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Abstract: In this paper, we study the growth of two iteroparous species in the same community focusing on species 

with two age classes. It is modeled using the Leslie population projection matrix. The two age classes in view are 

age classes in units of time such as months and years. We assume the species is only capable of giving birth once per 

unit of time. We also assume that the growth of both species is influenced by density-dependent growth factors that 

only occur in the first age class and harvesting in the second age class. We consider two different models, one with 

the same and the other with different levels of intraspecific and interspecific competition. In both models, we 

analyse the existence conditions and local asymptotic stability of each equilibrium point. The local asymptotic 

stability is analysed using M-matrix theory. The inherent net reproductive number is derived and its relationship to 
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the equilibrium point is explored. The results show that models with the same levels of intraspecific and 

interspecific competition do not have co-existence equilibrium points and vice versa. Then, the inherent net 

reproduction number and the levels of intraspecific and interspecific competition affect the existence and local 

asymptotic stability for each equilibrium point.  

Keywords: Leslie matrix; iteroparous; age-structured model; competition; harvesting; stability; density-dependent; 

M-matrix. 

2020 AMS Subject Classification: 39A60, 92D25. 

 

1. INTRODUCTION 

 Different species may live in a community, which is a portion of an ecosystem. Species 

within a community can be divided into semelparous species and iteroparous species. Female 

individuals of semelparous species can only give birth once in the last age group, shortly before 

death. Cicadas [1]–[4], beetles [1], [5], [6], giant Australian cuttlefish [7]–[9], and salmons [10]–

[13] are a few examples of semelparous species. An iteroparous species, on the other hand, has 

several reproductions throughout its entire lifespan. This species is abundant in a variety of 

environments. 

 In particular for species that are a source of food for humans, population dynamics must be 

studied in order to ascertain the state of the population in the future. Harvesting by humans to 

meet food demands is a factor that has an impact on growth in population [14], [15]. For this 

reason both researches those focus on the dynamics of the resources and those focus on the 

optimal harvesting of the resources are equally important [16]–[20]. In addition, several other 

factors can influence the number of species in that community. First, a species may be 

density-dependent because of the scarcity of natural resources like food and suitable habitat 

[21]–[23]. Second, competition between species is conceivable and may result from lacking 

natural resources [24]–[26]. 

 For a very long time, population dynamics have been studied using mathematical models. In 

ecological studies on plants and animals, the population matrix model has grown in popularity 
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recently [27], [28]. According to their characteristics, populations are categorized in the 

population matrix model. Age, developmental stage, body size (for instance, in small and big 

animals), and other traits might be considered as population characteristics. Leslie [29] first 

proposed an age-based discrete time population growth model in 1945. The Leslie matrix model 

is the name of this one. On sometimes, we are unable to determine the population's chronological 

age. According to their developmental stage, the population in this instance is divided into 

several categories [30]–[32]. The Lefkovitch matrix is a type of population matrix organized by 

developmental stage that was first presented in 1965 [32]. 

 Research on population growth dynamics using the Leslie matrix model in the special 

situation of the multispecies scenario started in 1968. Pennycuick et al. [33] investigated the 

multispecies model using the Leslie matrix model and computer simulations. In that study, 

Pennycuick et al. [33] separated the instances into two categories of species interactions: 

predator-prey and competitive. The Leslie matrix model was then studied in 1980, with species 

divided into semelparous and iteroparous species. Travis et al.'s [34] stability requirements for 

the Leslie matrix model were created for two semelparous species that compete or are mutually 

exclusive. Kon [35] investigated the Leslie matrix model of two species, one of which has two 

age classes and the other of which has one. The next year, Kon [36] investigated how the 

coprime number of numbers affected the age classes of two semelparous species. When two 

numbers have the largest common factor of 1, they are called coprime. Later, Kon [37] expanded 

the earlier study to include an arbitrary number of semelparous species and an arbitrary number 

of age classes for each species. Furthermore, Hasibuan et al. [38] expanded on Kon [37]'s 

research by including the harvesting factor, although only for two semelparous species with two 

age classes. Next, Hasibuan et al. [39] established models of [38] for one semelparous species 

and one iteroparous species in the same community. 

 As an extension of the models investigated in [39], we study two iteroparous species, each 

with two age classes. It is possible to use the Leslie matrix model with two age classes for 

animals with life spans of two years, two months, two weeks, or two-time units. In this study, the 
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population dynamics of the two iteroparous species are assumed to be affected by human 

harvesting and are density dependent between the two species. In both iteroparous species, 

harvesting occurs in the second age class. Then, in both iteroparous species, density dependence 

occurs only in the first age class. In addition, we also assumed that intraspecific and interspecific 

competition affected the growth of populations of both iteroparous species. Competition in 

multispecies can be divided into two competitions: interspecific competition and intraspecific 

competition. Interspecific competition occurs between species, while intraspecific competition 

occurs within the same species [40]. Furthermore, we divide this problem into two cases: 

iteroparous species with the same and different levels of intraspecific (𝑎 > 0) and interspecific 

(𝑏 > 0) competition. Hence, there are two models formed from the two problems. In both 

models, we derived the inherent net reproductive number which is often applied in research 

related to the Leslie matrix model [35]–[39], [41]. Next, we determine the equilibrium points of 

both models and their existence conditions. Finally, we analyze the asymptotic local stability of 

each equilibrium point of the two models using the M-matrix. Our aim is to investigate the 

impact of the level of intraspecific and interspecific competition along with inherent net 

reproductive number on the existence conditions and asymptotic local stability of each 

equilibrium point in both models. 

 

2. MATERIALS AND METHODS 

2.1. A Leslie Matrix Model of Two Iteroparous Species in a Community with Same Level of 

Intraspecific and Interspecific Competition. 

 In this section, we present a multispecies Leslie matrix model for two iteroparous species 

with the same level of intraspecific and interspecific competition in a community. It means that 

𝑎 = 𝑏. Because the species studied are iteroparous, both age classes of each species are assumed 

to be able to give birth. This problem is modelled with equations (1), and we refer to it as Model 

A. 
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{
 
 
 
 

 
 
 
 𝑥1(𝑡 + 1) =

𝑓𝑥1
1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)

𝑥1(𝑡) + 𝑓𝑥2𝑥2(𝑡)

𝑥2(𝑡 + 1) =
𝑠𝑥1(1 − ℎ𝑥2)

1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑥1(𝑡)

𝑦1(𝑡 + 1) =
𝑓𝑦1

1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑦1(𝑡) + 𝑓𝑦2𝑦2(𝑡)

𝑦2(𝑡 + 1) =
𝑠𝑦1(1 − ℎ𝑦2)

1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑦1(𝑡)

 (1) 

 In Table 1, a description of the Model A parameters is given. The total population of age 

class 𝑖 of the species 𝑥 and 𝑦, respectively, is represented by 𝑥𝑖(𝑡) and 𝑦𝑖(𝑡) for 𝑖 = 1, 2. 

Table 1. Description of parameters in Model A. 

Parameter Description 

𝑓𝑥𝑖 > 0 The birth rate at age 𝑖 for 𝑖 = 1,2 of species 𝑥. 

𝑓𝑦𝑖 > 0 The birth rate at age 𝑖 for 𝑖 = 1,2 of species 𝑦. 

0 < 𝑠𝑥1 ≤ 1 The survival rate of the first age class of species 𝑥. 

0 < 𝑠𝑦1 ≤ 1 The survival rate of the first age class of species 𝑦. 

0 < ℎ𝑥2 ≤ 1 The harvesting rate of the second age class of species 𝑥. 

0 < ℎ𝑦2 ≤ 1 The harvesting rate of the second age class of species 𝑦. 

 The population density of the first age class at time 𝑡 + 1 is, to put it simply, the sum of the 

populations of the species 𝑥 born in the first and second age classes at time 𝑡, according to the 

first equation in Model A. In this case, density-dependent factors that happen in both species' 

first age classes affect natural births in the first age classes of both species. The second equation 

in Model A then states that the total surviving population of the first age class of species 𝑥 at 

time 𝑡 is equal to the population density of the second age class at time 𝑡 + 1. The density 

dependence between the first age classes of both species also influences the survival rate. 

