +((1−q)ηtξc +ξt (µh +ηc))

((δ2 +µh)δ1 +(1− p)δ2 (µh +ηa))α +δ1 (δ2 +µh)(µh +ηt)(ηaξc +ηc +µh) .

To further interpret R0, the equation 2 can be rewritten as follows:

R2
0 =

{
βv

µv

}
︸ ︷︷ ︸

In-out ratio Mos

{
Nv

Nh

}
︸ ︷︷ ︸

Ratio human-mos

{
1

ηa +α +muh

}
︸ ︷︷ ︸

life time of Ia

{
1

ηt +muh

}
︸ ︷︷ ︸

life time of It

{
1

ηc +muh

}
︸ ︷︷ ︸

life time of Ic{
βh

α +δ1 +µh

}
︸ ︷︷ ︸

life time of E

{
1

δ2 +muh

}
︸ ︷︷ ︸

life time of Et

k

It is clearly observed that R0 is a result of the multiplication of the number of newly infected

humans, newly infected mosquitoes, a lifetime of infected and detected exposed human com-

partments, and k. Furthermore, it is easy to show that System 1 satisfies the five conditions in

van den Driessche’s theorem [35]. Hence, using the result in [35], the local stability criteria of

DFE are stated in the following theorem.

Theorem 3.1. The disease-free equilibrium of System 1 (DFE) is always locally asymptotically

stable if R0 < 1 and unstable if R0 > 1.

In a special case where there is no intervention (case detection and treatment), we have that

α = δ2 = ηt = p = q = 0. Hence, the basic reproduction number of model 1 is given by R∗0 as

follows:

R∗0 =

√
βhΛhβvΛvδ1 (ξcηa +ηc +µh)

µhNh
2µv2 (δ1 +µh)(ηa +µh)(ηc +µh)

.(3)

To further interpret R0, the equation 3 can be rewritten as follows:

R∗
2

0 =

{
βv

µv

}
︸ ︷︷ ︸

In-out ratio Mos

{
βh

δ1 +µh

}
︸ ︷︷ ︸

In-out ratio Human

{
Nv

Nh

}
︸ ︷︷ ︸

Ratio human-mos

{
δ1

ηa +muh

}
︸ ︷︷ ︸

life time of E

{
ξcηa +ηc +µh

ηc +muh

}
︸ ︷︷ ︸

life time of Ic

.

It can be seen if there is no intervention (case detection and treatment), we have that R0 < R∗0 .
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3.1.3. Endemic equilibrium. The endemic equilibrium point (EE) is interpreted as a condition

when a disease is always present in a population. Based on this definition, the endemic equilib-

rium point for System 1 is obtained when the solution of System 1 does not change with time

and when the number of infected individuals is not equal to zero (E 6= 0,Et 6= 0, Ia 6= 0, It 6=

0, Ic 6= 0,V 6= 0).

From this, we can find the values of S,E,Et , Ia, It , Ic,R,U and V that satisfy

dS
dt

= 0,
dE
dt

= 0,
dEt

dt
= 0,

dIa

dt
= 0,

dIt
dt

= 0,
dIc

dt
= 0,

dR
dt

= 0,
dU
dt

= 0,
dV
dt

= 0

The endemic equilibrium point of System 1 is given by

EE = (S∗,E∗,E∗t , I
∗
a , I
∗
t , I
∗
c ,R
∗,U∗,V ∗),

where

S∗ =
E∗t Nh (µh +δ2)(µh +α +δ1)

V ∗αβh
,

E∗ =
E∗t (δ2 +µh)

α
, E∗t =

M0

M1
, I∗a =

E∗t δ1(δ2 +µh)

α(ηa +α +µh)
,

I∗t =
E∗t (αδ2(1− p)+δ2ηa(1− p)+δ2µh(1− p)+δ1δ2 +δ1µh

(ηt +µh)(α +ηa +µh)
,

I∗c =
E∗t M2

α(ηc +µh)(ηt +µh)(α +ηa +µh)
,

R∗ =
M3

βhαV ∗ω
, U∗ =

Λv

µv
−V ∗,

with

M0 = V ∗α Nhµv (ηt +µh)(ηc +µh)(α +ηa +µh) ,

M1 = U∗βv(δ1 (µh +δ2)((1−q)ηtξc +ξt (µh +ηc))+δ2α (α +µh +ηa)

((1− p)(1−q)ηtξc +(1− p)ξt (µh +ηc)) ,

M2 = (µh +δ2)((µh +ηt)ηa +αηt (1−q))δ1 +αδ2ηt (1−q)(1− p)(α +ηa +µh) ,

M3 = V ∗E∗t ((η2 +µh)α +(µh +δ2)(µh +δ1))(βh +Nhµh)−V ∗αΛhβh.

