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Abstract: This article suggests and explores a three-species food chain model that includes fear effects, refuges 

depending on predators, and cannibalism at the second level. The Holling type II functional response determines food 

consumption between stages of the food chain. This study examined the long-term behavior and impacts of the 

suggested model's essential elements. The model's solution properties were studied. The existence and stability of 

every probable equilibrium point were examined. The persistence needs of the system have been determined. It was 

discovered what conditions could lead to local bifurcation at equilibrium points. Appropriate Lyapunov functions are 

utilized to investigate the overall dynamics of the system. To support the analytical conclusions, numerical simulations 

were done to validate the model's inferred long-term behavior and to comprehend the implications of the model's 

significant parameters. 
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1. INTRODUCTION 

Food chains are significant environmental phenomena in several academic fields, including 

ecological science, applied mathematics, engineering, and economics. In a food chain model 

species, energy and resources flow in a single direction; however, food webs are complex because 

they comprise multiple food chains [1]. In a feeding chain, various trophic levels have been seen. 

Many types of organisms, including producers, consumers, and decomposers, can be found in the 

stimulation phases. On the other hand, a formation-wise lattice architecture is used in a food web. 

To describe the food chain as a system of differential equations, mathematical analysis, and 

modeling techniques could be employed. A food web is a conglomeration of food chains, although 

food chains are referred to as "food chains" in ecology [2-3]. 

Another intriguing aspect of the prey-predator relationship is cannibalism. When an animal 

consumes members of its own species, this behavior is known as cannibalism or intraspecific 

predation [4]. There has been a lot of discussion on how cannibalism affects environmental strategy 

for decades [5]. Cannibalism is influenced by a number of crucial variables, including population 

density, temperature, population size, developmental stage, and more [6]. Some researchers have 

looked into the mathematical representation of cannibalism, see for example [7-9]. It is intriguing 

to explore a prey-predator model with cannibalism because many animals in nature exhibit 

cannibalistic behaviors. Cannibalism has been observed in a wide range of animal species, 

including carnivore mammals, frogs, monkeys, spiders, fish, and insects, see [10]–[14]. 

In addition to cannibalism, the ecological term for the behavior of prey that hides after being 

trapped and attacked by predators is a refuge. Many prey species use the refuge strategy to ward 

off predators. Sea urchins conceal their young from crab predators in articulated coralline algae, 

while Daphnia hides its young from crab predators in shallow lakes in the Mediterranean [15-16]. 

In addition to prey's natural behavior, humans can help prey by creating conservation forests [17], 

natural areas, wildlife reserves, or even basic security. The mathematical model of prey-predator 

with prey refuge has also been the subject of many investigations [18–21]. 

Recent studies have shown that predators affect refuge prey populations in ways other than just 

killing the prey; they also instill fear in the prey, which reduces the prey birth rate [22-24]. 

Predator-induced fear keeps prey animals out of open settings, denying them the freedom to carry 
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out regular activities like mating. As a result, their capacity for reproduction is decreased by their 

fear of predators. It is critical to consider the price of anxiety as a decrease in reproduction. Wang 

et al. published a prey-predator model that took into account the effect of fear on prey reproduction 

[22]. Additionally, it was explained how a high level of fear may stabilize the system by ruling out 

the possibility of periodic fixes. Panday et al. [23] also looked into the impacts of fear using a 

Holling type-II functional response and a tri-trophic food chain model. Since the system displays 

chaotic behavior for smaller values of both of these variables, they came to the conclusion that 

chaotic oscillations may be controlled by increasing the fear parameters. A prey refuge is a great 

way to reduce the possibility that predators may use their victim's biomass excessively. But 

Abdulghafour and Naji [24] constructed and investigated a mathematical model of a prey-predator 

system including infectious diseases in the prey population. They believed that prey serves as a 

constant refuge from predators' exploitation and hunting as a defense mechanism. 

This research proposes and investigates a three-species food chain model with cannabilism at 

the second level while considering the aforementioned. The next section contains the model 

formulation. Section 3 addresses the solution's characteristics, nevertheless. The analysis of 

stability and persistence is examined in Section 4. Section 5 examines local bifurcation, while 

Section 6 provides a numerical simulation analysis of the system. Finally, the last section provided 

the conclusions. 

 

2. MODEL FORMULATION 

Recently, Andulghafour and Naji [20] proposed and studied a mathematical model of prey-

predator incorporating fear cost, predator-dependent refuge, and cannibalism given by 

𝑑𝑋

𝑑𝑇
= 𝑋 (

𝑟

1+𝑓𝑌
− 𝑑1 − 𝑏𝑋 −

𝑎1(1−𝑐𝑌)𝑌

𝐾1+𝑋(1−𝑐𝑌)
),    

𝑑𝑌

𝑑𝑇
= Y(

𝑎2𝑋(1−𝑐𝑌)

𝐾1+𝑋(1−𝑐𝑌)
+ 𝑎3 − 𝑑2 −

𝑒(1−𝑚)𝑌

𝐾2+(1−𝑚)𝑌
) ,

                                   (1) 

where 𝑋(𝑇) and 𝑌(𝑇) are the population densities of the prey and the predator at the time 𝑇 

respectively. Since the environment contains many species that interact with each other in a food 

web and food chain forms. Therefore, in this section, system (1) will be extended so that it contains 

a top predator that represents their population density at time 𝑇 by 𝑍(𝑇) consumed the predator 

species in the system (1) according to Holling type II functional response. Hence the modified 
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model that represents a food chain can be written as:   

𝑑𝑋

𝑑𝑇
= 𝑋 (

𝑟

1+𝑓𝑌
− 𝑑1 − 𝑏𝑋 −

𝑎1(1−𝑐𝑌)𝑌

𝐾1+(1−𝑐𝑌)𝑋
) = 𝑋𝑓1(𝑋, 𝑌, 𝑍),              

𝑑𝑌

𝑑𝑇
= Y(

𝑎2(1−𝑐𝑌)𝑋

𝐾1+(1−𝑐𝑌)𝑋
+ 𝑎3 − 𝑑2 −

𝑒(1−𝑚)𝑌

𝐾2+(1−𝑚)𝑌
−

𝑎4(1−𝑚)𝑍

𝐾3+(1−𝑚)𝑌
) = 𝑌𝑓2(𝑋, 𝑌, 𝑍),

𝑑𝑍

𝑑𝑇
= 𝑍 (

𝑎5(1−𝑚)𝑌

𝐾3+(1−𝑚)𝑌
− 𝑑3) = 𝑍𝑓3(𝑋, 𝑌, 𝑍),                          

           (2) 

where 𝑋(0) ≥ 0, 𝑌(0) ≥ 0, and 𝑍(0) ≥ 0, and all the coefficients are non-negative constants 

and can be described in Table (1).   

 

Table 1: parameters description. 

Parameter Description 

𝑟 The prey birth rate 

𝑑1 The prey’s natural death rate 

b The prey intraspecific competition 

𝑓 The prey’s fear level, which is involved in the fear function 
1

1+𝑓𝑌
.  

𝑎1 The intermediate predator’s attack rate 

𝐾1 The middle predator’s half-saturation constant. 

𝑐 ∈ [0,1] 
The prey’s refuge rate; hence the refuge amount is 𝑐𝑋𝑌, which leaves 𝑋(1 − 𝑐𝑌) of the prey 

available to be hunted by the predator  

𝑎2 The conversion rate of prey biomass into middle predator biomass. 

𝑎3 The conversion rate of cannibalism into middle predator birth 

𝑑2 The middle predator’s natural death rate 

𝑒 The cannibalism rate in the middle predator. 

𝐾2 The half-saturation constant of cannibalism 

𝑚 ∈ [0,1] The middle predator’s refuge rate 

𝑎4 The middle predator’s attack rate. 

𝑑3 The top predator’s natural death rate. 

𝐾3 The top predator’s half-saturation constant. 

𝑎5 The conversion rate of middle predator’s biomass into top predator biomass. 
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3. PROPERTIES OF THE SOLUTION 

Obviously, the interaction functions of the system (2) 𝐹 = (𝐹1, 𝐹2, 𝐹3) = (𝑋𝑓1, 𝑌𝑓1, 𝑍𝑓1) are 

continuous and have continuous partial derivatives on the domain ℝ+
3 = {(𝑋, 𝑌, 𝑍) ∈ ℝ3: 𝑋(0) ≥

0, 𝑌(0) ≥ 0, 𝑍(0) ≥ 0} . Therefore, by the fundamental theorem of existence and uniqueness, 

system (2) with a specific initial value has a unique solution in its domain. The system's positivity 

and boundedness in theoretical ecology establish its physiologically well-behaved form. The 

results that follow ensure the positivity and boundedness of the system's (2) solutions. 

Theorem 1: The positive cone (𝑖𝑛𝑡. ℝ+
3 ) is invariant for the system (2). 

