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Abstract. In this paper, we develop a multi-region discrete-time SIRI epidemic model, which describes the spatial-

temporal spread of an infectious disease in a geographical domain divided into p regions and assumed to be

connected and allow their people’s mobility. We introduce two control variables into our model to study the ef-

fectiveness of travel restriction and vaccination in limiting the spread of epidemic. We aim to reduce the number

of infected individuals in all regions and minimize the cost of administering travel ban and vaccination. In addi-

tion, we propose an optimal control approach using the definition of a supplementary function that identifies the

activation of travel restriction and vaccination in every region according to health authority decisions. Numerical

results are presented where we test the spread of epidemic without any intervention, when travel restriction only is

applied, and when vaccination is added.
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1. INTRODUCTION

The mathematical modeling of infectious disease is not a recent field of recherche; it was

originally addressed by Daniel Bernoulli in the eighteenth century with his model on inocula-

tion against the endemic smallpox. Over the years, the need to understand the disease’s causes,

to predict its evolution, and to develop methods to control its development has increased. Math-

ematical models has offered some response elements to scientists. In 1927, Kermack and Mck-

endrick proposed a simple mathematical model that estimates the potential number of infected

individuals with a contagious disease in a closed community over time [1]. Their model, called

the SIR model, consists of three components: susceptible (S), infected (I) and recovered (R).

The susceptible component represents individuals who have never been infected, the infected

component represents individuals who have been infected and can spread the disease, and the

recovered component represents individuals who have been infected and recovered from the

disease and assumed to have a permanent immunity.

Numerous works have proposed to mathematically analyzing infectious diseases, and several

optimization strategies have been developed to control specific diseases [24, 25] such as ZIKA

virus [2], HIV [3, 4] Malaria [5, 6], Tuberculosis [7, 8], COVID-19 [9, 10, 26], Ebola [11],

the influenza pandemic [12] and others [13, 14]. One common factor between these infectious

diseases is their capacity to spread from one place to another, and sometimes from one continent

to another. This sheds light on the importance of disease spatial dynamics during the modeling

process.

The modeling of infectious diseases spread require an approach that takes into account the

spatial temporal evolution. In this case, modeling by partial differential equations (PDEs) is

more appropriate. However, systems involving space and time variables turn out to be very

complex to model and solve, and most of them are continuous, which contrasts with the nature

of epidemic data collected in discrete time. Some researchers have proposed a discrete approach

that makes it possible to escape the difficulties linked to the resolution and numerical manipula-

tion of PDEs such as cellular automata (CA) [15, 16], Agent-based models (ABM) [17, 23] and

an approach based on a multi-region SIR discrete-time model [18] where it is possible to model



TRAVEL RESTRICTION AND VACCINATION FOR SIRI EPIDEMIC MODEL 3

the spread of epidemics from one region to another and to show the impact of travel from an

infected region on another.

In this paper and based on the model [18], we develop a discrete time multi-region SIRI

model that describes the spatiotemporal transmission of an infectious disease in a geographical

domain divided into p regions and we add the assumption that removed individuals may relapse

and become infected which is more complicated than the SIR case. We intend to control the

spread of the epidemic and reduce the number of infected people in p regions. We consider

two control functions corresponding to travel restriction and vaccination, and we aim to study

their effectiveness and reduce the cost of their administration, as well as to determine when

movement restrictions alone can reduce the spread of the epidemic, when travel ban alone is

insufficient, and when vaccination intervention is required. We make sure that the interventions

of travel ban and vaccination are automatically activated when a region is declared an infectious

zone, which occurs when the number of infected individuals exceeds a high-risk threshold set

by the health authorities. Since this intervention may happen in multiple regions at the same

time, we develop a multi-objective optimization criteria that is subject to multi-point boundary

value optimal control problem.

Our paper is organized as follows: Section 2 represents the discrete-time SIRI epidemic

model with p regions. In Section 3 we introduce two control functions to the SIRI model

and we characterize the optimal controls using a discrete version of Pontryagin’s maximum

principle then we derive the corresponding optimality system. Finaly, in Section 4 we presents

our numerical results.