To have a biological meaning, R∗ and U∗ must be positive, so M3 > 0 and −V ∗+
Λv

µv
> 0 or in

other words,
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V ∗E∗t ((η2 +µh)α +(µh +δ2)(µh +δ1))(βh +Nhµh)>V ∗αΛhβh and V ∗ <
Λv

µv
.

We know that V ∗ is a positive solution of the following linear equation:

a1V ∗+a0 = 0,(4)

with

a0 = (ω +µh)(ηt +µh)(ηc +µh)(δ2 +µh)(ηa +α +µh)(α +δ1 +µh)N2
h µhµ

2
v (1+R0)(1−R0),

where a1 has a long expression to be shown in this article. However, we can confirm that a1

is always positive. From the expression of a0 and since a1 is always positive, we have the

following theorem:

Theorem 3.2. System 1 has a unique endemic equilibrium if and only if R0 > 1 and has no

endemic equilibrium otherwise.

3.1.4. Bifurcation analysis. In this section, we continue our analysis of the stability of the

lymphatic filariasis endemic equilibrium from the previous section. From Theorem 3.2, we

know that the endemic equilibrium is unique and only appears when R0 > 1. To analyze the

local stability of the endemic equilibrium, we will use the bifurcation theorem introduced by

Castillo and Song in [36]. Let us assume

S = y1, E = y2, Et = y3, Ia = y4, It = y5, Ic = y6, R = y7, U = y8, V = y9.

Hence, System 1 can be written as

g1 :=
dy1

dt
= Λh +ωy7−

βhy9y1

Nh
−µhy1,

g2 :=
dy2

dt
=

βhy9y1

Nh
− (α +δ1 +µh)y2,

g3 :=
dy3

dt
= αy2− (δ2 +µh)y3,

g4 :=
dy4

dt
= δ1y2− (ηa +α +µh)y4,

g5 :=
dy5

dt
= (1− p)δ2y3 +αy4− (ηt +µh)y5,

(5)
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g6 :=
dy6

dt
= ηay4 +(1−q)ηty5− (ηc +µh)y6,

g7 :=
dy7

dt
= pδ2y3 +qηty5 +ηcy6− (ω +µh)y7,

g8 :=
dy8

dt
= Λv−

βvy8(y4 +ξty5 +ξcy6)

Nh
−µvy8,

g9 :=
dy9

dt
=

βvy8(y4 +ξty5 +ξcy6)

Nh
−µvy9.

We assumed β ∗h = B0
B1

(please see Appendix 1 for definitions of B0 and B1) as the bifurcation

parameter such that the critical value of β ∗h makes R0 = 1. The linearized System 5 at β ∗h yields,

J =



−µh 0 0 0 0 0 ω 0 a19

0 a22 0 0 0 0 0 0 a29

0 α a33 0 0 0 0 0 0

0 δ1 0 a44 0 0 0 0 0

0 0 a53 α a55 0 0 0 0

0 0 0 ηa a65 a66 0 0 0

0 0 pδ2 0 qηt ηc a77 0 0

0 0 0 −Λvβv

µvNh
−Λvβvξt

µvNh
−Λvβvξc

µvNh
0 −µv 0

0 0 0
Λvβv

µvNh

Λvβvξt

µvNh

Λvβvξc

µvNh
0 0 −µv



,

with

a19 =
p1

p2
, a22 =−α−δ1−µh, a29 =

q1

q2
, a33 =−δ2−µh, a44 =−ηa−α−µh,

a53 = (1− p)δ2, a55 =−ηt−µh, a65 = (1−q)ηt , a66 =−ηc−µh, a77 =−ω−µh,

and please see Appendix 2 for p1, p2,q1,q2. The characteristic polynomial of A is given by,

λ (λ +µv)(λ +ω +µh)(λ +µh)(c0λ
5 + c1λ

4 + c2λ
3 + c3λ

2 + c4λ + c5) = 0.

Where ci for i = 1,2, ...,5, are positive (which has a long-expression to show in this article).

Hence, we have a simple zero eigenvalue, and the other eigenvalues are negative. Next, we
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calculated the right eigenvectors of A , denoted by w = (w1,w2, ...,w9)
T , which satisfies A w =

0. Please see Appendix 3 for the expression of w. Now, we have the left eigenvectors of A ,

denoted by v= (v1,v2, ...,v9), which satisfies vA = 0. Please see Appendix 4 for the expression

of v.