Proof. By using a similar argument to that given in lemma (2.1) [25]. It is sufficient to prove that 

for all 𝑇 ∈ [0, 𝜏] , 𝑋(𝑇) > 0 , 𝑌(𝑇) > 0 , and 𝑍(𝑇) > 0 , where 𝜏  is any positive real number. 

Hence, using a contradiction will yield that.  

Suppose the opposite, then 𝑋(𝑇) > 0, 𝑌(𝑇) > 0, 𝑍(𝑇) > 0 for all 𝑇 ∈ [0, 𝜏0], and at least one 

of 𝑋(𝜏0), 𝑌(𝜏0), and 𝑍(𝜏0) must vanish, where 𝜏0 exists with 0 < 𝜏0 < 𝜏. Therefore system 

(2) gives us 

  

𝑋(𝑇) = 𝑋(0) exp (∫ 𝑓1(𝑋, 𝑌, 𝑍)𝑑𝑇
𝑇

0
)

𝑌(𝑇) = 𝑌(0) exp (∫ 𝑓2(𝑋, 𝑌, 𝑍)𝑑𝑇
𝑇

0
)

𝑍(𝑇) = 𝑍(0) exp (∫ 𝑓3(𝑋, 𝑌, 𝑍)𝑑𝑇
𝑇

0
)}
 
 

 
 

 

Since 𝑓𝑖(𝑋, 𝑌, 𝑍), 𝑖 = 1,2,3 are defined and continuous on [0, 𝜏0], then there exists L ≥ 0 such 

that for all 𝑇 ∈ [0, 𝜏0]: 

  

𝑋(𝑇) = 𝑋(0) exp (∫ 𝑓1(𝑋, 𝑌, 𝑍)𝑑𝑇
𝑇

0
) ≥ 𝑋(0) exp(−𝜏0L)

𝑌(𝑇) = 𝑌(0) exp (∫ 𝑓2(𝑋, 𝑌, 𝑍)𝑑𝑇
𝑇

0
) ≥ 𝑌(0) exp(−𝜏0L)

𝑍(𝑇) = 𝑍(0) exp (∫ 𝑓3(𝑋, 𝑌, 𝑍)𝑑𝑇
𝑇

0
) ≥ 𝑍(0) exp(−𝜏0L)}

 
 

 
 

 

Therefore as 𝑇 → 𝜏0, it is obtained  

  

𝑋(𝜏0) ≥ 𝑋(0) exp(−𝜏0L)

𝑌(𝜏0) ≥ 𝑌(0) exp(−𝜏0L)

𝑍(𝜏0) ≥ 𝑍(0) exp(−𝜏0L)
} 

This contradicts the fact that at least one of 𝑋(𝜏0), 𝑌(𝜏0), and 𝑍(𝜏0) must die out. Hence for all 

𝑇 ∈ [0, 𝜏], 𝑋(𝑡) > 0, 𝑌(𝑡) > 0, and 𝑍(𝑡) > 0, which completes the proof. 
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Theorem 2: All system’s (2) solutions are uniformly bounded. 

Proof: According to the first equation of system (2), it is obtained that 

  
𝑑𝑋

𝑑𝑇
≤ 𝑟𝑋 − 𝑏𝑋2 

Therefore, simple computation yields that: 𝑋 ≤
𝑟

𝑏
 as 𝑇 → ∞. Now, define the 𝑁 = 𝑋 +

𝑎1

𝑎2
𝑌 +

𝑎1𝑎4

𝑎2𝑎5
𝑍, then it is obtained that: 

  
𝑑𝑁

𝑑𝑇
≤ 2𝑟𝑋 − 𝑟𝑋 −

𝑎1

𝑎2
(𝑑2 − 𝑎3)Y −

𝑎1𝑎4

𝑎2𝑎5
𝑑3𝑍 ≤ 2

𝑟2

𝑏
− μ𝑁, 

where 𝜇 = 𝑚𝑖𝑛{𝑟, 𝑑2 − 𝑎3, 𝑑3}. Thus, solving the above differential inequality it obtained that 

𝑁 ≤
2𝑟2

𝜇𝑏
, as 𝑇 → ∞.  Therefore, the proof is complete. 

 

4. STABILITY ANALYSIS AND PERSISTENCE 

This section discusses the presence of every potential equilibrium point as well as the stability 

analysis of each one. The system's persistence constraints are then established (2). It has been 

determined that system (2) contains five potential equilibrium points, and the prerequisites for their 

existence and form are given below. 

The vanishing equilibrium point denoted by 𝑝0 = (0,0,0) always exists. 

The first axial equilibrium point, which is denoted by  𝑝1 = (�̅�, 0,0), where 

�̅� =
𝑟−𝑑1

𝑏
,                              (3) 

exists always due to the prey survival condition,  𝑟 − 𝑑1 > 0.  

The second axial equilibrium point denoted by  𝑝2 = (0, �̿�, 0) where 

 �̿� =
𝐾2(𝑎3−𝑑2)

(1−𝑚)(𝑒−𝑎3+𝑑2)
,                        (4) 

exists provided that the following conditions are satisfied. 

  0 < 𝑎3 − 𝑑2 < 𝑒.                         (5) 

The prey-free equilibrium point, which is represented by 𝑝3 = (0, �̂�, �̂�), where 

�̂� =
𝑑3𝐾3

(1−𝑚)(𝑎5−𝑑3)
                  

�̂� =
𝐾3𝑎5[(𝑎3−𝑑2)(𝐾2(𝑎5−𝑑3)+𝑑3𝐾3)−𝑒𝑑3𝐾3]

(1−𝑚)(𝑎5−𝑑3)𝑎4(𝐾2(𝑎5−𝑑3)+𝑑3𝐾3)

},                           (6) 
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exists in the positive quadrant of 𝑌𝑍 −plane provided the following conditions are met. 

 𝑑3 < 𝑎5,                                       (7) 

 𝑒𝑑3𝐾3 < (𝑎3 − 𝑑2)(𝐾2(𝑎5 − 𝑑3) + 𝑑3𝐾3).                       (8) 

The top predator-free equilibrium point denoted by 𝑝4 = (�̌�, �̌�, 0), where 

�̌� =
𝐾1[(1−𝑚)�̌�(−𝑒+𝑎3−𝑑2)+𝑎3𝐾2−𝑑2𝐾2]

(1−𝑐�̌�)[(1−𝑚)�̌�(𝑒−𝑎2−𝑎3+𝑑2)−𝐾2(𝑎2+𝑎3−𝑑2)]
,                      (9) 

while �̌� is a positive root of the following fifth-order polynomial equation 

 𝐴5𝑌
5 + 𝐴4𝑌

4 + 𝐴3𝑌
3 + 𝐴2𝑌

2 + 𝐴1𝑌 + 𝐴0 = 0,                    (10) 

where 

𝐴5 = −(1 −𝑚)2𝑐2𝑓𝑎1[(𝑒 − 𝑎2) − (𝑎3 − 𝑑2)]
2 < 0, 

𝐴4 = −𝑐(1 − 𝑚)2𝑎1(c − 2𝑓)(𝑒 − 𝑎2 − 𝑎3 + 𝑑2)
2               

+2𝑐2𝐾2𝑓𝑎1(1 − 𝑚)(𝑎2 + 𝑎3 − 𝑑2)(𝑒 − 𝑎2 − 𝑎3 + 𝑑2)
, 

𝐴3 = (1 −𝑚)2[𝑎1(2𝑐 − 𝑓)(𝑒 − 𝑎2 − 𝑎3 + 𝑑2)
2 − 𝑐𝑓𝑎2𝑑1𝐾1(𝑒 − 𝑎2 − 𝑎3 + 𝑑2)]

+2(1 − 𝑚)𝑐𝑎1𝐾2(c − 2𝑓)(𝑒 − 𝑎2 − 𝑎3 + 𝑑2)(𝑎2 + 𝑎3 − 𝑑2)

−𝑐2𝑓𝑎1(𝑎2 + 𝑎3 − 𝑑2)
2𝐾2

2

, 

𝐴2 = (1 −𝑚)2[−𝑎1(𝑒 − 𝑎2)
2 + (𝑒 − 𝑎2)(2𝑎1𝑎3 − 2𝑎1𝑑2 + 𝑐𝑟𝑎2𝐾1) − 𝑎1(𝑎3 − 𝑑2)

2

−𝑐𝑟𝑎2𝐾1(𝑎3 − 𝑑2) − 𝑏𝑓𝑎2𝐾1
2(𝑒 − 𝑎3 + 𝑑2)]

−(1 − 𝑚)2(𝑐 − 𝑓)𝑎2𝑑1𝐾1[𝑒 − 𝑎2 − 𝑎3 + 𝑑2]