2. DISCRETE-TIME SIRI EPIDEMIC MODEL WITH p REGIONS

In this section we consider a discrete-time SIRI epidemic model in which the total host pop-

ulation is divided into three categories: susceptible (S), infected (I), and recovered (R), with

the assumption that the immunity acquired following the recovery phase is not permanent, i.e.,

the individuals who have recovered from an infection may relapse and became infected. The

interaction of different individuals from various classes will be studied within a specific domain

D , we assume that there are p connected regions (subdomains) inside D such that D =
⋃p

i=1 Di.
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Let SDi
k , IDi

k , RDi
k are respectively the number of susceptible, infected and removed individuals

who are present in the region Di at time k. Individuals from the three compartments may be

born, die, or change their compartment between the times k and k + 1. The individuals in

the susceptible compartment could stay susceptible, become infected and move to the infected

compartment, or pass away (natural death). The individuals in the infected compartment can

remain infected or get recovered and move to the recovered compartment or pass away. The

individuals in the recovered compartment may stay there or move to the infected compartment

or die.

Based on the same modeling assumptions in [18, 19, 20], it is assumed that:

i) There is constant recruitment, by birth and immigration, to the susceptible class .

ii) The birth and death happen at the same rate.

iii) Birth occurs in the home region at a rate of d > 0, as individuals who are outside their

region do not give birth. And death happens anywhere at a rate of d.

iv) It is assumed that there is no infection-related mortality.

Let NDi
k = SDi

k + IDi
k +RDi

k be the total number of individuals present in the region Di at time

k. Assume that the total number of individuals corresponding to the region Di is fixed, that is,

NDi
k+1 = NDi

k , for all k ≥ 0.

The disease transmission in a given region Di at time k is given by: ∑
p
j=1 βi j

ID j
k

NDi
k

SDi
k Where

βi j > 0 is the contact rate in region Di between susceptible and infected individuals from Di or

susceptible individual from Di and infected individual from another region D j.

The evolution of the number of susceptible, infected and removed individuals in a given region

Di is as follows:

(1)



SDi
k+1 = SDi

k −
p

∑
j=1

βi j
ID j
k

NDi
k

SDi
k +

(
NDi

k −SDi
k

)
di

IDi
k+1 = IDi

k +
p

∑
j=1

βi j
ID j
k

NDi
k

SDi
k − (αi +di) IDi

k + γiR
Di
k

RDi
k+1 = RDi

k +αiI
Di
k − (γi +di)RDi

k



TRAVEL RESTRICTION AND VACCINATION FOR SIRI EPIDEMIC MODEL 5

Where k = 0,1, ...,T −1, T is the final time, di is the birth and the natural death rate, αi is the

recovery rate, γi is the rate at which recovered individuals lose their immunity and return to the

infected compartment. It is noticeable that γi = 0 implies that the recovered individuals acquire

permanent immunity, which means that the individuals in the recovered class don’t leave the

compartment, in this case we are referring to the SIR epidemic model. All these parameters are

associated to a given region Di.

3. OPTIMAL CONTROL APPROACH: TRAVEL RESTRICTION AND VACCINATION

In this section, we use optimal control theory to minimize the number of infected individuals,

travel restriction and vaccination cost at each region Di which has been declared infectious

area. We introduce into the model (1) two control variables uDi
k and viD j

k , which characterize

respectively the vaccination intervention and the travel restriction that prevents other infected

individuals from traveling from their initial regions with high risk of infection D j and being

in contact with susceptible individuals in the region Di. The authorities usually take time to

determine the viral diagnostics and preventive techniques, to monitor and track the disease

before classifying a region as an infectious zone and restricting people’s movement. In addition,

the infectious disease vaccination is not immediately available, especially when the disease has

never been seen before. The development of a suitable vaccine takes also time. We assume that

each region with an infected number that exceeds an agreed-upon threshold T for high risk,

as determined by the health authorities, is declared as infectious, and it will be accessible for

public health intervention via travel ban and vaccination. For this reason, we define a boolean

variable δi associated to the region Di and refers to the activation of the authority’s travel ban

restriction and vaccination. δi = 1 means that the number of infected individuals in region Di

at time k exceeds T , and thus travel restriction and vaccination are applied on this region. We

can define the boolean variable δi such that:

δi =


0 IDi

k < T

1 IDi
k >T

Taking into account all of these factors, for a given region Di, the model with control terms is

as follows:
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(2)



SDi
k+1 = SDi

k −
p

∑
j=1

(
1−δiv

iD j
k

)
βi j

ID j
k

NDi
k

SDi
k +

(
NDi

k −SDi
k

)
di−δiu

Di
k SDi

k

IDi
k+1 = IDi

k +
p

∑
j=1

(
1−δiv

iD j
k

)
βi j

ID j
k

NDi
k

SDi
k − (αi +di) IDi

k + γiR
Di
k

RDi
k+1 = RDi

k +αiI
Di
k − (γi +di)RDi

k +δiu
Di
k SDi

k

We can see that when δi = 1, uDi
k SDi

k individuals move from the susceptible compartment to

the removed one at time k in region Di , so the control uDi
k may be interpreted as the proportion

of individuals to be vaccinated. Our goal is to minimize our objective functional:

(3) J(u,v) =
p

∑
j=1

δiJ j(uD j ,v jD)

where J j(uD j ,v jD) is defined by:

(4) Ji(uDi,viD) = IDi
T + ∑

l∈O

T−1

∑
k=0

(
IDi
k +δiAi

(
uDi

k

)2
+δiBi

(
viDl

k

)2
)

Where O = {l ∈ J1..pK | δl = 1} is the set of indices of regions declared infectious. Ai > 0 and

Bi > 0 are the weight factors of controls, with u =
(
uD1, ...,uDp

)
and v =

(
v1D , ...,vpD

)
, where

uDi =
(

uDi
0 , ...,uDi

T−1

)
and viDl =

(
viDl

0 , ...,viDl
T−1

)
.

We aim to minimize the number of infected individuals, in each region Di declared infectious,

during the time steps k = 1 to k = T − 1 and at the final time, as well as to reduce the cost of

administering the controls. We seek a pair of control (u,v) which minimizes the objective

functional:

(5) J(u∗,v∗) = min{J(u,v) : u ∈U and v ∈ V }

With U and V denote the control sets given by :

U =
{

u measurable, uDi
min ≤ uDi

k ≤ uDi
max

}
V =

{
v measurable, viDl

min ≤ viDl
k ≤ viDl

max

}
where k = 0, ...,T −1 and l ∈O and 0 < uDi

min < uDi
max < 1 and 0 < viDl

min < viDl
max < 1. Our optimal

control problem can be solved using the Pontryagin’s maximum principle. First, we determine
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the Hamiltonian as follow:

(6)

H =
p

∑
k′=1

δk′

(
∑
l∈O

I
D

k′

k +δk′Ak′

(
u

D
k′

k

)2

+δk′Bk′

(
vk
′
Dl

k

)2
)

+
p

∑
i=1

δi

(
ϕ

i
1,k+1

[
SDi

k −
p

∑
j=1

(
1−δiv

iD j
k

)
βi j

ID j
k

NDi
k

SDi
k +

(
NDi

k −SDi
k

)
di−δiu

Di
k SDi

k

]

+ϕ
i
2,k+1

[
IDi
k +

p

∑
j=1

(
1−δiv

iD j
k

)
βi j

ID j
k

NDi
k

SDi
k − (αi +di) IDi

k + γiR
Di
k

]

+ϕ
i
3,k+1

[
RDi

k +αiI
Di
k − (γi +di)RDi

k +δiu
Di
k SDi

k

])
Where j ∈ O

Theorem 1. Let uDi∗
k and vDl∗

k be optimal controls, and SDi∗, IDi∗ and RDi∗ are solutions of the

corresponding state system (1), there exists adjoint functions ϕ i
q,k with k = 0, ..,T−1, q∈ J1,3K,

satisfying the following equations:

(7)



∆ϕ
i
1,k =−δi

(
ϕ

i
1,k+1

[
1−

p

∑
j=1

(
1−δiv

iD j
k

)
βi j

ID j
k

NDi
k

−di−δiu
Di
k

]

+ϕ
i
2,k+1

[
p

∑
j=1

(
1−δiv

iD j
k

)
βi j

ID j
k

NDi
k

]
+ϕ

i
3,k+1

[
δiu

Di
k

])

∆ϕ
i
2,k =−δi

(
1+β j j

1

NDi
k

SDi
k

[
ϕ

i
2,k+1−ϕ

i
1,k+1

]
+(1−αi−d)ϕ i

2,k+1

+ϕ
i
3,k+1αi

)

∆ϕ
i
3,k =−δi

(
ϕ

i
2,k+1γi +ϕ

i
3,k+1 (1− γi−di)

)
Where ϕ i

1,T = 0, ϕ i
2,T = 1 and ϕ i

3,T = 0 are the transversality conditions for i = 1, ..., p.