Furthermore, Model A's third and fourth equations have the same meaning as its first and second 

equations, respectively. 

2.2. A Leslie Matrix Model of Two Iteroparous Species in a Community with Different Levels of 

Intraspecific and Interspecific Competition 

 This section presents a multispecies Leslie matrix model for two iteroparous species with 
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different levels of intraspecific and interspecific competition in a community, which is an 

extension of Model A. We present an extension of Model A in equations (2) and we refer to it as 

Model B. 

{
 
 
 
 

 
 
 
 𝑥1(𝑡 + 1) =

𝑓𝑥1
1 + 𝑎𝑥1(𝑡) + 𝑏𝑦1(𝑡)

𝑥1(𝑡) + 𝑓𝑥2𝑥2(𝑡)

𝑥2(𝑡 + 1) =
𝑠𝑥1(1 − ℎ𝑥2)

1 + 𝑎𝑥1(𝑡) + 𝑏𝑦1(𝑡)
𝑥1(𝑡)

𝑦1(𝑡 + 1) =
𝑓𝑦1

1 + 𝑏𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑦1(𝑡) + 𝑓𝑦2𝑦2(𝑡)

𝑦2(𝑡 + 1) =
𝑠𝑦1(1 − ℎ𝑦2)

1 + 𝑏𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑦1(𝑡)

 (2) 

 Parameters and the details regarding the explanation of Model B are almost the same as 

Model A. The difference between the two models is the competition that affects the birth rate 

and survival of the first age class in both species 𝑥 and 𝑦. 

2.3. 𝑀-matrix and Asymptotically Local Stability Criterion Using the 𝑀-matrix 

 The asymptotic determination of the local stability of a discrete system or model can be seen 

through the absolute values of all the eigenvalues of the Jacobian matrix. Nevertheless, working 

with a system's eigenvalues from its Jacobian matrix to determine the asymptotic local stability is 

not easy. Therefore, we employ another method using asymptotic local stability introduced by 

Travis et al. [34]. The definition and theorem regarding the 𝑀-matrix can be seen below in 

Definition 1 and Theorem 1. 

Definition 1 [34]: 

A square matrix 𝐴 of size 𝑛 is said to be an 𝑀-Matrix if it satisfies two conditions. First, 

element 𝑎𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗. Second, one of the following five conditions is met 

i) All minor principals of matrix 𝐴 are positive. 

ii) All real parts of the eigenvalues of matrix 𝐴 are positive. 

iii) Matrix 𝐴 is a non-singular matrix and 𝐴−1 is a positive matrix. 

iv) There is a vector 𝑣 > 0 so that 𝐴𝑣 > 0. 

v) There is a vector 𝑤 > 0 so that 𝐴𝑇𝑤 > 0. 
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Theorem 1 [34]: 

Assume matrix 𝐽 is as follows: 

𝐽 = [
𝐴𝑘×𝑘 𝐵𝑘×𝑙
𝐶𝑙×𝑘 𝐷𝑙×𝑙

].  

If 𝐺 = 𝐼 − 𝑆𝐽𝑆−1 is an 𝑀-Matrix with 

𝑆 = 𝐼(𝑘+𝑙)×(𝑘+𝑙) if 𝐵𝑘×𝑙 and 𝐶𝑙×𝑘 ≥ 0

𝑆 = [
𝐼𝑘×𝑘 𝑂𝑘×𝑙
𝑂𝑙×𝑘 𝐼𝑙×𝑙

] if 𝐵𝑘×𝑙 and 𝐶𝑙×𝑘 ≤ 0
,  

where 𝐼(𝑘+𝑙)×(𝑘+𝑙), 𝐼𝑘×𝑘, 𝐼𝑙×𝑙, 𝑂𝑘×𝑙, and 𝑂𝑙×𝑘 respectively are identity matrices of size (𝑘 +

𝑙) × (𝑘 + 𝑙), 𝑘 × 𝑘, and 𝑙 × 𝑙 and zero matrices of size 𝑘 × 𝑙 and 𝑙 × 𝑘, then the matrix 𝐽 

has an absolute value of all eigenvalues less than one. 

 

3. MAIN RESULTS 

3.1. Inherent Net Reproductive Number from Model A and Model B 

 The inherent net reproductive number, which has been studied in research [35]–[39], [41], is 

one of the frequently applied essential aspects, particularly in the study of the Leslie matrix 

model. This quantity refers to the number of offspring expected per individual over a lifetime. 

There are two inherent net reproductive numbers, denoted by the letters 𝑅𝑥 and 𝑅𝑦 because 

our attention is on the situation of two species, species 𝑥 and 𝑦. The detailed step-by-step 

explanation of the inherent net reproductive number for species 𝑥 and 𝑦 can be found in [42]. 

 The fertility matrix 𝐹 and transition matrix 𝑇 of Model A for species 𝑥, i.e. 

𝐹𝑥 = [

𝑓𝑥1
1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)

𝑓𝑥2

0 0

] 

and 

𝑇𝑥 = [

0 0
𝑠𝑥1(1 − ℎ𝑥2)

1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)
0
]. 

Then, matrix (𝐼2 − 𝑇𝑥) is 

𝐼2 − 𝑇𝑥 = [

1 0

−
𝑠𝑥1(1 − ℎ𝑥2)

1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)
1
]  
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and 

𝐹𝑥(𝐼2 − 𝑇𝑥)
−1(𝟎) = [

𝑓𝑥1 + 𝑓𝑥2𝑠𝑥1(1 − ℎ𝑥2) 𝑓𝑥2
0 0

]. 

Then, the dominant eigenvalue of 𝐹𝑥(𝐼 − 𝑇𝑥)
−1(𝟎) is 𝑓𝑥1 + 𝑓𝑥2𝑠𝑥1(1 − ℎ𝑥2). It is therefore 

known as the 𝑅𝑥, or the inherent net reproductive number of species 𝑥. 

 Second, the fertility matrix 𝐹 and the transition matrix 𝑇 of Model A for species 𝑦, i.e. 

𝐹𝑦 = [

𝑓𝑦1

1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑓𝑦2

0 0

]   

and 

𝑇𝑦 = [

0 0
𝑠𝑦1(1 − ℎ𝑦2)

1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)
0
]. 

By using the same method as for spesies 𝑥, we obtained 

𝐹𝑦(𝐼2 − 𝑇𝑦)
−1
(𝟎) = [

𝑓𝑦1 + 𝑓𝑦2𝑠𝑦1(1 − ℎ𝑦2) 𝑓𝑦2
0 0

]. 

Then, the dominant eigenvalue of 𝐹𝑦(𝐼2 − 𝑇𝑦)
−1
(𝟎) is 𝑓𝑦1 + 𝑓𝑦2𝑠𝑦1(1 − ℎ𝑦2). It is therefore 

known as the 𝑅𝑦, or the inherent net reproductive number of species 𝑦. 

 Next, the inherent net reproductive number of Model B for both species is determined. The 

𝐹 and 𝑇 matrices for each species, i.e. 

𝐹𝑥 = [

𝑓𝑥1
1 + 𝑎𝑥1(𝑡) + 𝑏𝑦1(𝑡)

𝑓𝑥2

0 0

] , 𝑇𝑥 = [

0 0
𝑠𝑥1(1 − ℎ𝑥2)

1 + 𝑎𝑥1(𝑡) + 𝑏𝑦1(𝑡)
0
],  

𝐹𝑦 = [

𝑓𝑦1

1 + 𝑏𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑓𝑦2

0 0

],  

and 

𝑇𝑦 = [

0 0
𝑠𝑦1(1 − ℎ𝑦2)

1 + 𝑏𝑥1(𝑡) + 𝑎𝑦1(𝑡)
0
]. 