+(1 − 𝑚)𝐾2[2𝑎1(2𝑐 − 𝑓)(𝑎2
2 − 𝑒𝑎3 + 2𝑎2 − 2𝑎2𝑑2 − 2𝑎3𝑑2)

+𝑐𝑓𝑎2𝑑1𝐾1(𝑎2 + 𝑎3 − 𝑑2)] + 2𝑎1𝐾2(2𝑐 − 𝑓)[𝑎3
2(1 − 𝑚) + 𝑒𝑑2(1 − 𝑚)

−𝑒𝑎2 + 𝑑2
2(1 − 𝑚)] + 𝑐𝑎1(𝑐 − 2𝑓)[−𝑎2

2𝐾2
2 − 2𝑎2𝑎3

−𝑎3
2𝐾2

2 + 2𝑎2𝑑2𝐾2
2 + 2𝑎3𝑑2𝐾2

2 − 𝑑2
2𝐾2

2]

, 

𝐴1 = 𝑎2𝐾1(1 − 𝑚)
2[−𝑟(𝑒 − 𝑎2 − 𝑎3 + 𝑑2) + 𝑑1(𝑒 − 𝑎2 − 𝑎3 + 𝑑2)

−𝑏𝐾1(𝑒 − 𝑎2 − 𝑎3 + 𝑑2)] + 𝐾2(1 − 𝑚)[2𝑎1𝑎2(𝑒 − 𝑎2)

+2𝑎1𝑎3(𝑒 − 2𝑎2 − 𝑎3) − 2𝑎1𝑑2(𝑒 − 2𝑎2 − 2𝑎3 + 𝑑2)

−𝑐𝑟𝑎2𝐾1(𝑎2 + 𝑎3 − 𝑑2) + 𝑏𝑓𝑎2𝐾1
2(𝑎3 − 𝑑2)]

+𝑎2𝑑1𝐾1𝐾2(𝑐 − 𝑓)(1 − 𝑚)[𝑎2 + 𝑎3 − 𝑑2]

+𝑎1𝐾2
2(2𝑐 − 𝑓)(𝑎2 + 𝑎3 − 𝑑2)

2

, 

𝐴0 = 𝐾1𝐾2(1 − 𝑚)(𝑟 − 𝑑1)𝑎2(𝑎2 + 𝑎3 − 𝑑2) + 𝐾1
2𝐾2𝑏𝑎2(1 −𝑚)[𝑎3 − 𝑑2]

−𝐾2
2𝑎1(𝑎2 + 𝑎3 − 𝑑2)

2 . 

Obviously, the point 𝑝4 exists uniquely in the positive quadrant of the 𝑋𝑌 −plane provided that 

the following conditions are met 

(1 − 𝑚)�̌�(−𝑒 + 𝑎3 − 𝑑2) + 𝑎3𝐾2 − 𝑑2𝐾2 > 0

(1 − 𝑚)�̌�(𝑒 − 𝑎2 − 𝑎3 + 𝑑2) − 𝐾2(𝑎2 + 𝑎3 − 𝑑2) > 0
}               (11) 

With one set of the following sets of conditions  
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𝐴4 < 0, 𝐴3 < 0, 𝐴2 < 0, 𝐴1 < 0, 𝐴0 > 0.
𝐴4 > 0, 𝐴3 > 0, 𝐴2 > 0, 𝐴1 > 0, 𝐴0 > 0.
𝐴4 < 0, 𝐴3 < 0, 𝐴2 < 0, 𝐴1 ≠ 0, 𝐴0 > 0.
𝐴4 < 0, 𝐴3 < 0, 𝐴2 ≠ 0, 𝐴1 > 0, 𝐴0 > 0.
𝐴4 < 0, 𝐴3 ≠ 0, 𝐴2 > 0, 𝐴1 > 0, 𝐴0 > 0.
𝐴4 ≠ 0, 𝐴3 > 0, 𝐴2 > 0, 𝐴1 > 0, 𝐴0 > 0.}

 
 

 
 

                       (12) 

The positive equilibrium point denoted by 𝑝5 = (�̃�, �̃�, �̃�), where 

�̃� =
𝑑3𝐾3

(1−𝑚)(𝑎5−𝑑3)
,                           

�̃� =
𝐾3+(1−𝑚)�̃�

𝑎4(1−𝑚)
[
𝑎2(1−𝑐�̃�)�̃�

𝐾1+(1−𝑐�̃�)�̃�
+ 𝑎3 − 𝑑2 −

𝑒(1−𝑚)�̃�

𝐾2+(1−𝑚)�̃�
]
},                (13) 

while �̃� represents the unique positive root of the second-order polynomial equation 

 𝐵2𝑋
2 + 𝐵1𝑋 + 𝐵0 = 0,                                     (14) 

where 

𝐵2 = 𝑏(1 − 𝑚)3(𝑎5 − 𝑑3)
3 − 𝑏𝑑3𝐾3(1 − 𝑚)

2(𝑐 − 𝑓)(𝑎5 − 𝑑3)
2

−𝑏𝑐𝑓𝑑3
2𝐾3

2(1 − 𝑚)(𝑎5 − 𝑑3).
 

𝐵1 = −(1 −𝑚)3(𝑎5 − 𝑑3)
3[𝑟 − 𝑑1 − 𝑏𝐾1]                          

+𝑑3𝐾3(1 − 𝑚)
2[(𝑐𝑟 + 𝑏𝑓𝐾1)(𝑎5 − 𝑑3)

2 − 𝑎5
2𝑑1(𝑐 − 𝑓)]

              +2𝑎5𝑑1𝑑3
2𝐾3(𝑐 − 𝑓)(1 − 𝑚)

2 − 𝑑1𝑑3
3𝐾3(𝑐 − 𝑓)(1 − 𝑚)

2

−𝑐𝑓𝑑1𝑑3
2𝐾3

2(1 − 𝑚)(𝑎5 − 𝑑3).

 

𝐵0 = −𝐾1(1 − 𝑚)
3(𝑟 − 𝑑1)(𝑎5 − 𝑑3)

3 − 𝑐𝑓𝑎1𝑑3
3𝐾3

3

+𝐾3(1 − 𝑚)
2𝑑3(𝑎5 − 𝑑3)

2[𝑎1 + 𝑓𝑑1𝐾1]

−𝑎1𝑑3
2𝐾3

2(𝑐 − 𝑓)(1 − 𝑚)(𝑎5 − 𝑑3).

 

Obviously, the point 𝑝5 exists uniquely in the positive cone (𝑖𝑛𝑡. ℝ+
3 ) provided that the following 

conditions are met 

𝑎5 − 𝑑3 > 0
𝑎2(1−𝑐�̃�)�̃�

𝐾1+(1−𝑐�̃�)�̃�
+ 𝑎3 − 𝑑2 −

𝑒(1−𝑚)�̃�

𝐾2+(1−𝑚)�̃�
> 0

} ,                       (15) 

with one set of the following sets of conditions  

𝐵2 > 0, 𝐵0 < 0
𝐵2 < 0, 𝐵0 > 0

}.                                  (16) 

In the following, the linearization technique is used to study the stability of the system (2). Then 

the Jacobian matrix of the system (2) at the point (𝑋, 𝑌, 𝑍) can be written 
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𝐽 =

[
 
 
 
 𝑋

𝜕𝑓1

𝜕𝑋
+ 𝑓1 𝑋

𝜕𝑓1

𝜕𝑌
𝑋
𝜕𝑓1

𝜕𝑍

𝑌
𝜕𝑓2

𝜕𝑋
𝑌
𝜕𝑓2

𝜕𝑌
+ 𝑓2 𝑌

𝜕𝑓2

𝜕𝑍

𝑍
𝜕𝑓3

𝜕𝑋
𝑍
𝜕𝑓3

𝜕𝑌
𝑍
𝜕𝑓3

𝜕𝑍
+ 𝑓3]

 
 
 
 