Since we have:

(1) Zero is a simple eigenvalue of the linearization matrix of the system around the disease-

free equilibrium with R0 evaluated at disease-free equilibrium, and

(2) This linearization matrix has a non-negative right and left eigenvector, where each cor-

responds to the zero eigenvalue, and other eigenvalues have negative real parts.

Then, our system can be analyzed using Castillo and Song [36].

To use the Castillo-Chavez and Song theorem, we calculated the values of J as follows:

A =
9

∑
k,i, j=1

vkwiw j
∂ 2gk

∂yi∂y j
(0,0)

= v2w1w9
∂g2

∂y1∂y9
(0,0)+ v2w9w1

∂g2

∂y9∂y1
(0,0)+ v9w4w8

∂g9

∂y4∂y8
(0,0)

+ v9w5w8
∂g9

∂y5∂y8
(0,0)+ v9w6w8

∂g9

∂y6∂y8
(0,0)+ v9w8w4

∂g9

∂y8∂y4
(0,0)

+ v9w8w5
∂g9

∂y8∂y5
(0,0)+ v9w8w6

∂g9

∂y8∂y6
(0,0)

= v2w1w9

(
2β ∗h
Nh

)
+ v9w4w8

(
2βv

Nh

)
+ v9w5w8

(
2βvξt

Nh

)
+ v9w6w8

(
2βvξc

Nh

)
.

From Appendices 3 and 4, we have w1 < 0,w4 > 0,w5 > 0,w6 > 0,w8 < 0,w9 > 0,v2 > 0, and

v9 > 0. We know that Nh > 0, β ∗h > 0, and other parameters are positive. Hence, A < 0.

Next, we calculate B as follows:

B =
9

∑
k,i=1

vkwi
∂ 2gk

∂yi∂βh
(0,0) = v2w9

∂ 2g2

∂y9∂βh
(0,0) = v2w9

Λh

µhNh
.

From Appendices 3 and 4, we have w9 > 0 and v2 > 0. We know that Nh > 0,Λh > 0, and

µh > 0. Hence, B > 0.

According to these results, the following theorem is obtained:

Theorem 3.3. The lymphatic filariasis endemic equilibrium of System 1 (EE) is always locally

asymptotically stable if R0 > 1, but close to one.
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3.2. Results of the numerical experiment.

3.2.1. Visualization of stability theorem. For the first simulation, we show the impact of case

detection on the size of R0 and the endemic equilibrium of infected mosquitoes. To conduct this

simulation, we substitute all parameter values as shown in Table 2 except α , which is set to be

the independent parameter in the expression of R0 in equation (2) and the endemic equilibrium

of V , which is the solution of equation (4) with respect to V . The result is given in Figure 2.

We can see how the increases in case detection success reduce R0 and the endemic equilibrium

of V . The endemic equilibrium size of V is significantly decreasing until it reaches point P1,

where R0 = 1. P0 is the point where α makes R0 = 1. According to Theorem 3.3, the endemic

equilibrium disappears when α increases more than P1, which makes R0 become smaller than

one.

FIGURE 2. Impact of case detection (α) on the size of R0 (blue curve) and

infected mosquitoes at endemic equilibrium (red curve). All parameter values

are in Table 2, except α , which is set as an independent parameter.

Next, we visualize Theorems 3.1 and 3.3 using numerical simulations. For the case of R0 =

1.12 > 1, the rate value of screening was used, which was successful in detecting microfilariae
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(α = 0.3), and other parameter values refer to Table 2. In the case of R0 = 0.99 < 1, the value

of α = 0.45 is used, and the other parameter values refer to Table 2. Each of these conditions is

simulated with different initial values. The following is a graph of these conditions.

FIGURE 3. The trajectories of S(t), Ic(t), and V (t) for several initial conditions

tend to a stable disease-free (blue) and endemic (red) equilibrium point.