Our results show that the dominant eigenvalues of 𝐹𝑥(𝐼2 − 𝑇𝑥)
−1 (0) and 𝐹𝑥(𝐼2 − 𝑇𝑥)

−1(0) 

have the same values as the results in Model A. 

3.2. The Equilibrium Points of Model A 
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 The first step to find the equilibrium points is to construct an equilibrium model for Model A. 

the equilibrium model. The equilibrium model can be derived by expressing that the left-hand 

side of Model A depends on time 𝑡. In light of this, the equilibrium model of Model A is as 

follows: 

{
 
 
 
 

 
 
 
 𝑥1(𝑡) =

𝑓𝑥1
1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)

𝑥1(𝑡) + 𝑓𝑥2𝑥2(𝑡)

𝑥2(𝑡) =
𝑠𝑥1(1 − ℎ𝑥2)

1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑥1(𝑡)

𝑦1(𝑡) =
𝑓𝑦1

1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑦1(𝑡) + 𝑓𝑦2𝑦2(𝑡)

𝑦2(𝑡) =
𝑠𝑦1(1 − ℎ𝑦2)

1 + 𝑎𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑦1(𝑡)

, (3) 

 The next step is to find solutions from (3) and the solutions are: 

i) The extinction equilibrium point for the species 𝑥 and 𝑦 is  

𝐸0 = [𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗]𝑇 = [0,0,0,0]𝑇 . 

ii) The equilibrium point with species 𝑦 extinct, i.e. 

𝐸𝑥 = [𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗]𝑇 = [
𝑅𝑥 − 1

𝑎
,
𝑠𝑥1(1 − ℎ𝑥2)(𝑅𝑥 − 1)

𝑎𝑅𝑥
, 0,0]

𝑇

. 

iii) The equilibrium point with species 𝑥 extinct, i.e. 

𝐸𝑦 = [𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗]𝑇 = [0,0,
𝑅𝑦 − 1

𝑎
,
𝑠𝑦1(1 − ℎ𝑦2)(𝑅𝑦 − 1)

𝑎𝑅𝑦
]

𝑇

. 

 The thing that is often studied at the equilibrium point is to determine the existing condition 

at the equilibrium point. Only the 𝐸𝑥  and 𝐸𝑦  equilibrium points, according to model (3) 

solutions, do not have all of the element values equal to zero. The conditions for the existence of 

equilibrium points 𝐸𝑥 and 𝐸𝑦 of Model A are provided in Theorem 2 below. 

Theorem 2 

For Model A that 

i) The equilibrium point 𝐸𝑥 exist if 𝑅𝑥 > 1. 

ii) The equilibrium point 𝐸𝑦 exist if 𝑅𝑦 > 1. 
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Proof. In 𝐸𝑥 and 𝐸𝑦, it can be seen that the nonpositive generators are 𝑅𝑥 − 1 and 𝑅𝑦 − 1. 

Therefore, if 𝑅𝑥 > 1, then 𝐸𝑥 will exist; if 𝑅𝑦 > 1, then 𝐸𝑦 will exist. 

∎ 

3.3. Asymptotically Local Stability at Equilibrium Points of Model A 

 This section presents a theorem and an analysis of the asymptotic local stability for each 

equilibrium point of Model A. Following is Theorem 3, which details the asymptotically local 

stability of each equilibrium point of Model A.  

Theorem 3 

For Model A that 

i) If 𝑅𝑥 < 1 and 𝑅𝑦 < 1, the equilibrium point 𝐸0 is asymptotically stable locally. 

ii) If 𝑅𝑥 > 1 and 𝑅𝑥 > 𝑅𝑦, the equilibrium point 𝐸𝑥 is asymptotically stable locally. 

iii) If 𝑅𝑦 > 1 and 𝑅𝑦 > 𝑅𝑥, the equilibrium point 𝐸𝑦 is asymptotically stable locally. 

Proof. The first thing to do in the local stability problem is to determine the Jacobian matrix of 

model. The Jacobian matrix of Model A is 

𝐽(𝐸∗) = 𝐽 ([

𝑥1
∗

𝑥2
∗

𝑦1
∗

𝑦2
∗

]) =

[
 
 
 
 
 
 

𝑓𝑥1(1 + 𝑎𝑦1
∗)

(1 + 𝑎𝑥1
∗ + 𝑎𝑦1

∗)2
𝑓𝑥2 −

𝑓𝑥1𝑥1
∗𝑎

(1 + 𝑎𝑥1
∗ + 𝑎𝑦1

∗)2
0

𝑃𝑥(1 + 𝑎𝑦1
∗) 0 −𝑃𝑥𝑥1

∗𝑎 0

−
𝑓𝑦1𝑥1

∗𝑎

(1 + 𝑎𝑥1
∗ + 𝑎𝑦1

∗)2
0

𝑓𝑦1(1 + 𝑎𝑥1
∗)

(1 + 𝑎𝑥1
∗ + 𝑎𝑦1

∗)2
𝑓𝑦2

−𝑃𝑦𝑦1
∗𝑎 0 𝑃𝑦(1 + 𝑎𝑥1

∗) 0 ]
 
 
 
 
 
 

 (4) 

with 

𝑃𝑥 =
𝑠𝑥1(1 − ℎ𝑥2)

(1 + 𝑎𝑥1
∗ + 𝑎𝑦1

∗)2
  

and 

𝑃𝑦 =
𝑠𝑦1(1 − ℎ𝑦2)

(1 + 𝑎𝑥1
∗ + 𝑎𝑦1

∗)2
. 

Referring to the existence of equilibrium points, it follows that𝐽(𝐸∗)1𝑖 ≤ 0 , 𝐽(𝐸∗)2𝑖 ≤ 0 , 

𝐽(𝐸∗)3𝑗 ≤ 0, dan 𝐽(𝐸∗)4𝑗 ≤ 0 with 𝑖 = 3, 4 and 𝑗 = 1, 2, so by Theorem 1 we obtain 
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𝑆 = [

1 0 −0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

]. 

The Jacobian matrix for each equilibrium point of Model A is then determined by replacing each 

equilibrium point in (4) with the corresponding equilibrium point of Model A. Following is an 

analysis of the Jacobian Matrix for each equilibrium point of Model A and its stability using the 

𝑀-matrix theory: 

i) For 𝐸0, the Jacobian matrix is 

𝐽(𝐸0) =

[
 
 
 
 

𝑓𝑥1 𝑓𝑥2 0 0

𝑠𝑥1(1 − ℎ𝑥2) 0 0 0

0 0 𝑓𝑦1 𝑓𝑦2
0 0 𝑠𝑦1(1 − ℎ𝑦2) 0 ]

 
 
 
 

. 

After that, the matrix 

𝐺 =

[
 
 
 
 

1 − 𝑓𝑥1 −𝑓𝑥2 0 0

−𝑠𝑥1(1 − ℎ𝑥2) 1 0 0

0 0 1 − 𝑓𝑦1 −𝑓𝑦2
0 0 −𝑠𝑦1(1 − ℎ𝑦2) 1 ]

 
 
 
 

. 

It should be noted that all 𝑔𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗 meet Theorem 1's first condition. The next 

step is to establish the requirement that all of matrix 𝐺's minor principles are positive. 

Based on the calculations obtained, the matrix 𝐺's minor principles are 

𝑃𝑀1 = |𝑔11| = 1 − 𝑓𝑥1 , 𝑃𝑀2 = |
𝑔11 𝑔12
𝑔21 𝑔22

| = 1 − 𝑅𝑥,   

𝑃𝑀3 = |

𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23
𝑔31 𝑔32 𝑔33

| = (𝑓𝑦1 − 1)(1 − 𝑅𝑥), 

and      𝑃𝑀4 = |𝐺| = (1 − 𝑅𝑥)(1 − 𝑅𝑦). 