In addition, our optimal controls

u∗ =
(
uD1∗, ...,uDp∗

)
and v∗ =

(
v1D∗, ...,vpD∗).

where uDi∗ =
(

uDi∗
0 , ...,uDi∗

T−1

)
and viD∗ =

(
viDl∗

0 , ...,viDl∗
T−1

)
, with l ∈ O , are given by:

uDi∗
k = min

max

uDi
min,δi

(
ϕ i

1,k+1−ϕ i
3,k+1

)
SDi∗

k

2Ai

 ,uDi
max

 , if δi = 1



8 SAMIRA ZOUHRI, MOHCINE EL BAROUDI, HASSAN LAARABI

uDi∗
k = 0 if δi = 0

viDl∗
k = min

max

viDl
min,δi

(
ϕ i

1,k+1−ϕ i
2,k+1

)
βilI

Dl∗
k SDi∗

k

2BiN
Di
k

 ,viDl
max

 , if δi = 1

viDl∗
k = 0, if δi = 0

Proof. We can obtain the adjoint equations using Pontryagin’s Maximum Principle[21] as fol-

lows:

∆ϕ
i
1,k =−

∂H

∂SDi
k

∆ϕ
i
2,k =−

∂H

∂ IDi
k

∆ϕ
i
3,k =−

∂H

∂RDi
k

Where ϕ i
1,T = 0, ϕ i

2,T = 1 and ϕ i
3,T = 0 are the transversality conditions for i = 1, ..., p

To derive the optimality equations, we take the variation with respect to uDi
k and viDl

k , with:

∂H

∂uDi
k

= 0 at uDi∗
k

∂H

∂viDl
k

= 0 at viDl∗
k

as well, by taking controls bounds from U and V we obtain:

uDi∗
k = min

max

uDi
min,δi

(
ϕ i

1,k+1−ϕ i
3,k+1

)
SDi∗

k

2Ai

 ,uDi
max

 , i f δi = 1

viDl∗
k = min

max

viDl
min,δi

(
ϕ i

1,k+1−ϕ i
2,k+1

)
βilI

Dl∗
k SDi∗

k

2BiN
Di
k

 ,viDl
max

 , i f δi = 1

�

Parameter Description

βi j the contact rate

di the birth and the natural death rate

αi the recovery rate

γi the immunity lose rate

TABLE 1. Description of parameter model
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region S0 I0 R0 βi j di αi γi

D1 8000 40 50 0.065 0.16 0.001 0.01

D2 10000 900 80 0.065 0.16 0.001 0.01

D3 7000 50 40 0.065 0.16 0.001 0.01

D4 9000 900 30 0.065 0.16 0.001 0.01

TABLE 2. Parameter values and initial conditions associated to the 4 regions

4. NUMERICAL RESULTS

The standard Forward-Backward sweep method (FBSM) [22], which is still applicable in this

discrete time scenario, can be used to solve our optimal control problem. This approach aims to

solve the state system (1) forward in time using an initial guess and solve the adjoint system (9)

backward in time. At each time step k, the stored values of the state and adjoint state variables

are used to characterize the optimal controls uDi∗
k and viDl∗

k .

We choose the discrete-time SIRI epidemic model with p = 4 regions, D =
⋃4

i=1 Di with

different parameters as it is mentioned in table 1. D2 and D4 are presumed to be the infec-

tious regions (ID2
0 = 900 and ID4

0 = 900) that call for vaccination and travel restrictions once

their number of infected individuals reaches the threshold T = 1000. i = 0 represents the first

authority step to determine the viral diagnostics and preventive techniques and to monitor and

track the disease before classifying a region as an infectious zone and restricting people’s move-

ment. Once D2 and D4 become infectious zone, the travel ban blocks the movement between

regions D2 ; D4 and D4 ; D2. After that we wait for the other infectious zone to appear; if it

does, the travel ban prevents people from moving between D2 ; D1 and between D4 ; D3.

Figure 1 (a) represents the state variables of the SIRI model in four regions without con-

trol. We can observe that the number of susceptible individuals in four regions decreases from

SD1
0 = 8000, SD2

0 = 10000, SD3
0 = 7000 and SD4

0 = 9000 to 4450, 6896, 3696, and 6000 respec-

tively, values that are still large. Figure 1 (b) shows the evolution of infected individuals in the

four regions. We can see that the number of infected individuals increases remarkably from

ID1
0 = 40, ID2

0 = 900, ID3
0 = 50 and ID4

0 = 900 to 3587, 4062, 3376, and 3909 respectively. We

can observe that the regions D2 and D4 reached the high risk threshold at time k = 10 while the
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regions D1 and D3 reached immediately after D1 and D3 the high risk threshold at time k = 15

due to the absence of any control. Figure 1 (c) shows the evolution of the removed individu-

als’ number over time in the four regions. The number of removed individuals decreases and

reaches a low number in each of the four regions.

We can deduce that in the lack of effective control, the epidemic may spread and cause danger-

ous damage.
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(A) Shape of state variable S associated to the
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FIGURE 1. Temporal evolution of the state variables of the SIRI model in four

regions without control

In Figure 2 (a), the travel restriction alone (u = 0) is applied where T = 500. We can see

that the number of infected individuals in four regions is remarkably decreased compared with

the case when no control. Figure 2 (b) and (c) show the evolution of susceptible and recovered

individuals during the application of travel restriction only. The number of susceptible
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decreases in four regions from the start of travel ban until k = 87 and then starts to increase

until the end of period which indicates that there is a contact between susceptible and infected

individuals. While the number of recovered individuals reach low value in four regions, this

may be explain by the fact that recovered individual not acquire a permanent immunity and can

become infected.