= [𝑎𝑖𝑗]3×3,                 (17) 

where 

𝑎11 =
𝑟

1+𝑓𝑌
− 𝑏𝑋 − 𝑑1 −

𝑎1(1−𝑐𝑌)𝑌

𝐾1+(1−𝑐𝑌)𝑋
+ 𝑋 (−𝑏 +

𝑎1(1−𝑐𝑌)
2𝑌

(𝐾1+(1−𝑐𝑌)𝑋)2
), 

𝑎12 = 𝑋 [−
𝑓𝑟

(1+𝑓𝑌)2
−

𝑐𝑋𝑌(1−𝑐𝑌)𝑎1

(𝐾1+(1−𝑐𝑌)𝑋)2
+

𝑐𝑌𝑎1

𝐾1+(1−𝑐𝑌)𝑋
−

(1−𝑐𝑌)𝑎1

𝐾1+(1−𝑐𝑌)𝑋
],   

𝑎13 = 0, 

𝑎21 = 𝑌 [−
𝑋(1−𝑐𝑌)2𝑎2

(𝐾1+(1−𝑐𝑌)𝑋)2
+

(1−𝑐𝑌)𝑎2

𝐾1+(1−𝑐𝑌)𝑋
], 

𝑎22 =
𝑎2(1−𝑐𝑌)𝑋

𝐾1+(1−𝑐𝑌)𝑋
+ 𝑎3 − 𝑑2 −

𝑒(1−𝑚)𝑌

𝐾2+(1−𝑚)𝑌
−

𝑎4(1−𝑚)𝑍

𝐾3+(1−𝑚)𝑌
        

+𝑌 [
𝑐𝑎2(1−𝑐𝑌)𝑋

2

(𝐾1+(1−𝑐𝑌)𝑋)2
−

𝑐𝑎2𝑋

𝐾1+𝑋(1−𝑐𝑌)
+

𝑒(1−𝑚)2𝑌

(𝐾2+(1−𝑚)𝑌)2

−
𝑒(1−𝑚)

𝐾2+(1−𝑚)𝑌
+

𝑎4(1−𝑚)
2𝑍

(𝐾3+(1−𝑚)𝑌)2
]

, 

𝑎23 = −
𝑎4(1−𝑚)𝑌

𝐾3+(1−𝑚)𝑌
, 

𝑎31 = 0, 

𝑎32 = 𝑍 ⌈−
(1−𝑚)2𝑌𝑎5

(𝐾3+(1−𝑚)𝑌)2
+

(1−𝑚)𝑎5

𝐾3+(1−𝑚)𝑌
⌉, 

𝑎33 =
𝑎5(1−𝑚)𝑌

𝐾3+(1−𝑚)𝑌
− 𝑑3. 

Thus, the Jacobian matrix at the equilibrium point 𝑝0 can be written as 

𝐽(𝑝0) = [

𝑟 − 𝑑1 0 0
0 𝑎3 − 𝑑2 0
0 0 −𝑑3

].                        (18) 

Hence the eigenvalues of 𝐽(𝑝0) are given by 

 𝜆01 = 𝑟 − 𝑑1, 𝜆02 = 𝑎3 − 𝑑2, and 𝜆03 = −𝑑3.                     (19) 

Therefore, all the eigenvalues are negative and 𝑝0  is stable node provided that the following 

conditions are met. 

 𝑟 < 𝑑1.                                         (20) 

 𝑎3 < 𝑑2.                                      (21) 

Thus, the Jacobian matrix at the equilibrium point 𝑝1 is determined as. 
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𝐽(𝑝1) =

[
 
 
 
 −𝑟 + 𝑑1

(𝑟−𝑑1)

𝑏
(−𝑓𝑟 −

𝑏𝑎1

𝑟−𝑑1+𝐾1𝑏
) 0

0 𝑎3 − 𝑑2 +
𝑎2(𝑟−𝑑1)

𝑟−𝑑1+𝐾1𝑏
0

0 0 −𝑑3]
 
 
 
 

.                   (22) 

So, the eigenvalues of 𝐽(𝑝1) will be written as 

 𝜆11 = −(𝑟 − 𝑑1), 𝜆12 = 𝑎3 − 𝑑2 +
𝑎2(𝑟−𝑑1)

𝑟−𝑑1+𝐾1𝑏
, and 𝜆13 = −𝑑3.              (23) 

Obviously, these eigenvalues are negative provided that the following condition holds. 

  𝑎3 +
𝑎2(𝑟−𝑑1)

𝑟−𝑑1+𝐾1𝑏
< 𝑑2.                             (24) 

Clearly, when the equilibrium point 𝑝0 is stable node the equilibrium point 𝑝1 dose not exist. 

Now, the Jacobian matrix at the equilibrium point 𝑝2 is determined as. 

𝐽(𝑝2) =

[
 
 
 
 
 

𝑟

1+𝑓�̿�
− 𝑑1 −

𝑎1(1−𝑐�̿�)�̿�

𝐾1
0 0

𝑎2(1−𝑐�̿�)�̿�

𝐾1

𝑒(1−𝑚)2�̿�2

(𝐾2+(1−𝑚)�̿�)2
−

𝑒(1−𝑚)�̿�

𝐾2+(1−𝑚)�̿�

𝑎4(1−𝑚)�̿�

𝐾3+(1−𝑚)�̿�

0 0
𝑎5(1−𝑚)�̿�

𝐾3+(1−𝑚)�̿�
− 𝑑3]

 
 
 
 
 

.     (25) 

Then the eigenvalues of 𝐽(𝑝2) are given by: 

 

𝜆21 =
𝑟

1+𝑓�̿�
− 𝑑1 −

𝑎1(1−𝑐�̿�)�̿�

𝐾1
  

𝜆22 =
𝑒(1−𝑚)2�̿�2

(𝐾2+(1−𝑚)�̿�)2
−

𝑒(1−𝑚)�̿�

𝐾2+(1−𝑚)�̿�

𝜆32 =
𝑎5(1−𝑚)�̿�

𝐾3+(1−𝑚)�̿�
− 𝑑3        }

 
 

 
 

.                           (26) 

Consequently, the eigenvalues of 𝐽(𝑝2)  are negative and hence 𝑝2  is a stable node point 

provided that the following conditions are statisfied. 

 
𝑟

1+𝑓�̿�
< 𝑑1 +

𝑎1(1−𝑐�̿�)�̿�

𝐾1
.                         (27) 

 
𝑒(1−𝑚)2�̿�2

(𝐾2+(1−𝑚)�̿�)2
<

𝑒(1−𝑚)�̿�

𝐾2+(1−𝑚)�̿�
.                    (28) 

 
𝑎5(1−𝑚)�̿�

𝐾3+(1−𝑚)�̿�
< 𝑑3.                     (29) 

The Jacobian matrix at the equilibrium point 𝑝3 is computed as: 

𝐽(𝑝3) =

[
 
 
 
 

𝑟

1+𝑓�̂�
− 𝑑1 −

𝑎1(1−𝑐�̂�)�̂�

𝐾1
0 0

𝑎2(1−𝑐�̂�)�̂�

𝐾1
�̂� (−

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)�̂�)
2 +

𝑎4(1−𝑚)
2�̂�

(𝐾3+(1−𝑚)�̂�)
2) −

𝑎4(1−𝑚)�̂�

𝐾3+(1−𝑚)�̂�

0 �̂� ⌈
(1−𝑚)𝑎5𝐾3

(𝐾3+(1−𝑚)�̂�)
2⌉ 0 ]

 
 
 
 

.           (30) 

The characteristic equation can be written as follows:  
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 (
𝑟

1+𝑓�̂�
− 𝑑1 −

𝑎1(1−𝑐�̂�)�̂�

𝐾1
− 𝜆) (𝜆2 − 𝑇1𝜆 + 𝐷1) = 0,                   (31) 

where 

 𝑇1 = �̂� (−
𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)�̂�)2
+

𝑎4(1−𝑚)
2�̂�

(𝐾3+(1−𝑚)�̂�)2
), 

 𝐷1 =
𝑎4(1−𝑚)�̂�

𝐾3+(1−𝑚)�̂�
�̂� ⌈

(1−𝑚)𝑎5𝐾3

(𝐾3+(1−𝑚)�̂�)2
⌉. 

Therefore, all the eigenvalues of 𝐽(𝑝3) have negative real parts and hence 𝑝3 is a stable point if 

the following conditions are satisfied. 

 
𝑟

1+𝑓�̂�
< 𝑑1 +

�̂�(1−𝑐�̂�)𝑎1

𝐾1
.                      (32) 

 
𝑎4(1−𝑚)

2�̂�

(𝐾3+(1−𝑚)�̂�)2
<

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)�̂�)2
.                    (33) 

Now, the Jacobian matrix at the equilibrium point 𝑝4 is witten as: 

𝐽(𝑝4) =

[
 
 
 
 
 �̌� (−𝑏 +

𝑎1(1−𝑐�̌�)
2�̌�

(𝐾1+�̌�(1−𝑐�̌�))
2) �̌� [−

𝑓𝑟

(1+𝑓�̌�)2
−

𝑎1�̌�(1−𝑐�̌�)
2+𝐾1(1−2𝑐�̌�)𝑎1

(𝐾1+�̌�(1−𝑐�̌�))
2 ] 0

�̌� [
(1−𝑐�̌�)𝐾1𝑎2

(𝐾1+�̌�(1−𝑐�̌�))
2] �̌� (−

𝑐�̌�𝑎2𝐾1

(𝐾1+�̌�(1−𝑐�̌�))
2 −

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)�̌�)
2) −

𝑎4(1−𝑚)�̌�

𝐾3+(1−𝑚)�̌�

0 0 −𝑑3 +
𝑎5(1−𝑚)�̌�

𝐾3+(1−𝑚)�̌�]
 