Take note that if 𝑅𝑥 < 1, 𝑃𝑀2 > 0. Because 0 < 𝑅𝑥 < 1 consequently 𝑓𝑥1 < 1 so 

that 𝑃𝑀1 > 0. Then, since 𝑅𝑥 < 1, it follows that 𝑃𝑀4 > 0 in the case of 𝑅𝑦 < 1. 

Furthermore, due to 𝑅𝑦  <  1 and 𝑅𝑥  <  1 it follows that 𝑃𝑀3  >  0. Therefore, 𝐺 is 

an 𝑀-matrix. Then, the equilibrium point 𝐸0 is locally asymptotically stable if 𝑅𝑥  <  1 

and 𝑅𝑦  <  1. 
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ii) For 𝐸𝑥, the Jacobian matrix is 

𝐽(𝐸𝑥) =

[
 
 
 
 
 
 
 
 
 

𝑓𝑥1
𝑅𝑥2

𝑓𝑥2
𝑓𝑥1(1 − 𝑅𝑥)

𝑅𝑥2
0

𝑠𝑥1(1 − ℎ𝑥2)

𝑅𝑥2
0

𝑠𝑥1(1 − ℎ𝑥2)(1 − 𝑅𝑥)

𝑅𝑥2
0

0 0
𝑓𝑦1
𝑅𝑥

𝑓𝑦2

0 0
𝑠𝑦1(1 − ℎ𝑦2)

𝑅𝑥
0
]
 
 
 
 
 
 
 
 
 

. 

After that, the matrix 

𝐺 =

[
 
 
 
 
 
 
 
 
 

𝑅𝑥
2 − 𝑓𝑥1
𝑅𝑥2

−𝑓𝑥2 −
𝑓𝑥1(𝑅𝑥 − 1)

𝑅𝑥2
0

−
𝑠𝑥1(1 − ℎ𝑥2)

𝑅𝑥2
1

𝑠𝑥1(1 − ℎ𝑥2)(1 − 𝑅𝑥)

𝑅𝑥2
0

0 0
𝑅𝑥 − 𝑓𝑦1
𝑅𝑥

−𝑓𝑦2

0 0 −
𝑠𝑦1(1 − ℎ𝑦2)

𝑅𝑥
1
]
 
 
 
 
 
 
 
 
 

. 

Let's note that, since 𝑅𝑥 > 1, all values of 𝑔𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗 are satisfied, hence the 

first condition of being an 𝑀-matrix in Definition 1 is satisfied. The next step is to 

determine the conditions for all the minor principals of matrix 𝐺 to be positive. The 

minor principals of matrix 𝐺 are  

𝑃𝑀1 =
𝑅𝑥
2 − 𝑓𝑥1
𝑅𝑥2

, 𝑃𝑀2 = −
(1 − 𝑅𝑥)

𝑅𝑥
, 𝑃𝑀3 = −

(1 − 𝑅𝑥)(𝑅𝑥 − 𝑓𝑦1)

𝑅𝑥2
 

and 

𝑃𝑀4 =
(1 − 𝑅𝑥)(𝑅𝑦 − 𝑅𝑥)

𝑅𝑥2
. 

Note that 𝑃𝑀2 > 0 if 𝑅𝑥 > 1. Because 𝑅𝑥 > 1 consequently 𝑃𝑀4 > 0 if 𝑅𝑥 >

𝑅𝑦. It is clear that 𝑅𝑥
2 = (𝑓𝑥1𝑠𝑥1(1 − ℎ𝑥2))

2

> 𝑓𝑥1  so that 𝑃𝑀1 > 0. Then, because 

𝑅𝑥 > 𝑅𝑦 > 0 and 𝑅𝑥 > 1, 𝑅𝑥 > 𝑓𝑦1 is satisfied. Therefore, 𝐺 is an 𝑀-matrix and 

equilibrium point 𝐸𝑥 is asymptotically stable locally if 𝑅𝑥 > 1 and 𝑅𝑥 > 𝑅𝑦. 
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iii) For 𝐸𝑦, the Jacobian matrix is 

𝐽(𝐸𝑦) =

[
 
 
 
 
 
 
 
 
 

𝑓𝑥1
𝑅𝑦

𝑓𝑥2 0 0

𝑠𝑥1(1 − ℎ𝑥2)

𝑅𝑦
0 0 0

−
𝑓𝑦1(𝑅𝑦 − 1)

𝑅𝑦2
0

𝑓𝑦1
𝑅𝑦2

𝑓𝑦2

𝑠𝑦1(1 − ℎ𝑦2)(1 − 𝑅𝑦)

𝑅𝑦2
0

𝑠𝑦1(1 − ℎ𝑦2)

𝑅𝑦2
0
]
 
 
 
 
 
 
 
 
 

. 

After that, the matrix 

𝐺 =

[
 
 
 
 
 
 
 
 
 

𝑅𝑦 − 𝑓𝑥1
𝑅𝑦

−𝑓𝑥2 0 0

−
𝑠𝑥1(1 − ℎ𝑥2)

𝑅𝑦
1 0 0

−
𝑓𝑦1(𝑅𝑦 − 1)

𝑅𝑦2
0

𝑅𝑦
2 − 𝑓𝑦1
𝑅𝑦2

−𝑓𝑦2

𝑠𝑥1(1 − ℎ𝑦2)(1 − 𝑅𝑦)

𝑅𝑦
2

0 −
𝑠𝑦1(1 − ℎ𝑦2)

𝑅𝑦
2

1
]
 
 
 
 
 
 
 
 
 

. 

Note that, since 𝑅𝑦 > 1 consequently all values of 𝑔𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗 are satisfied, the 

first condition is said to be 𝑀-matrix in Definition 1 is satisfied. The next step is to show 

that all the minor principles of 𝐺 are positive. Based on the calculations obtained, 

𝑃𝑀1 =
𝑅𝑦 − 𝑓𝑥1
𝑅𝑦

, 𝑃𝑀2 = 
(𝑅𝑦 − 𝑅𝑥)

𝑅𝑦
, 𝑃𝑀3 =

(𝑅𝑦 − 𝑅𝑥)(𝑅𝑦
2 − 𝑓𝑦1)

𝑅𝑦2
 

and 

𝑃𝑀4 = −
(1 − 𝑅𝑦)(𝑅𝑦 − 𝑅𝑥)

𝑅𝑦2
. 

Note that 𝑃𝑀2 > 0 if 𝑅𝑦 > 𝑅𝑥. Because 𝑅𝑦 > 1 and 𝑅𝑦 > 𝑅𝑥 consequently 𝑃𝑀4 >

0 . Then, since 0 < 𝑅𝑥 < 𝑅𝑦  it is clear that 𝑅𝑦 > 𝑓𝑥1  so that 𝑃𝑀1 > 0 . 𝑃𝑀3  is 

satisfied to be positive since it is clear that 𝑅𝑦
2 = (𝑓𝑦2𝑠𝑦1(1 − ℎ𝑦2) + 𝑓𝑦1)

2

> 𝑓𝑦1 and 

𝑅𝑦 > 𝑅𝑥. Therefore, 𝐺 is an 𝑀-Matrix, and the equilibrium point 𝐸𝑦 is asymptotically 

stable locally if 𝑅𝑦 > 1 and 𝑅𝑦 > 𝑅𝑥. 