In Figure 3, the red graph depicts when condition R0 > 1, and the blue graph depicts when

condition R0 < 1. When R0 > 1, it can be seen that all solutions tend to the same endemic equi-

librium point. The endemic equilibrium point given by EE = (S∗ = 8,587,E∗ = 120.17,E∗t =

585.34, I∗a = 99.22, I∗t = 369.57, I∗c = 39.66,R∗ = 198.12,U∗ = 9,230,V ∗ = 769.69). On the

other hand, when R0 < 1, it can be seen that all solutions tend to the same disease-free equi-

librium point. The disease-free equilibrium point given by DFE = (S0 = 10,000,E0 = 0,E0
t =

0, I0
a = 0, I0

t = 0, I0
c = 0,R0 = 0,U0 = 10,000,V 0 = 0). From this, it can be seen that with dif-

ferent initial values, the system will go to the same equilibrium point. This figure confirms

Theorem 3.1 and Theorem 3.3.

3.2.2. Normalize sensitivity analysis. To know the impact on R0, we conducted the elasticity

analysis of every parameter to R0 using the formula (6), where P is a parameter. The formula

for calculating the elasticity of R0 is defined as follows [37]:

ε
P
R0

=
∂R0

∂P
.

P
R0
≈ %∆R0

%∆P
(6)

To find out the value of this elasticity, look at two cases, namely R0 < 1 and R0 > 1. For

cases R0 < 1, we used the parameter values listed in Table 2. In this case, the resulting R0
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value is 0.87 < 1. Meanwhile, for the case of R0 > 1, the value of the screening rate parameter,

which successfully detected microfilariae α = 0.18, was used, and the other parameter values

are shown in Table 2. In this case, the resulting R0 value was 1.33 > 1. Figures 4 and 5 show

the tornado diagram for the cases of R0 < 1 and R0 > 1, respectively.

FIGURE 4. Normalize the sensitivity of R0 with respect to all parameter values

for a condition of R0 < 1.

FIGURE 5. Normalize the sensitivity of R0 with respect to all parameter values

for a condition of R0 > 1.
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For R0 < 1, we can see that the most significant parameter in R0 is µv, followed by

p,µh,Λh,Λv,βh,βv,ξt ,ηt ,α,δ1,q,ξc,ηc,ηa,δ2 and ω . Meanwhile, for R0 > 1, we can see that

the most significant parameter in R0 is µv, followed by µh,Λh,Λv,βh,βv,α,ξt ,ηt ,δ1, p,q,ηa,

ξc,ηc,δ2, and ω . Therefore, it can be seen that R0 increases when Λh,Λv,βh,βv,δ1,δ2,ξt , or ξc

increases. In contrast, increasing the value of µh,µv,ηa,ηt ,ηc,α, p, or q will reduce R0. It can

be seen that ε
R0
ω = 0, which means that the rate loss immunity does not influence the magnitude

of R0.

3.2.3. Autonomous simulation. We conducted autonomous simulations to understand the ef-

fect of the intervention on several parameters related to the spread of lymphatic filariasis. We

use the parameter values, as shown in Table 2, and the initial condition S(0) = 9,500,E(0) =

100,Et(0) = 0, Ia(0) = 100, It(0) = 0, Ic(0) = 100,R(0) = 200,U(0) = 9,500,V (0) = 500. This

simulation was carried out using the Runge-Kutta method of order four-five [36] with the help

of MATLAB. The time observed in this simulation is 1500 days.

(1) Effects of case detection (α) and second treatment duration (ηt) on R0 and the dynamics

of the infected population.

We analyzed the impacts of case detection (α) and second treatment duration (ηt) on R0

by defining R0 as a function of ηt and α . Hence, we have R0 := R0(ηt ,α) as follows:

R0 = 5,84

√√√√√ h2(α,ηt)(
ηt +

1
23.73

)
(α +0.25

)(
66

23.73
+α

) ,

with

h2(α,ηt) = 0.000068α
2
ηt +0.00099α

2 +0.000086αηt

+0.00124α +0.0015ηt +6.50×10−8.
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FIGURE 6. Sensitivity of α and ηt to the level set of R0.

As shown in Figure 6, it can be seen that the greater the value of the parameter α , the

value of R0 gets smaller. Then, it is also seen that the greater the value of the parameter

ηt , the smaller the value of R0. This confirms the elasticity value that was previously

obtained.

a. Variation of α The next simulation was carried out with a variation of the case

detection parameter (α). We used four values of α . First value using α from parameter

estimation (α = 0.30). The second, third, and fourth values were the values when we

increased the case detection (α = 0.35,α = 0.40,α = 0.45). The results are shown in

Figure 7.
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FIGURE 7. The dynamic of total infected humans for various values of α .
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As you can see in Figure 7, when we increased the case detection, the number of

infected humans decreased. So increasing the case detection rate is effective in reducing

the number of infected humans in the population.

b. Variation of ηt The next simulation was carried out with a variation of the second

treatment duration parameter (ηt). We used four values of ηt . First value using ηt from

parameter estimation (ηt = 0.073). The second, third, and fourth values were the values

when we increased the second treatment duration (ηt = 0.078,ηt = 0.083,ηt = 0.088).