 
 
 
 

 .      (34) 

The characteristic equation of 𝐽(𝑝4) can be written as  

 (−𝑑3 +
𝑎5(1−𝑚)�̌�

𝐾3+(1−𝑚)�̌�
− 𝜆) (𝜆2 − 𝑇2𝜆 + 𝐷2) = 0,                (35) 

where 

 𝑇2 = �̌� (−𝑏 +
𝑎1(1−𝑐�̌�)

2�̌�

(𝐾1+�̌�(1−𝑐�̌�))2
) − �̌� (

𝑐𝑎2𝐾1�̌�

(𝐾1+�̌�(1−𝑐�̌�))2
+

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)�̌�)2
), 

 
𝐷2 = �̌��̌� (−𝑏 +

𝑎1(1−𝑐�̌�)
2�̌�

(𝐾1+�̌�(1−𝑐�̌�))2
) (−

𝑐𝑎2𝐾1�̌�

(𝐾1+�̌�(1−𝑐�̌�))2
−

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)�̌�)2
)

+�̌��̌� [
𝑓𝑟

(1+𝑓�̌�)2
+
𝑎1(1−𝑐�̌�)

2�̌�+𝑎1𝐾1(1−2𝑐�̌�)

(𝐾1+�̌�(1−𝑐�̌�))2
] [

(1−𝑐�̌�)𝐾1𝑎2

(𝐾1+�̌�(1−𝑐�̌�))2
]

. 

Consequently, all the eigenvalues of the 𝐽(𝑝4)  will have negative real parts and makes 𝑝4  a 

stable point if the following conditions are met. 

 
𝑎5(1−𝑚)�̌�

𝐾3+(1−𝑚)�̌�
< 𝑑3.                              (36) 

 
𝑎1(1−𝑐�̌�)

2�̌��̌�

(𝐾1+�̌�(1−𝑐�̌�))
2 < 𝑏�̌� +

𝑐𝑎2𝐾1�̌��̌�

(𝐾1+�̌�(1−𝑐�̌�))
2 +

𝑒(1−𝑚)𝐾2�̌�

(𝐾2+(1−𝑚)�̌�)2
.              (37) 

 
2𝐾1𝑐𝑎1�̌�

(𝐾1+(1−𝑐�̌�)�̌�)2
<

𝑓𝑟

(1+𝑓�̌�)2
+
𝑎1(1−𝑐�̌�)

2�̌�+𝐾1𝑎1

(𝐾1+(1−𝑐�̌�)�̌�)2
.                 (38) 

The Jacobian matrix of the system (2) at the positive equilibrium point can be written as: 
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𝐽(𝑝5) = [𝑞𝑖𝑗],                        (39) 

where 

 𝑞11 = �̃� (−𝑏 +
𝑎1(1−𝑐�̃�)

2�̃�

(𝐾1+(1−𝑐�̃�)�̃�)2
), 

𝑞12 = �̃� [−
𝑓𝑟

(1+𝑓�̃�)2
−
𝑎1(1−𝑐�̃�)

2�̃�+(1−2𝑐�̃�)𝑎1𝐾1

(𝐾1+(1−𝑐�̃�)�̃�)2
], 

𝑞13 = 0, 

𝑞21 = �̃� [
(1−𝑐�̃�)𝑎2𝐾1

(𝐾1+(1−𝑐�̃�)�̃�)2
], 

𝑞22 = �̃� [−
𝑐𝑎2𝐾1�̃�

(𝐾1+(1−𝑐�̃�)�̃�)2
−

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)�̃�)2
+

𝑎4(1−𝑚)
2�̃�

(𝐾3+(1−𝑚)�̃�)2
], 

𝑞23 = −
𝑎4(1−𝑚)�̃�

𝐾3+(1−𝑚)�̃�
, 

𝑞31 = 0, 

𝑞32 = �̃� ⌈
(1−𝑚)𝑎5𝐾3

(𝐾3+(1−𝑚)�̃�)2
⌉, 

𝑞33 = 0. 

Therefore, the characteristic equation of 𝐽(𝑝5) can be written as 

 𝜆3 + 𝐺1𝜆
2 + 𝐺2𝜆 + 𝐺3 = 0,                            (40) 

where 

 𝐺1 = −(𝑞11 + 𝑞22), 

 𝐺2 = 𝑞11𝑞22 − 𝑞12𝑞21 − 𝑞23𝑞32, 

 𝐺3 = 𝑞11𝑞23𝑞32, 

with 

 ∆= 𝐺1𝐺2 − 𝐺3 = −(𝑞11 + 𝑞22)[𝑞11𝑞22 − 𝑞12𝑞21] + 𝑞22𝑞23𝑞32. 

Accordingly, the stability conditions of 𝑝5 can be determined through the following theorem. 

Theorem 3: The positive equilibrium point 𝑝5 of the system (2) is locally asymptotically stable 

provided the following sufficient conditions are met. 

 
�̃�(1−𝑐�̃�)2𝑎1

(𝐾1+(1−𝑐�̃�)�̃�)2
< 𝑏.                        (41) 

 
2𝑎1𝐾1𝑐�̃�

(𝐾1+(1−𝑐�̃�)�̃�)2
<

𝑓𝑟

(1+𝑓�̃�)2
+
𝑎1(1−𝑐�̃�)

2�̃�+𝑎1𝐾1

(𝐾1+(1−𝑐�̃�)�̃�)2
.                 (42) 

 
𝑎4(1−𝑚)

2�̃�

(𝐾3+(1−𝑚)�̃�)2
<

𝑐𝑎2𝐾1�̃�

(𝐾1+(1−𝑐�̃�)�̃�)2
+

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)�̃�)2
.                 (43) 
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Proof. According to the Routh- Hurwitz criterion the proof follows if and only if 𝐺1 > 0, 𝐺3 >

0, and ∆> 0 are met. Direct computation shows that these requirements are satisfied under the 

given conditions, and hence the proof is done. 

 

  While stable coexistence is the capacity of species to coexist forever in the absence of external 

perturbations, persistence can be defined as the length of time that a species remains in a 

community before local extinction takes place. It follows mathematically that there are no 

boundary attractors in the solution's omega limit set. Therefore, an investigation of the boundary 

plane dynamics is carried out in the following. 

It is clear that system (2) has two subsystems that fall in the positive quadrant of the 𝑌𝑍 −plane 

and 𝑋𝑌 −plane respectively. At the same time, there is no subsystem in the 𝑋𝑍 −plane. These 

subsystems can be described respectively: 

 

𝑑𝑌

𝑑𝑇
= Y(𝑎3 − 𝑑2 −

𝑒(1−𝑚)𝑌

𝐾2+(1−𝑚)𝑌
−

𝑎4(1−𝑚)𝑍

𝐾3+(1−𝑚)𝑌
) = 𝑌𝑓11(𝑌, 𝑍),

𝑑𝑍

𝑑𝑇
= 𝑍 (

𝑎5(1−𝑚)𝑌

𝐾3+(1−𝑚)𝑌
− 𝑑3) = 𝑍𝑓12(𝑌, 𝑍),               

               (44) 

 

𝑑𝑋

𝑑𝑇
= 𝑋 (

𝑟

1+𝑓𝑌
− 𝑑1 − 𝑏𝑋 −

𝑎1(1−𝑐𝑌)𝑌

𝐾1+(1−𝑐𝑌)𝑋
) = 𝑋𝑓21(𝑋, 𝑌),    

𝑑𝑌

𝑑𝑇
= Y(

𝑎2(1−𝑐𝑌)𝑋

𝐾1+(1−𝑐𝑌)𝑋
+ 𝑎3 − 𝑑2 −

𝑒(1−𝑚)𝑌

𝐾2+(1−𝑚)𝑌
) = 𝑌𝑓22(𝑋, 𝑌),

               (45) 

Straightforward computation shows that the subsystem (44) has the equilibrium points 𝑝10 =

(0,0), 𝑝11 = (�̿�, 0), and 𝑝12 = (�̂�, �̂�). At the same time, the subsystem (45) has the equilibrium 

points 𝑝20 = (0,0), 𝑝21 = (�̅�, 0), and 𝑝22 = (�̆�, �̆�).  It is easy to verify that all these equilibrium 

points are simply projections of their corresponding equilibrium points of system (2) and have the 

same form with existing conditions. 

Consequently, to investigate the persistence of the system (2), it is necessary to investigate the 

dynamics in the interior of positive quadrants of 𝑌𝑍 −plane and 𝑋𝑌 −plane respectively. 