∎ 
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3.4. The Equilibrium Points of Model B 

 In this section, we present the equilibrium points of Model B and analyze their existing 

conditions. The equilibrium representation of Model B is 

{
 
 
 
 

 
 
 
 𝑥1(𝑡) =

𝑓𝑥1
1 + 𝑎𝑥1(𝑡) + 𝑏𝑦1(𝑡)

𝑥1(𝑡) + 𝑓𝑥2𝑥2(𝑡)

𝑥2(𝑡) =
𝑠𝑥1(1 − ℎ𝑥2)

1 + 𝑎𝑥1(𝑡) + 𝑏𝑦1(𝑡)
𝑥1(𝑡)

𝑦1(𝑡) =
𝑓𝑦1

1 + 𝑏𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑦1(𝑡) + 𝑓𝑦2𝑦2(𝑡)

𝑦2(𝑡) =
𝑠𝑦1(1 − ℎ𝑦2)

1 + 𝑏𝑥1(𝑡) + 𝑎𝑦1(𝑡)
𝑦1(𝑡)

. (5) 

 Then, the following four Model B equilibrium points: 

𝐸0 = [0,0,0,0]𝑇 , 𝐸𝑥 = [
𝑅𝑥 − 1

𝑎
,
(𝑅𝑥 − 1)𝑠𝑥1(1 − ℎ𝑥2)

𝑎𝑅𝑥
, 0,0]

𝑇

, 

𝐸𝑦 = [0,0,
𝑅𝑦 − 1

𝑎
,
(𝑅𝑦 − 1)𝑠𝑦1(1 − ℎ𝑦2)

𝑎𝑅𝑦
]

𝑇

, 

and 

𝐸𝑥𝑦 = [
𝐴𝑥
𝐶
,
𝑠𝑥1(1 − ℎ𝑥2)𝐴𝑥

𝐶𝑅𝑥
,
𝐴𝑦

𝐶
,
𝑠𝑦1(1 − ℎ𝑦2)𝐴𝑦

𝐶𝑅𝑦
]

𝑇

 

where 

𝐴𝑥 = 𝑎(𝑅𝑥 − 1) − 𝑏(𝑅𝑦 − 1), 𝐴𝑦 = 𝑎(𝑅𝑦 − 1) − 𝑏(𝑅𝑥 − 1), 𝐶 = 𝑎
2 − 𝑏2. 

Finally, Theorem 4 presents the conditions needed for the 𝐸𝑥, 𝐸𝑦, and 𝐸𝑥𝑦 equilibrium points 

of Model B to exist. 

Theorem 4 

For Model B that 

i) The equilibrium point 𝐸𝑥 exist if 𝑅𝑥 > 1. 

ii) The equilibrium point 𝐸𝑦 exist if 𝑅𝑦 > 1. 

iii) The equilibrium point 𝐸𝑥𝑦 exists if 𝑎 > 𝑏, 𝐴𝑥 > 0, and 𝐴𝑦 > 0 or 𝑎 < 𝑏, 𝐴𝑥 < 0, 

and 𝐴𝑦 < 0. 
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Proof. Similarly to the equilibrium points 𝐸𝑥 and 𝐸𝑦 in Model A, it can be seen that the 

nonpositive generators are 𝑅𝑥 − 1 and 𝑅𝑦 − 1. Hence, the same conclusion is obtained: 𝐸𝑥 

exists if 𝑅𝑥 > 1 and 𝐸𝑦 exists if 𝑅𝑦 > 1. The remaining equilibrium point is 𝐸𝑥𝑦. Consider 

that the equilibrium point 𝐸𝑥𝑦 has the same denominator. Also note that the first element of 𝐸𝑥𝑦 

is included in the second element, and the third element of 𝐸𝑥𝑦 is also included in the fourth 

element of 𝐸𝑥𝑦, which must be guaranteed to be positive. Therefore, 𝐸𝑥𝑦 is positive if 𝐴𝑥 and 

𝐴𝑦 have the same sign as 𝐶. In other words, 𝐸𝑥𝑦 > 0 if 𝐶 > 0 is 𝑎 > 𝑏, 𝐴𝑥 > 0, and 𝐴𝑦 >

0 or 𝑎 < 𝑏, 𝐴𝑥 < 0, and 𝐴𝑦 < 0.  

 In this model, we obtain a co-existence equilibrium point, namely an equilibrium point with 

both species existing, which shows the influence of competition. This condition should be 

expected in a community so that the two species can coexist in one community. 

3.5. Asymptotically Local Stability at Equilibrium Points of Model B 

 The asymptotic local stability analysis is also performed on the equilibrium points of Model 

B. Theorem 5 below provides the conditions that the asymptotic local stability of the equilibrium 

points of Model B must satisfy. 

Theorem 5 

For Model B that 

i) If 𝑅𝑥 < 1 and 𝑅𝑦 < 1, the equilibrium point 𝐸0 is asymptotically stable locally. 

ii) If 𝑅𝑥 > 1 and 𝑅𝑦 < 1 +
𝑏

𝑎
(𝑅𝑥 − 1), the equilibrium point 𝐸𝑥 is asymptotically stable 

locally. 

iii) If 𝑅𝑦 > 1 and 𝑅𝑥 < 1 +
𝑏

𝑎
(𝑅𝑦 − 1), the equilibrium point 𝐸𝑦 is asymptotically stable 

locally. 

iv) If 𝑎 > 𝑏, 𝑎(𝑅𝑦 − 1) > 𝑏(𝑅𝑥 − 1), 𝑎(𝑅𝑥 − 1) > 𝑏(𝑅𝑦 − 1), 𝑅𝑦
2 > 𝑅𝑥, and 𝑓𝑥1 (𝑎(𝑎 −

𝑏) − 𝑏(𝑏𝑅𝑥 − 𝑎𝑅𝑦)) < (𝑎
2 − 𝑏2)𝑅𝑥

2, the equilibrium point 𝐸𝑥𝑦 is asymptotically stable 

locally. 

Proof. The Jacobian matrix of Model B is 
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𝐽(𝐸∗) = 𝐽 ([

𝑥1
∗

𝑥2
∗

𝑦1
∗

𝑦2
∗

]) =

[
 
 
 
 
 
 

𝑓𝑥1(1 + 𝑏𝑦1
∗)

(1 + 𝑎𝑥1
∗ + 𝑏𝑦1

∗)2
𝑓𝑥2 −

𝑏𝑓𝑥1𝑥1
∗

(1 + 𝑎𝑥1
∗ + 𝑏𝑦1

∗)2
0

𝑄𝑥(1 + 𝑏𝑦1
∗) 0 −𝑄𝑥𝑥1

∗𝑏 0

−
𝑏𝑓𝑦1𝑥1

∗

(1 + 𝑏𝑥1
∗ + 𝑎𝑦1

∗)2
0

𝑓𝑦1(1 + 𝑏𝑥1
∗)

(1 + 𝑏𝑥1
∗ + 𝑎𝑦1

∗)2
𝑓𝑦2

−𝑄𝑦𝑦1
∗𝑏 0 𝑄𝑦(1 + 𝑏𝑥1

∗) 0 ]
 
 
 
 
 
 

 (6) 

with        𝑄𝑥 =
𝑠𝑥1(1−ℎ𝑥2)

(1+𝑎𝑥1
∗+𝑏𝑦1

∗)2
  

and        𝑄𝑦 =
𝑠𝑦1(1−ℎ𝑦2)

(1+𝑏𝑥1
∗+𝑎𝑦1

∗)2
. 

Referring to the existence of equilibrium points of Model B, it follows that 𝐽(𝐸∗)1𝑖 ≤ 0, 

𝐽(𝐸∗)2𝑖 ≤ 0, 𝐽(𝐸∗)3𝑗 ≤ 0, and 𝐽(𝐸∗)4𝑗 ≤ 0 with 𝑖 = 3,4 and 𝑗 = 1,2, so by Theorem 1 we 

choose 

𝑆 = [

1 0 −0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

]. 

The Jacobian matrix for each equilibrium point of Model A is then determined by replacing each 

equilibrium point in (6) with the corresponding equilibrium point of Model B. Following is an 

analysis of the Jacobian Matrix for each equilibrium point of Model A and its stability using the 

𝑀-matrix theory: 

i) For 𝐸0, the Jacobian matrix is 

𝐽(𝐸0) =

[
 
 
 
 

𝑓𝑥1 𝑓𝑥2 0 0

𝑠𝑥1(1 − ℎ𝑥2) 0 0 0

0 0 𝑓𝑦1 𝑓𝑦2
0 0 𝑠𝑦1(1 − ℎ𝑦2) 0 ]

 
 
 
 

. 