The results are shown in Figure 8.
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t
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FIGURE 8. The dynamic of total infected humans for various values of ηt .

As you can see in Figure 8, when we increased the second treatment duration, the

number of infected humans decreased. So increasing the second treatment duration is

effective in reducing the number of infected humans in the population.

(2) Effects of the proportion of acutely infected humans that consume the drug regularly

(p) and the proportion of chronically infected humans that consume the drug regularly

(q) on R0 and the dynamics of the infected population.

We analyzed the impacts of the proportion of acutely infected humans that consume

the drug regularly (p) and the proportion of chronically infected humans that consume

the drug regularly (q) on R0 by defining R0 as a function of p and q. Hence, we have

R0 := R0(p,q) as follows:

R0 =
√

0.86−0.61p+282.28(0.004pq−0.004p−0.005q+0.005)2
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FIGURE 9. Sensitivity of p and q to the level set by R0.

As shown in Figure 9, it can be seen that as the parameter p is increased, the value

of R0 decreases. Then, it is also seen that the greater the value of the parameter q, the

smaller the value of R0. This confirms the elasticity value that was previously obtained.

a. Variation of p The next simulation was carried out with a variation in the pro-

portion of infected-acute humans that consume the drug regularly (p). We used four

values of p. The first value using p = 0.97. The second, third, and fourth values were

the values when we decreased the proportion (p = 0.9, p = 0.5, p = 0.1). The results

are shown in Figure 10.
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FIGURE 10. The dynamic of total infected humans for various values of p.



22 I.H. FEBIRIANA, V. ADISAPUTRI, P.Z. KAMALIA, D. ALDILA

As you can see in Figure 10, when we decreased the proportion of infected-acute

humans who consumed the drug regularly, the number of infected humans increased.

So increasing the proportion of infected-acute humans that consume the drug regularly

is effective in reducing the number of infected humans in the population.

b. Variation of q The next simulation was carried out with a variation in the pro-

portion of infected-chronic humans that consume the drug regularly (q). We used four

values of q. The first value using q = 0.01. The second, third, and fourth values were

the values when we increased the proportion (q = 0.1,q = 0.5,q = 0.9). The results are

shown in Figure 11.
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FIGURE 11. The dynamic of total infected humans for various values of q.

As you can see in Figure 11, when we increased the proportion of chronically infected

humans who consumed the drug regularly, the number of infected humans decreased.

So increasing the proportion infected-chronic human that consume the drug regularly is

effective in reducing the number of infected humans in the population.

4. CONCLUSIONS

Vector-borne diseases have been found in many tropical and sub-tropical countries, such as

malaria, dengue, lymphatic filariasis, chikungunya, etc. Filariasis is a vector-borne disease in

which infected individuals have the opportunity to experience lifelong disabilities, such as per-

manent swelling in several parts of the body [5]. Various interventions have been implemented
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in many countries, such as case detection and intensive interventions [38], [39], and [40]. There-

fore, we proposed a mathematical model for lymphatic filariasis transmission in this article. We

consider the impact of case detection (screening), treatment, and possible misdiagnosis phe-

nomena on our model.

We discussed the existence and local stability equilibrium of our model. The first equilibrium

is the filariasis-free equilibrium, which is locally asymptotically stable if the control reproduc-

tion number is less than one. The filariasis-endemic equilibrium point only exists (and is unique)

if the control reproduction number is greater than one. Using the Castillo-Song bifurcation the-

orem [36], we have shown that our model always undergoes a transcritical bifurcation when the

control reproduction number is equal to one.

To analyze the impact of case detection and treatment on our model, we perform a sensitivity

analysis on the control reproduction number of our model. We have shown that the mortality

rate always has a significant impact on the control reproduction number, and increasing this

parameter will reduce the control reproduction number. We also find that increasing case detec-

tion and its efficiency can reduce the control reproduction number significantly. Furthermore,

we notice that the efficiency (successful probability) of the first dose treatment is more signifi-

cant in reducing the control reproduction number compared to the second dose treatment. These

results indicate the importance of case detection and increasing the efficiency of early treatment

in an effort to prevent and treat lymphatic filariasis cases.