Define the Dulac functions as 𝐷1(𝑌, 𝑍) =
1

𝑌𝑍
  and 𝐷2(𝑋, 𝑌) =

1

𝑋𝑌
. Clearly the Dulac functions 

𝐷1(𝑌, 𝑍) > 0 , 𝐷2(𝑋, 𝑌) > 0 , and they are 𝐶1  functions in the 𝑖𝑛𝑡. ℝ+
2   of the 𝑌𝑍 − plane and 

𝑋𝑌 −plane respectively. Furthermore, direct computation gives that  

https://www.google.com/search?sxsrf=AJOqlzU9xNZWVeu2j2tMXbgzNUMwiGAmLw:1673541500255&q=the+Routh-Huartz+criterion&nfpr=1&sa=X&ved=2ahUKEwi2r471u8L8AhW1gv0HHeiOBWcQvgUoAXoECAcQAg
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∆(𝑌, 𝑍) =
𝜕(𝐷1 𝑓11)

𝜕𝑌
+
𝜕(𝐷1 𝑓12)

𝜕𝑍
= −

𝑒𝐾2(1−𝑚)

𝑍[𝐾2+(1−𝑚)𝑌]2
+

𝑎4(1−𝑚)
2

[𝐾3+(1−𝑚)𝑌]2
. 

∆(𝑋, 𝑌) =
𝜕(𝐷2 𝑓21)

𝜕𝑋
+
𝜕(𝐷2 𝑓22)

𝜕𝑌
= −

𝑏

𝑌
+

𝑎1(1−𝑐𝑌)
2

[𝐾1+(1−𝑐𝑌)𝑋]2
−

𝑎2𝐾1𝑐

[𝐾1+(1−𝑐𝑌)𝑋]2
−

𝑒𝐾2(1−𝑚)

𝑋[𝐾2+(1−𝑚)𝑌]2
. 

Then the exprations ∆(𝑌, 𝑍)  and ∆(𝑋, 𝑌)  do not identically zero in the 𝑖𝑛𝑡. ℝ+
2   of the 

𝑌𝑍 −plane and 𝑋𝑌 −plane and they do not change sign under the following conditions: 

 
𝑎4(1−𝑚)

2𝑍

[𝐾3+(1−𝑚)𝑌]2
<

𝑒𝐾2(1−𝑚)

[𝐾2+(1−𝑚)𝑌]2
.                            (46) 

 
𝑎1(1−𝑐𝑌)

2

[𝐾1+(1−𝑐𝑌)𝑋]2
<

𝑏

𝑌
+

𝑎2𝐾1𝑐

[𝐾1+(1−𝑐𝑌)𝑋]2
+

𝑒𝐾2(1−𝑚)

𝑋[𝐾2+(1−𝑚)𝑌]2
.                   (47) 

According to the Dulac-Bendixson criterion [28], for all trajectories meeting conditions (46)-(47), 

there is no closed curve lying in the 𝑖𝑛𝑡. ℝ+
2  of the 𝑌𝑍 −plane and 𝑋𝑌 −plane. Moreover, the 

unique equilibrium points in the 𝑖𝑛𝑡. ℝ+
2  of the 𝑌𝑍 −plane and 𝑋𝑌 −plane that is determined by 

𝑝12  and 𝑝22  will therefore be globally asymptotically stable whenever they are locally 

asymptotically stable, according to the Poincare-Bendixon theorem [28]. 

Theorem 4: Assume that conditions (46)-(47) are satisfied and the following conditions are met 

then system (2) is uniformly persistent. 

𝑑1 < 𝑟.                                                  (48) 

𝑑2 < 𝑎3 +
𝑎2(𝑟−𝑑1)

𝑟−𝑑1+𝐾1𝑏
.                                           (49) 

𝑑3 < min {
𝑎5(1−𝑚)�̿�

𝐾3+(1−𝑚)�̿�
,
𝑎5(1−𝑚)�̌�

𝐾3+(1−𝑚)�̌�
 }.                             (50) 

𝑑1 +
�̂�(1−𝑐�̂�)𝑎1

𝐾1
<

𝑟

1+𝑓�̂�
.                       (51) 

Proof: Define the function 𝜑(𝑋, 𝑌, 𝑍) = 𝑋𝑏1𝑌𝑏2𝑍𝑏3, where 𝑏𝑗  , ∀𝑗 = 1,2,3 are positive constants. 

Obviously 𝜑(𝑋, 𝑌, 𝑍) > 0  for all (𝑋, 𝑌, 𝑍) ∈ 𝑖𝑛𝑡. ℝ3
+  and 𝜑(𝑋, 𝑌, 𝑍) → 0  when 𝑋 → 0  or 

𝑌 → 0 or 𝑍 → 0. Then by utilizing the average Lyapunov method [26], it is obtained that: 

Ω(𝑋, 𝑌, 𝑍) =
𝜑′(𝑋,𝑌,𝑍)

𝜑(𝑋,𝑌,𝑍)
= 𝑏1 [

𝑟

1+𝑓𝑌
− 𝑑1 − 𝑏𝑋 −

𝑎1(1−𝑐𝑌)𝑌

𝐾1+(1−𝑐𝑌)𝑋
]                    

+𝑏2 [
𝑎2(1−𝑐𝑌)𝑋

𝐾1+(1−𝑐𝑌)𝑋
+ 𝑎3 − 𝑑2 −

𝑒(1−𝑚)𝑌

𝐾2+(1−𝑚)𝑌
−

𝑎4(1−𝑚)𝑍

𝐾3+(1−𝑚)𝑌
]

+ 𝑏3 [
𝑎5(1−𝑚)𝑌

𝐾3+(1−𝑚)𝑌
− 𝑑3]

. 

Thus, the proof is done if Ω(𝐸) > 0 for any boundary equilibrium point 𝐸, with suitable choice 

of constants 𝑏1 > 0, 𝑏2 > 0, and 𝑏3 > 0. 
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Ω(𝑝0) = 𝑏1(𝑟 − 𝑑1) + 𝑏2(𝑎3 − 𝑑2) + 𝑏3(−𝑑3) . 

Ω(𝑝1) = 𝑏2 (
𝑎2(𝑟−𝑑1)

𝑟−𝑑1+𝐾1𝑏
+ 𝑎3 − 𝑑2) + 𝑏3(−𝑑3) . 

Ω(𝑝2) = 𝑏1 [
𝑟

1+𝑓�̿�
− 𝑑1 −

𝑎1(1−𝑐�̿�)�̿�

𝐾1
] + 𝑏3 [

𝑎5(1−𝑚)�̿�

𝐾3+(1−𝑚)�̿�
− 𝑑3]. 

Ω(𝑝3) = 𝑏1 [
𝑟

1+𝑓�̂�
− 𝑑1 −

𝑎1(1−𝑐�̂�)�̂�

𝐾1
]. 

Ω(𝑝4) =  𝑏3 [
𝑎5(1−𝑚)�̆�

𝐾3+(1−𝑚)�̆�
− 𝑑3]. 

Clearly, by using the given conditions with suitable choice of the positive constants it is obtained 

that Ω(𝑝𝑖) > 0 for all 𝑖 = 0,1, … ,4. Hence the proof is complete.           

In the following theorems, the global stability of the above mentioned equilibrium points is studied. 

Theorem 5: The vanishing equilibrium point is a global asymptotic stable whenever it is locally 

asymptotically stable. 

Proof. Consider the following candidate Lyapunov function  

  𝐿0(𝑋, 𝑌, 𝑍) = 𝑋 + 𝑌 + 𝑍. 

Clearly, 𝐿0: ℝ+
3 → ℝ  is a 𝐶1  positive definite function so that   𝐿0(0, 0, 0) = 0  and 

𝐿0(𝑋, 𝑌, 𝑍) > 0  for all {(𝑋, 𝑌, 𝑍) ∈ ℝ+
3 : 𝑋 ≥ 0, 𝑌 ≥ 0, 𝑍 ≥ 0 }  with (𝑋, 𝑌, 𝑍) ≠ (0, 0, 0) . 

Direct computation shows that: 

 

𝑑𝐿0

𝑑𝑇
=

𝑟𝑋

1+𝑓𝑌
− 𝑑1𝑋 − 𝑏𝑋

2 −
(𝑎1−𝑎2)(1−𝑐𝑌)𝑋𝑌

𝐾1+(1−𝑐𝑌)𝑋
+ (𝑎3 − 𝑑2)𝑌

−
𝑒(1−𝑚)𝑌2

𝐾2+(1−𝑚)𝑌
−
(𝑎4−𝑎5)(1−𝑚)𝑌𝑍

𝐾3+(1−𝑚)𝑌
− 𝑑3𝑍.

 

Biologically, it is well known that 𝑎1 − 𝑎2 > 0, and 𝑎4 − 𝑎5 > 0, hence it is obtained that 

 
𝑑𝐿0

𝑑𝑇
< −(𝑑1 − 𝑟)𝑋 − (𝑑2 − 𝑎3)𝑌 − 𝑑3𝑍. 