After that, the matrix 

𝐺 =

[
 
 
 
 

1 − 𝑓𝑥1 −𝑓𝑥2 0 0

−𝑠𝑥1(1 − ℎ𝑥2) 1 0 0

0 0 1 − 𝑓𝑦1 −𝑓𝑦2
0 0 −𝑠𝑦1(1 − ℎ𝑦2) 1 ]

 
 
 
 

. 

It should be noted that all 𝑔𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗 meet Theorem 1's first condition. The next 

step is to establish the requirement that all of matrix 𝐺's minor principles are positive. 
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Based on the calculations obtained, the matrix 𝐺's minor principles are 

𝑃𝑀1 = 1 − 𝑓𝑥1 , 𝑃𝑀2 = 1 − 𝑅𝑥,   𝑃𝑀3 = (𝑓𝑦1 − 1)(1 − 𝑅𝑥), 

and        𝑃𝑀4 = (1 − 𝑅𝑥)(1 − 𝑅𝑦). 

Take note that if 𝑅𝑥 < 1, 𝑃𝑀2 > 0. Because 0 < 𝑅𝑥 < 1 consequently 𝑓𝑥1 < 1 so 

that 𝑃𝑀1 > 0. Then, since 𝑅𝑥 < 1, it follows that 𝑃𝑀4 > 0 in the case of 𝑅𝑦 < 1. 

Furthermore, due to 𝑅𝑦  <  1 and 𝑅𝑥  <  1 it follows that 𝑃𝑀3  >  0. Therefore, 𝐺 is 

an 𝑀-matrix. Then, the equilibrium point 𝐸0 is locally asymptotically stable if 𝑅𝑥  <  1 

and 𝑅𝑦  <  1. 

ii) For 𝐸𝑥, the Jacobian matrix is 

𝐽(𝐸𝑥) =

[
 
 
 
 
 
 
 
 
 

𝑓𝑥1
𝑅𝑥2

𝑓𝑥2 −
𝑏𝑓𝑥1(𝑅𝑥 − 1)

𝑎𝑅𝑥2
0

𝑠𝑥1(1 − ℎ𝑥2)

𝑅𝑥2
0 −

𝑠𝑥1(1 − ℎ𝑥2)𝑏(𝑅𝑥 − 1)

𝑎𝑅𝑥2
0

0 0
𝑎𝑓𝑦1

𝑎 + 𝑏(𝑅𝑥 − 1)
𝑓𝑦2

0 0
𝑎𝑠𝑦1(1 − ℎ𝑦2)

𝑎 + 𝑏(𝑅𝑥 − 1)
0
]
 
 
 
 
 
 
 
 
 

. 

After that, the matrix 

𝐺 =

[
 
 
 
 
 
 
 
 
 

𝑅𝑥
2 − 𝑓𝑥1
𝑅𝑥2

−𝑓𝑥2 −
𝑏𝑓𝑥1(𝑅𝑥 − 1)

𝑎𝑅𝑥2
0

−
𝑠𝑥1(1 − ℎ𝑥2)

𝑅𝑥2
1 −

𝑏𝑠𝑥1(1 − ℎ𝑥2)(𝑅𝑥 − 1)

𝑎𝑅𝑥2
0

0 0 1 −
𝑎𝑓𝑦1

𝑎 + 𝑏(𝑅𝑥 − 1)
−𝑓𝑦2

0 0 −
𝑠𝑦1(1 − ℎ𝑦2)

𝑎 + 𝑏(𝑅𝑥 − 1)
1
]
 
 
 
 
 
 
 
 
 

. 

Let's note that, since 𝑅𝑥 > 1, all values of 𝑔𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗 are satisfied, hence the 

first condition of being an 𝑀-matrix in Definition 1 is satisfied. The next step is to 

determine the conditions for all the minor principals of matrix 𝐺 to be positive. The 

minor principals of matrix 𝐺 are  

𝑃𝑀1 =
𝑅𝑥
2 − 𝑓𝑥1
𝑅𝑥2

, 𝑃𝑀2 =
𝑅𝑥 − 1

𝑅𝑥
,  
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 𝑃𝑀3 = −
(𝑅𝑥 − 1) (𝑎(𝑓𝑦1 − 1) + 𝑏(1 − 𝑅𝑥))

𝑅𝑥(𝑎 + 𝑏(𝑅𝑥 − 1))
 

and 

𝑃𝑀4 =
(𝑅𝑥 − 1) (𝑏(𝑅𝑥 − 1) − 𝑎(𝑅𝑦 − 1))

𝑅𝑥(𝑎 + 𝑏(𝑅𝑥 − 1))
. 

Because 𝑅𝑥 > 1 consequently 𝑃𝑀2 > 0. Then, it is clear that 𝑅𝑥
2 = (𝑓𝑥2𝑠𝑥1(1 −

ℎ𝑥2) + 𝑓𝑥1)
2
> 𝑓𝑥1  so that 𝑃𝑀1 > 0. Because 𝑅𝑥 > 1 consequently 𝑃𝑀4 > 0 if 

𝑎(𝑅𝑦 − 1) < 𝑏(𝑅𝑥 − 1) . Furthermore, since 𝑅𝑥 > 1  and 𝑎(𝑅𝑦 − 1) < 𝑏(𝑅𝑥 − 1) 

it is obvious that 𝑃𝑀3 > 0. Therefore, 𝐺 is an 𝑀-Matriks and the equilibrium 

point 𝐸𝑥 is asymptotically stable locally if 𝑅𝑥 > 1 and 𝑎(𝑅𝑦 − 1) < 𝑏(𝑅𝑥 − 1) 

or 𝑅𝑦 < 1 +
𝑏

𝑎
(𝑅𝑥 − 1). 

iii) For 𝐸𝑦, the Jacobian matrix is 

𝐽(𝐸𝑦) =

[
 
 
 
 
 
 
 
 
 

𝑎𝑓𝑥1
𝑎 + 𝑏(𝑅𝑦 − 1)

𝑓𝑥2 0 0

𝑎𝑠𝑥1(1 − ℎ𝑥2)

𝑎 + 𝑏(𝑅𝑦 − 1)
0 0 0

−
𝑏𝑓𝑦1(𝑅𝑦 − 1)

𝑎𝑅𝑦2
0

𝑓𝑦1
𝑅𝑦2

𝑓𝑦2

−
𝑠𝑦1(1 − ℎ𝑦2)𝑏(𝑅𝑦 − 1)

𝑎𝑅𝑦2
0

𝑠𝑦1(1 − ℎ𝑦2)

𝑅𝑦2
0
]
 
 
 
 
 
 
 
 
 

. 

After that, the matrix 

𝐺 =

[
 
 
 
 
 
 
 
 
 1 −

𝑎𝑓𝑥1
𝑎 + 𝑏(𝑅𝑦 − 1)

−𝑓𝑥2 0 0

−
𝑎𝑠𝑥1(1 − ℎ𝑥2)

𝑎 + 𝑏(𝑅𝑦 − 1)
1 0 0

−
𝑏𝑓𝑦1(𝑅𝑦 − 1)

𝑎𝑅𝑦2
0

𝑅𝑦
2 − 𝑓𝑦1
𝑅𝑦2

−𝑓𝑦2

−
𝑠𝑦1(1 − ℎ𝑦2)𝑏(𝑅𝑦 − 1)

𝑎𝑅𝑦2
0 −

𝑠𝑦1(1 − ℎ𝑦2)

𝑅𝑦2
1
]
 
 
 
 
 
 
 
 
 

. 
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Note that, since 𝑅𝑦 > 1 consequently all values of 𝑔𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗 are satisfied, the 

first condition is said to be 𝑀-matrix in Definition 1 is satisfied. The next step is to show 

that all the minor principles of 𝐺 are positive. Based on the calculations obtained, 

𝑃𝑀1 =
𝑏(𝑅𝑦 − 1) − 𝑎(𝑓𝑥1 − 1)

𝑎 + 𝑏(𝑅𝑦 − 1)
, 𝑃𝑀2 =

(𝑏(𝑅𝑦 − 1) − 𝑎(𝑅𝑥 − 1))

𝑎 + 𝑏(𝑅𝑦 − 1)
,

𝑃𝑀3 =
(𝑏(𝑅𝑦 − 1) − 𝑎(𝑅𝑥 − 1)) (𝑅𝑦

2 − 𝑓𝑦1)

(𝑎 + 𝑏(𝑅𝑦 − 1))𝑅𝑦2
 

and 

𝑃𝑀4 =
(𝑅𝑦 − 1) (𝑏(𝑅𝑦 − 1) − 𝑎(𝑅𝑥 − 1))

𝑅𝑦 (𝑎 + 𝑏(𝑅𝑦 − 1))
. 