In this paper, we have shown the promising potential result of the implementation of case

detection and intensive treatment to control lymphatic filariasis. A proper combination of these

two interventions can be used to optimize the controlling effort for lymphatic filariasis eradica-

tion. We expect that these results can be a good aid in controlling lymphatic filariasis transmis-

sion.
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APPENDIX

Appendix 1. Expression of B0 and B1.

B0 = µ
2
v N2

h µh (µh +δ2)(µh +ηc)(µh +α +δ1)(α +µh +ηa)(ηt +1) ,

B1 = ΛhΛvβv(δ1 (µh +δ2)((1−q)ηtξc +ξt (µh +ηc))

+δ2α (α +µh +ηa)((1− p)(1−q)ηtξc +(1− p)ξt (µh +ηc)) .

Appendix 2. Expression of p1, p2,q1, and q2.

p1 = q1 =−µ
2
v Nh((ηt +µh)(δ2 +µh)(ηc +µh)(α

2 +(ηa +2µh +δ1)α +(δ1 +µh)(ηa +µh)),

p2 = q2 = Λvβv((1− p)((1−q)ηtξc +ξt(µh +ηc))δ2α
2 +((1−q)ηtξc +ξt(µh +ηc))((δ2 +µh)δ1

+(1− p)(µh +ηa)δ2α +δ1(δ2 +µh)(µh +ηt)(ηaξc +ηc +µh)).

Appendix 3. Right eigenvector of Model 1.

w1 =
w11

w12
, w2 =

δ2 +µh

α
w3, w3 = w3, w4 =

(δ2 +µh)δ1

α(ηa +α +µh)
w3,

w5 =
(µh +δ2)δ1 +δ2 (1− p)(α +µh +ηa)

(µh +ηt)(α +µh +ηa)
w3,

w6 =
w61

w62
w3, w7 =

w71

w72
w3, w8 =

w81

w82
w3, w9 =

w91

w92
w3,

with

w11 = (δ2 +µh)(((1−q)ηt +ηcµh)α +(µh +ηt)(µh +ηa +ηc)ω +(µh +ηt)(ηc +muh)

(α +ηa +µh)δ1 +(α +ηa +µh)((1− p)((1−q)ηt +ηc +µh)ω +(ηc +µh)(µh +ηt)α

+(µh +ω)(µh +ηt)(ηc +µh)(α +µh +δ2),

w12 = w72 = α(µh +ω)(µh +ηt)(µh +ηc)(α +µh +ηa),

w61 = δ1(µh +δ2)(ηa(µh +ηt)+(1−q)αηt)+αηtδ2(1−q)(1− p)(α +µh +ηa),

w62 = α(µh +ηt)(µh +ηc)(α +µh +ηa),

w71 = δ1(ηt(µhq+ηc)α +ηaηC(µh +ηt))(µh +δ2)+αδ2(((1−q)ηt +µh +ηc)pµh

+(µhq+ηc)(α +µh +ηa)ηt),
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w81 = w91 =−Λvβv((1− p)((1−q)ηtξc +ξt(µh +ηc))δ2α
2

+((1−q)ηtξc +ξt(µh +ηc))((δ2 +µh)δ1

+(1− p)(µh +ηa)δ2α +δ1(δ2 +µh)(µh +ηt)(ηaξc +ηc +µh)),

w82 = w92 = αµ
2
v Nh((µh +ηt)(µh +ηc)(α +µh +ηa)).

Appendix 4. Left eigenvector of Model 1.

v1 = 0, v2 =
v21

v22
, v3 =

δ2(p−1)((q−1)ηtξc−ηcξt−µhξt)

ξc(ηt +µh)(δ2 +µh)
v6,

v4 =
((1−q)α ηt +ηa (µh +ηt))ξc +(µh +ηc)(α ξt +ηt +µh)

ξc (µh +ηt)(α +µh +ηa)
v6,

v5 =
(1−q)ηtξc +ηcξt +µhξt

ξc(ηt +µh)
v6,

v6 = v6, v7 = 0, v8 = 0, v9 =
(ηc +µh)µvNh

βvΛvξc
v6,

with

v21 = (1− p)((1−q)ηtξc +ξt (µh +ηc))δ2α
2 +((1−q)ηtξc +ξt (µh +ηc))

((δ2 +µh)δ1 +(1− p)δ2 (µh +ηa))α +δ1 (δ2 +µh)(µh +ηt)(ηaξc +ηc +µh) ,

v22 = (δ2 +µh)(µh +ηt)(α +µh +δ1)(α +ηa +µh) .
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