In this case, the strategy of travel restriction only where T = 500 has helped to reduce

the number of infection in four regions, however it is not sufficient to attain a promising

epidemiological situation especially since the four regions remain infectious until the end of

time.
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FIGURE 2. Temporal evolution of the state variables of the SIRI model in four

regions with travel restriction only where T = 500
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Figure 3 (a) (b) (c) illustrates the results when a travel restriction is applied alone for

T = 1000. It is noticed that the number of infected individuals grows and reaches a high level,

while the number of recovered people take a low value and the number of susceptible remains

high. Travel restriction alone is not suitable when the number of infections is high, especially

when removed individuals may relapse and become infected.
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FIGURE 3. Temporal evolution of the state variables of the SIRI model in four

regions with travel restriction only where T = 1000

Figure 4 shows the evolution of susceptible, infected and removed individuals when travel

restriction and vaccination are applied together for T = 1000, the case for which the travel

ban alone was not sufficient to give good results. As seen in Figure 4 (a), the reduction in the

number of infected people is more significant than the case of travel restrictions alone. We
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can see that after k = 22, the four regions have passed the high risk stage (T < 1000), and at

k = 50, the number of infected individuals appears to be nearly constant, with a slow decrease

at the end of time. We can see in Figure 4 (b) that the number of susceptible individuals has

remarkably reduced in four regions, starting with SD1
0 = 8000, SD2

0 = 10000, SD3
0 = 7000 and

SD4
0 = 9000 and reaching SD1 = 1928, SD2 = 2627, SD3 = 1684 and SD4 = 2374 at the end of

time and remain stagnant between k = 20 and k = 100. While the number of recovered people

rises very quickly and reaches high value in four regions and remain constant between k = 20

and k = 100 as it is mentioned in figure 4 (c).
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FIGURE 4. Temporal evolution of the state variables of the SIRI model in four

regions with travel restriction and vaccination where T = 1000

Figure 5 represents the controls v1D2 , v2D4 , v3D4 and v4D2 applied in regions D1, D2, D3 and

D4 respectively. The four controls starts with value 0 which means that there is no travel ban
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until that the region is declared infectious Ti >= 1000 for i = 1..4. The optimal strategy in the

four regions suggests starting with a small value of 0.2, which refers to low contact between

infected and susceptible individuals from the different regions. The travel restriction remains

strict until k = 97, where the four controls take values that exceed 0.5, which signifies that the

travel restriction effect starts to decline allowing contact.
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FIGURE 5. Shape of the travel restriction control associated to the regions D1,

D2, D3 and D4

Figure 6 represents the controls uD1 , uD2 , uD3 and uD4 applied in regions D1, D2, D3 and D4

respectively. The vaccination strategy aims to vaccine an important proportion of individuals

once the region has declared infectious until the end of time.
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FIGURE 6. Shape of the vaccination control associated to the regions D1, D2,

D3 and D4

According to our simulation results, travel restrictions alone can reduce the number of in-

fected people when the high-risk threshold is not high (Ti = 500). When it becomes large

enough, the travel ban no longer works, especially in our case of non-permanent immunity.

When travel restriction is applied with vaccination, even with a high risk threshold Ti = 1000,

this strategy has reduced the number of infection to under 650 cases in four regions and allowed

to get rid of the infectious state in the four regions.

CONCLUSION

In this work, we develop a multi-region discrete-time SIRI epidemic model that represents

the spatial-temporal transmission of an infectious disease in a geographical domain separated

into p regions. In order to control the epidemic spread in each region and to optimize more than

one objective function simultaneously, we formulate multi-objective optimization criteria. We

add to the model two control functions that describe the intervention of travel restriction and

vaccination in each region. This intervention is carried out in accordance with official decisions.

Due to this, we developed a new function to specify the regions in which the travel ban and

vaccine requirements will be implemented. The multi-point boundary value problems related
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to our optimal control problem is obtained using a discrete version of Pontryagin’s maximum

principle. Our numerical results show that travel restriction alone can reduce the number of

infected people when the number of infections is not high (high risk threshold Ti = 500). The

effectiveness of travel ban increases with how quickly it is implemented. When Ti = 1000

travel ban alone is not effective; however, when combined with vaccination, we obtain good

results.
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