Note that since 𝑅𝑦 > 1 the result is 𝑃𝑀2 > 0 and 𝑃𝑀4 > 0 if 𝑎(𝑅𝑥 − 1) < 𝑏(𝑅𝑦 −

1) . Then, it is clear that 𝑅𝑦
2 = (𝑓𝑦2𝑠𝑦1(1 − ℎ𝑦2) + 𝑓𝑦1 )

2
> 𝑓𝑦1  so that 𝑃𝑀3 > 0 . 

Furthermore, since 𝑅𝑦 > 1  and 𝑎(𝑅𝑥 − 1) < 𝑏(𝑅𝑦 − 1)  it is clear that 𝑃𝑀1 > 0 . 

Therefore, 𝐺 is an 𝑀-Matrix and the equilibrium point 𝐸𝑦  is asymptotically stable 

locally if 𝑅𝑦 > 1 and 𝑎(𝑅𝑥 − 1) < 𝑏(𝑅𝑦 − 1) or 𝑅𝑥 < 1 +
𝑏

𝑎
(𝑅𝑦 − 1). 

iv) For 𝐸𝑥𝑦, the Jacobian matrix is 

𝐽(𝐸𝑥𝑦) =

[
 
 
 
 
 
 
 
 
 

𝐷𝑥𝑓𝑥1
𝐶𝑅𝑥2

𝑓𝑥2 −
𝐴𝑥𝑏𝑓𝑥1
𝐶𝑅𝑥2

0

𝐷𝑥𝑠𝑥1(1 − ℎ𝑥2)

𝐶𝑅𝑥2
0 −

𝑏𝑠𝑥1(1 − ℎ𝑥2)𝐴𝑥

𝐶𝑅𝑥2
0

−
𝐴𝑦𝑏𝑓𝑦1
𝐶𝑅𝑦2

0
𝐷𝑦𝑓𝑦1
𝐶𝑅𝑦2

𝑓𝑦2

−
𝑠𝑦1(1 − ℎ𝑦2)𝑏𝐴𝑦

𝐶𝑅𝑦2
0

𝐷𝑦𝑠𝑦1(1 − ℎ𝑦2)

𝐶𝑅𝑦2
0
]
 
 
 
 
 
 
 
 
 

 

with  

𝐷𝑥 = 𝑎2 − 𝑎𝑏(1 − 𝑅𝑦) − 𝑏
2𝑅𝑥  

and 

 𝐷𝑦 = 𝑎
2 − 𝑎𝑏(1 − 𝑅𝑥) − 𝑏

2𝑅𝑦.  

After that, the matrix 
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𝐺 =

[
 
 
 
 
 
 
 
 
 1 −

𝐷𝑥𝑓𝑥1
𝐶𝑅𝑥2

−𝑓𝑥2 −
𝑏𝑓𝑥1𝐴𝑥

𝐶𝑅𝑥2
0

−
𝐷𝑥𝑠𝑥1(1 − ℎ𝑥2)

𝐶𝑅𝑥2
1 −

𝑏𝑠𝑥1(1 − ℎ𝑥2)𝐴𝑥

𝐶𝑅𝑥2
0

−
𝐴𝑦𝑏𝑓𝑦1
𝐶𝑅𝑦2

0 1 −
𝐷𝑦𝑓𝑦1
𝐶𝑅𝑦2

−𝑓𝑦2

−
𝑠𝑦1(1 − ℎ𝑦2)𝑏𝐴𝑦

𝐶𝑅𝑦2
0

𝐷𝑦𝑠𝑦1(1 − ℎ𝑦2)

𝐶𝑅𝑦2
1
]
 
 
 
 
 
 
 
 
 

. 

Note that all values of 𝑔𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗 with conditions 𝐴𝑥, 𝐴𝑦, 𝐶 > 0 or 𝐴𝑥, 𝐴𝑦, 

𝐶 < 0, which are conditions for the existence of 𝐸𝑥𝑦 so that the first condition is said to 

be 𝐺 as an 𝑀-Matrix fulfilled. The next step is to establish the requirement that all of 

matrix 𝐺's minor principles are positive. Based on the calculations obtained, the matrix 

𝐺's minor principles are 

𝑃𝑀1 = 1 −
𝐷𝑥𝑓𝑥1
𝐶𝑅𝑥2

, 𝑃𝑀2 =
𝑎𝐴𝑥
𝐶𝑅𝑥

, 𝑃𝑀3 =
(𝑎(𝑅𝑦

2 − 𝑓𝑦1) − 𝑏𝑓𝑦1(𝑅𝑥 − 1))𝐴𝑥

𝐶𝑅𝑥𝑅𝑦2
 

and 

𝑃𝑀4 =
𝐴𝑥𝐴𝑦

𝐶𝑅𝑥𝑅𝑦
. 

Note that 𝑃𝑀2 > 0  and 𝑃𝑀4 > 0  if 𝐴𝑥 , 𝐴𝑦,  and 𝐶 > 0 . Because 𝐶 > 0  which 

results in 𝑎 > 𝑏 so that 𝑃𝑀3 > 0 if (𝑅𝑦
2 − 𝑓𝑦1) > 𝑓𝑦1(𝑅𝑥 − 1) or 𝑅𝑦

2 > 𝑅𝑥 where it 

is clear that 𝑅𝑦
2 = (𝑓𝑦2𝑠𝑦1(1 − ℎ𝑦2) + 𝑓𝑦1 )

2
> 𝑓𝑦1 .  Then, 𝑃𝑀1 > 0  if 𝑓𝑥1𝐷𝑥 < 𝐶𝑅𝑥

2 . 

Therefore, 𝐺  is an 𝑀 -Matriks and equilibrium point 𝐸𝑥𝑦  is asymptotically stable 

locally if 𝑎 > 𝑏 , 𝑎(𝑅𝑦 − 1) > 𝑏(𝑅𝑥 − 1) , 𝑎(𝑅𝑥 − 1) > 𝑏(𝑅𝑦 − 1) , 𝑅𝑦
2 > 𝑅𝑥 , and 

𝑓𝑥1 (𝑎(𝑎 − 𝑏) − 𝑏(𝑏𝑅𝑥 − 𝑎𝑅𝑦)) < (𝑎2 − 𝑏2)𝑅𝑥
2.          ∎ 

 

4. NUMERICAL SOLUTIONS 

 The numerical simulation of the analysis from the Results and Discussions section is 

covered in this section. Only Theorems 3 and 5 are numerically and graphically demonstrated by 

the numerical simulations provided in this section. As a result, the parameters described in this 
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section are hypothetical parameter values. Based on the stability criteria of each equilibrium 

point in Theorems 3 and 5, Models A and B simulations will be shown in 3 and 4 cases, 

respectively. All of the parameters that we include in these simulations are measured in terms of 

time units, and the population total is determined per individual. In this simulation, it is 

considered that both Model A and Model B have 𝑥1(0) = 30,000, 𝑥2(0) = 10,000, 𝑦1(0) =

50,000, and 𝑦2(0) = 10,000 individuals.  