Therefore, under the local stability conditions (20)-(21), 
𝑑𝐿0

𝑑𝑇
  is negative definite. Hence, the 

vanishing equilibrium point is globally asymptotically stable. 

Theorem 6: The first axial equilibrium point is a global asymptotically stable provided that the 

following condition is met. 

 𝑎3 +
𝑟𝑓𝐾1+𝑎1

𝐾1
�̅� < 𝑑2.                                (52) 

Proof. Consider the following candidate Lyapunov function  
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  𝐿1(𝑋, 𝑌, 𝑍) = (𝑋 − �̅� − �̅� ln
𝑋

�̅�
) + 𝑌 + 𝑍, 

Clearly, 𝐿1: ℝ+
3 → ℝ  is a 𝐶1  positive definite function so that   𝐿1(�̅�, 0, 0) = 0  and 

𝐿1(𝑋, 𝑌, 𝑍) > 0  for all {(𝑋, 𝑌, 𝑍) ∈ ℝ+
3 : 𝑋 > 0, 𝑌 ≥ 0, 𝑍 ≥ 0 }  with (𝑋, 𝑌, 𝑍) ≠ (�̅�, 0, 0) . 

Direct computation shows that: 

 

𝑑𝐿1

𝑑𝑇
= −

𝑟𝑓𝑌

1+𝑓𝑌
(𝑋 − �̅�) − 𝑏(𝑋 − �̅�)2 −

(𝑎1−𝑎2)(1−𝑐𝑌)𝑋𝑌

𝐾1+(1−𝑐𝑌)𝑋
+

𝑎1(1−𝑐𝑌)�̅�𝑌

𝐾1+(1−𝑐𝑌)𝑋

+(𝑎3 − 𝑑2)𝑌 −
𝑒(1−𝑚)𝑌2

𝐾2+(1−𝑚)𝑌
−
(𝑎4−𝑎5)(1−𝑚)𝑌𝑍

𝐾3+(1−𝑚)𝑌
− 𝑑3𝑍.

 

Then 

 
𝑑𝐿1

𝑑𝑇
< −𝑏(𝑋 − �̅�)2 − (𝑑2 − 𝑎3 − 𝑟𝑓�̅� −

𝑎1�̅�

𝐾1
)𝑌 − 𝑑3𝑍. 

Obviously, condition (52) guarantees that 
𝑑𝐿1

𝑑𝑇
  is negative definite. Hence, the first axial 

equilibrium point is a globally asymptotically stable. 

Theorem 7: The second axial equilibrium point is a global asymptotically stable provided that 

condition (20) and the following condition are met. 

 
𝑎4(1−𝑚)

𝐾3
�̿� < 𝑑3.                                         (53) 

Proof. Consider the following candidate Lyapunov function  

  𝐿2(𝑋, 𝑌, 𝑍) = 𝑋 + (𝑌 − �̿� − �̿� ln
𝑌

�̿�
) + 𝑍, 

Clearly, 𝐿2: ℝ+
3 → ℝ  is a 𝐶1  positive definite function so that   𝐿2(0, �̿�, 0) = 0  and 

𝐿2(𝑋, 𝑌, 𝑍) > 0  for all {(𝑋, 𝑌, 𝑍) ∈ ℝ+
3 : 𝑋 ≥ 0, 𝑌 > 0, 𝑍 ≥ 0 }  with (𝑋, 𝑌, 𝑍) ≠ (0, �̿�, 0) . 

Direct computation shows that: 

 

𝑑𝐿2

𝑑𝑇
=

𝑟𝑋

1+𝑓𝑌
− 𝑑1𝑋 − 𝑏𝑋

2 −
(𝑎1−𝑎2)(1−𝑐𝑌)𝑋𝑌

𝐾1+(1−𝑐𝑌)𝑋
−

𝑎2(1−𝑐𝑌)𝑋�̿�

𝐾1+(1−𝑐𝑌)𝑋
−
(𝑎4−𝑎5)(1−𝑚)𝑌𝑍

𝐾3+(1−𝑚)𝑌

−
𝑒(1−𝑚)𝐾2(𝑌−�̿�)

2

(𝐾2+(1−𝑚)𝑌)(𝐾2+(1−𝑚)�̿�)
+

𝑎4(1−𝑚)�̿�𝑍

𝐾3+(1−𝑚)𝑌
− 𝑑3𝑍.

 

Then 

 
𝑑𝐿2

𝑑𝑇
< −(𝑑1 − 𝑟)𝑋 −

𝑒(1−𝑚)𝐾2(𝑌−�̿�)
2

(𝐾2+(1−𝑚)𝑌)(𝐾2+(1−𝑚)�̿�)
− (𝑑3 −

𝑎4(1−𝑚)�̿�

𝐾3
)𝑍. 

Obviously, conditions (20) and (53) guarantee that 
𝑑𝐿2

𝑑𝑇
 is negative definite. Hence, the second 

axial equilibrium point is globally asymptotically stable. 
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Theorem 8: The prey-free equilibrium point is a global asymptotically stable provided that 

condition (20) and the following condition are met. 

 
𝑎4(1−𝑚)

2�̂�

𝐾3(𝐾3+(1−𝑚)�̂�)
<

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)𝑌𝑚𝑎𝑥)(𝐾2+(1−𝑚)�̂�)
,                                (54) 

where all the new symbols are given in the proof.  

Proof. Consider the following candidate Lyapunov function  

  𝐿3(𝑋, 𝑌, 𝑍) = 𝑋 + (𝑌 − �̂� − �̂� ln
𝑌

�̂�
) + 𝑛1 (𝑍 − �̂� − �̂� ln

𝑍

�̂�
), 

where 𝑛1 is a positive constant to be determined. Clearly, 𝐿3: ℝ+
3 → ℝ is a 𝐶1 positive definite 

function so that   𝐿3(0, �̂�, �̂�) = 0  and 𝐿3(𝑋, 𝑌, 𝑍) > 0  for all {(𝑋, 𝑌, 𝑍) ∈ ℝ+
3 : 𝑋 ≥ 0, 𝑌 >

0, 𝑍 > 0 } with (𝑋, 𝑌, 𝑍) ≠ (0, �̂�, �̂�). Direct computation shows that: 

 

𝑑𝐿3

𝑑𝑇
=

𝑟𝑋

1+𝑓𝑌
− 𝑑1𝑋 − 𝑏𝑋

2 −
(𝑎1−𝑎2)(1−𝑐𝑌)𝑋𝑌

𝐾1+(1−𝑐𝑌)𝑋
−

𝑎2(1−𝑐𝑌)𝑋�̂�

𝐾1+(1−𝑐𝑌)𝑋
                          

− [
𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)𝑌)(𝐾2+(1−𝑚)�̂�)
−

𝑎4(1−𝑚)
2�̂�

(𝐾3+(1−𝑚)𝑌)(𝐾3+(1−𝑚)�̂�)
] (𝑌 − �̂�)

2

−
(1−𝑚)[𝑎4(𝐾3+(1−𝑚)�̂�)−𝑛1𝑎5𝐾3]

(𝐾3+(1−𝑚)𝑌)(𝐾3+(1−𝑚)�̂�)
(𝑌 − �̂�)(𝑍 − �̂�)

 

Then, by choosing 𝑛1 =
𝑎4(𝐾3+(1−𝑚)�̂�)

𝑎5𝐾3
, and maximizing the right-hand side, it is obtained that 

 
𝑑𝐿3

𝑑𝑇
< −(𝑑1 − 𝑟)𝑋 − [

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)𝑌𝑚𝑎𝑥)(𝐾2+(1−𝑚)�̂�)
−

𝑎4(1−𝑚)
2�̂�

𝐾3(𝐾3+(1−𝑚)�̂�)
] (𝑌 − �̂�)

2
 ,        (55) 

where 𝑌𝑚𝑎𝑥 represents the upper bound of the 𝑌. 

Obviously, conditions (20) and (54) guarantee that 
𝑑𝐿3

𝑑𝑇
 is negative semi definite, which leads to 

the prey-free equilibrium point is a stable point. Hence, the proof results from equation (55) and 

Lyapunov–Lasalle’s invariance principle [27]. 

Theorem 9: The top predator-free equilibrium point is globally asymptotically stable if the 

following conditions are met. 

 
𝑎2𝐾2�̆�

�̆�𝐾1(𝐾1+(1−𝑐�̆�)�̆�)
<

𝑎2𝐾2𝑏

𝑎1(1−𝑐�̆�)�̆�
,                        (56) 

 
𝑎4(1−𝑚)�̆�

𝐾3
< 𝑑3,                      (57) 

 𝑔12
2 < 4𝑔11𝑔22,                                                  (58) 

where all the new symbols are given in the proof.  