 The numerical simulation of Model A is separated into three cases based on the number of 

equilibrium points from Model A in Theorem 3. The intraspecific and interspecific competition 

levels are assumed to be 𝑎 = 𝑏 =  1. The values of other parameters from the numerical 

simulations of Model A for its three cases are presented in Table 2. 

Table 2. Parameter values for each case of the numerical simulation of Model A. 

Case 

Species 𝒙 Species 𝒚 

𝑹𝒙 𝑹𝒚 
𝒇𝒙𝟏 𝒔𝒙𝟏 𝒇𝒙𝟐 𝒉𝒙𝟐 𝒇𝒚𝟏  𝒔𝒚𝟏  𝒇𝒚𝟐  𝒉𝒚𝟐 

I 0.4 0.9 0.6 0.003 0.4 0.95 0.5 0.005 0.94 0.87 

II 200 0.9 500 0.003 100 0.95 200 0.005 648.65 289.05 

III 100 0.9 300 0.003 200 0.95 400 0.005 369.19 578.10 

FIGURE 1. Population growth of each age classes in case I Model A. 

 



22 

A. HASIBUAN, A. K. SUPRIATNA, E. RUSYAMAN, M. H. A. BISWAS, E. CARNIA 

 Based on the parameters presented in Table 2, for the case I that 𝑅𝑥 = 0.94 < 1 and 𝑅𝑦 =

0.87 < 1. The simulation results from the case I in Table I are presented in Figure 1, where 

Figure 1 interprets that when 𝑅𝑥 < 1 and 𝑅𝑦 < 1, the system is asymptotically stable locally 

towards the equilibrium point 𝐸0. In that sense, the populations of both species 𝑥 and 𝑦 are 

extinct. Furthermore, for case II in Table 2 that 𝑅𝑥 = 648.45 and 𝑅𝑦 = 289.05 where 𝑅𝑥 

exceeds the threshold of one and 𝑅𝑥 > 𝑅𝑦 indicates an asymptotically stable locally system 

towards 𝐸𝑥 = [647.65,0.90,0,0]𝑇 shown in Figure 3. In the sense that the population 𝑥 exists 

because it has an inherent net reproductive number greater than 𝑦 and exceeds the threshold. In 

case III from Table 2, the population 𝑦 exists where the system is asymptotically stable locally 

towards the equilibrium point 𝐸𝑦 = [0,0,577.1,0.94]
𝑇, which is shown graphically in Figure 3. 

This is because 𝑅𝑦 = 369.19 > 𝑅𝑥 = 578.10  and 𝑅𝑦 > 1 . In a sense, species 𝑦  has an 

inherent net reproductive number greater than 𝑥 and exceeds the threshold. 

FIGURE 2. Population growth of each age phase in case II Model A. 
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 The numerical simulation of Model B is separated into four cases based on the number of 

equilibrium points from model B in Theorem 5. The values of each parameter except the level of 

competition from the numerical simulations of Model B for its four cases are provided in Table 3. 

Furthermore, the intraspecific and interspecific competition levels are assumed to be 𝑎 =

 0.002 and 𝑏 =  0.001, respectively. 

 

FIGURE 3. Population growth of each age phase in case III Model A. 

 

Table 3. Parameter values for each case of the numerical simulation of Model B. 

Case 

Species 𝒙 Species 𝒚 

𝑹𝒙 𝑹𝒚 
𝒇𝒙𝟏 𝒔𝒙𝟏 𝒇𝒙𝟐 𝒉𝒙𝟐 𝒇𝒚𝟏  𝒔𝒚𝟏  𝒇𝒚𝟐  𝒉𝒚𝟐 

I 0.25 1 0.7 0.003 0.3 0.98 0.6 0.005 0.95 0.88 

II 500 1 500 0.003 120 0.98 300 0.005 998.5 412.53 

III 100 1 250 0.003 600 0.98 600 0.005 349.25 1185.06 

IV 500 1 500 0.003 600 0.98 600 0.005 998.5 1185.06 
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FIGURE 4. Population growth for each age class in case I Model B. 

 

Figure 4-7 displays the Model B's numerical simulation results for the parameters in Table 3. 

Because the parameter values in case I from Table 3 satisfy the first condition of Theorem 5, 

Figure 4 shows that the system is asymptotically stable locally towards the equilibrium point 

where all species become extinct or 𝐸0. The parameter values in case II Table 3 fulfil the second 

condition in Theorem 5, where the value of 𝑅𝑥 exceeds the threshold and fulfils the condition 

𝑎(𝑅𝑦 − 1) < 𝑏(𝑅𝑥 − 1). Consequently, the numerical simulation results in Figure 5 show that 

the system is asymptotically stable locally towards the equilibrium point 𝐸𝑥 =

[498750, 498, 0,0]𝑇. In a sense, the population that survives is only the population in species 𝑥 

for both age classes. Then, Figure 6 shows that the system is asymptotically stable locally 

towards the equilibrium point 𝐸𝑦 = [0,0,592030,487]
𝑇. In a sense, the population that survives 

is only the population in species 𝑦 for both age classes. This is because the selected parameter 

values in case III Table 3 fulfil the third condition of Theorem 5 where 𝑅𝑦 exceeds the threshold 

and 𝑎(𝑅𝑥 − 1) < 𝑏(𝑅𝑦 − 1). Next, Figure 7 shows the asymptotically stable system towards the 

co-existence equilibrium point, namely 𝐸𝑥𝑦 = [270313,270,456873,376]
𝑇 . Figure 7 shows 
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that populations 𝑥 and 𝑦 can simultaneously survive in a community if the fourth condition of 

Theorem 5 is met with the simulation example selected in case IV Table 3. 

FIGURE 5. Population growth for each age class in case II Model B. 

 

 

FIGURE 6. Population growth for each age class in case III Model B. 
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FIGURE 7. Population growth for each age class in case IV Model B. 

 

 

5. CONCLUSION 

 The problem of growth dynamics of two iteroparous species with two age classes for each 

species is developed using two models in this work. The two models consist of models on the 

growth of species affected by same and different levels of intraspecific and interspecific 

competition. The two models are referred to as Model A and Model B, respectively. Density 

dependency and harvesting were taken into account in these models. These models were 

established using the Leslie Matrix model for multispecies. In this paper, the equilibrium points 

of both models were found, and the asymptotically local stability for each equilibrium point was 

also analyzed using M-matrix theory. There were three equilibrium points obtained from Model 

A where no co-existence equilibrium point was found. Unlike the case in Model B, there was an 

additional one type of equilibrium point, namely the co-existence equilibrium point. The 

existence and stability of each equilibrium point in models A and B were characterized by the 

inherent net reproductive number of each species, namely 𝑅𝑥 and 𝑅𝑦; for a species to exist and 

be locally asymptotically stable, its value must exceed a threshold of one. Conversely, if 𝑅𝑥 and 
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𝑅𝑦 are smaller than one, both species would become extinction in the long term. However, this 

condition is not enough, so there are other conditions. The Model A showed that the equilibrium 

point with one species existing will be asymptotically locally stable if that species has a larger 

inherent net reproductive number. This demonstrates the existence of the competition exclusion 

principle. A species that is dominant no matter how small will also dominate in the long run over 

other species. The Model B showed that the equilibrium point with one species existing will be 

asymptotically stable if it satisfies the other conditions stated in Theorem 5. Then, the 

co-existence equilibrium point will be asymptotically stable if the degree of intraspecific 

competition is greater than interspecific competition and other conditions which are complex 

enough to be interpreted biologically. 

 The model presented and studied in this research is still open for development into a more 

realistic and in-depth model. The research conducted in this study is the basis to be used as a 

reference for us or other researchers to be able to develop a more general model as done by Kon 

[37], namely on an arbitrary number of iteroparous species with an arbitrary number of age 

classes. In the end, the more general model is more applicable to various species. Further 

developments that can be made from the generalization of the model include studying global 

stability, studying bifurcations in the model, and many more. 
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