Proof. Consider the following candidate Lyapunov function  
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  𝐿4(𝑋, 𝑌, 𝑍) = 𝑛2 (𝑋 − �̂� − �̂� ln
𝑋

𝑋
) + (𝑌 − �̂� − �̂� ln

𝑌

�̂�
) + 𝑍, 

where 𝑛2 is a positive constant to be determined. Clearly, 𝐿4: ℝ+
3 → ℝ is a 𝐶1 positive definite 

function so that   𝐿4(�̆�, �̆�, 0) = 0  and 𝐿4(𝑋, 𝑌, 𝑍) > 0  for all {(𝑋, 𝑌, 𝑍) ∈ ℝ+
3 : 𝑋 > 0, 𝑌 >

0, 𝑍 ≥ 0} with (𝑋, 𝑌, 𝑍) ≠ (�̆�, �̆�, 0). Direct computation shows that: 

 

𝑑𝐿4

𝑑𝑇
= 𝑛2(𝑋 − �̆�) (

𝑟

1+𝑓𝑌
− 𝑑1 − 𝑏𝑋 −

𝑎1(1−𝑐𝑌)𝑌

𝐾1+(1−𝑐𝑌)𝑋
)               

+(𝑌 − �̆�) (
𝑎2(1−𝑐𝑌)𝑋

𝐾1+(1−𝑐𝑌)𝑋
+ 𝑎3 − 𝑑2 −

𝑒(1−𝑚)𝑌

𝐾2+(1−𝑚)𝑌
−

𝑎4(1−𝑚)𝑍

𝐾3+(1−𝑚)𝑌
)

+𝑍 (
𝑎5(1−𝑚)𝑌

𝐾3+(1−𝑚)𝑌
− 𝑑3) .

 

Using some mathematical mainupolation gives that 

 

𝑑𝐿4

𝑑𝑇
= −

𝑛2𝑟𝑓

(1+𝑓𝑌)(1+𝑓�̆�)
(𝑋 − �̆�)(𝑌 − �̆�) − 𝑛2𝑏(𝑋 − �̆�)

2
−
𝑛2𝑎1𝐾1(1−𝑐𝑌−𝑐�̆�)(𝑋−�̆�)(𝑌−�̆�)

(𝐾1+(1−𝑐𝑌)𝑋)(𝐾1+(1−𝑐�̆�)�̆�)
 

−
𝑛2𝑎1�̆�(1−𝑐𝑌)(1−𝑐�̆�)(𝑋−�̆�)(𝑌−�̆�)

(𝐾1+(1−𝑐𝑌)𝑋)(𝐾1+(1−𝑐�̆�)�̆�)
+

𝑛2𝑎1�̆�(1−𝑐𝑌)(1−𝑐�̆�)(𝑋−�̆�)
2

(𝐾1+(1−𝑐𝑌)𝑋)(𝐾1+(1−𝑐�̆�)�̆�)

+
𝑎2𝐾1(1−𝑐𝑌)(𝑋−�̆�)(𝑌−�̆�)

(𝐾1+(1−𝑐𝑌)𝑋)(𝐾1+(1−𝑐�̆�)�̆�)
−

𝑎2𝑐𝐾1�̆�(𝑌−�̆�)
2

(𝐾1+(1−𝑐𝑌)𝑋)(𝐾1+(1−𝑐�̆�)�̆�)
−

𝑒(1−𝑚)𝐾2(𝑌−�̆�)
2

(𝐾2+(1−𝑚)𝑌)(𝐾2+(1−𝑚)�̆�)

−
𝑎4(1−𝑚)𝑌𝑍

𝐾3+(1−𝑚)𝑌
+

𝑎4(1−𝑚)�̆�𝑍

𝐾3+(1−𝑚)𝑌
+

𝑎5(1−𝑚)𝑌𝑍

𝐾3+(1−𝑚)𝑌
− 𝑑3𝑍

 

Then, by choosing 𝑛2 =
𝑎2𝐾2

𝑎1(1−𝑐�̆�)�̆�
, and maximizing the right-hand side, it is obtained that 

 

𝑑𝐿4

𝑑𝑇
< −[

𝑎2𝐾2𝑏

𝑎1(1−𝑐�̆�)�̆�
−

𝑎2𝐾2�̆�

�̆�𝐾1(𝐾1+(1−𝑐�̆�)�̆�)
] (𝑋 − �̆�)

2
− [𝑑3 −

𝑎4(1−𝑚)�̆�

𝐾3
] 𝑍

−
𝑎2𝐾2

𝑎1(1−𝑐�̆�)�̆�
[

𝑟𝑓

(1+𝑓𝑌)(1+𝑓�̆�)
+

𝑎1𝐾1(1−𝑐𝑌−𝑐�̆�)

(𝐾1+(1−𝑐𝑌)𝑋)(𝐾1+(1−𝑐�̆�)�̆�)
] (𝑋 − �̆�)(𝑌 − �̆�) 

− [
𝑎2𝑐𝐾1�̆�

(𝐾1+(1−𝑐𝑌)𝑋)(𝐾1+(1−𝑐�̆�)�̆�)
+

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)𝑌)(𝐾2+(1−𝑚)�̆�)
] (𝑌 − �̆�)

2

 

Using the conditions (56) and (58) lead to: 

 
𝑑𝐿4

𝑑𝑇
< −[√𝑔11(𝑋 − �̆�) + √𝑔22(𝑌 − �̆�)]

2
− [𝑑3 −

𝑎4(1−𝑚)�̆�

𝐾3
] 𝑍, 

where  

 𝑔11 =
𝑎2𝐾2𝑏

𝑎1(1−𝑐�̆�)�̆�
−

𝑎2𝐾2�̆�

�̆�𝐾1(𝐾1+(1−𝑐�̆�)�̆�)
, 

 𝑔12 =
𝑎2𝐾2

𝑎1(1−𝑐�̆�)�̆�
[

𝑟𝑓

(1+𝑓𝑌)(1+𝑓�̆�)
+

𝑎1𝐾1(1−𝑐𝑌−𝑐�̆�)

(𝐾1+(1−𝑐𝑌)𝑋)(𝐾1+(1−𝑐�̆�)�̆�)
],  

 𝑔22 =
𝑎2𝑐𝐾1�̆�

(𝐾1+(1−𝑐𝑌)𝑋)(𝐾1+(1−𝑐�̆�)�̆�)
+

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)𝑌)(𝐾2+(1−𝑚)�̆�)
. 

Obviously, condition (57) guarantees that 
𝑑𝐿4

𝑑𝑇
 is negative definite. Hence, the top predator-free 

equilibrium point is a globally asymptotically stable under the given conditions. Hence the proof 
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is complete. 

Theorem 10: The positive equilibrium point is a globally asymptotically stable if the following 

conditions are met. 

 
𝑎1

𝐾1�̃�1
(1 − 𝑐�̃�)�̃� < 𝑏,                                 (59) 

 
𝑎4(1−𝑚)

2�̃�

𝐾3�̃�3
<

𝑎2𝑐𝐾1�̃�

(𝐾1+𝑋𝑚𝑎𝑥)�̃�1
+

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)𝑌𝑚𝑎𝑥)�̃�2
,                (60) 

 ℎ12
2 < 4ℎ11ℎ22,                                                  (61) 

where all the new symbols are given in the proof.  

Proof. Consider the following candidate Lyapunov function 

 𝐿5(𝑋, 𝑌, 𝑍) = 𝛾1 (𝑋 − �̃� − �̃� ln
𝑋

�̃�
) + (𝑌 − �̃� − �̃� ln

𝑌

�̃�
) + 𝛾2 (𝑍 − �̃� − �̃� ln

𝑍

�̃�
), 

where 𝛾1 and 𝛾2 are positive constants to be determined. Clearly, 𝐿5: ℝ+
3 → ℝ is a 𝐶1 positive 

definite function so that   𝐿4(�̃�, �̃�, �̃�) = 0  and 𝐿4(𝑋, 𝑌, 𝑍) > 0  for all {(𝑋, 𝑌, 𝑍) ∈ ℝ+
3 : 𝑋 >

0, 𝑌 > 0, 𝑍 > 0 } with (𝑋, 𝑌, 𝑍) ≠ (�̃�, �̃�, �̃�). Direct computation shows that: 

 

𝑑𝐿5

𝑑𝑇
= − [

𝛾1𝑟𝑓

𝐵0�̃�0
+

𝛾1𝑎1

𝐵1�̃�1
(𝐾1 − 𝑐𝐾1𝑌 − 𝑐𝐾1�̃� + (1 − 𝑐𝑌)(1 − 𝑐�̃�)�̃�)] (𝑋 − �̃�)(𝑌 − �̃�)

−𝛾1 [𝑏 −
𝑎1

𝐵1�̃�1
(1 − 𝑐𝑌)(1 − 𝑐�̃�)�̃�] (𝑋 − �̃�)

2
+
𝑎2𝐾1

𝐵1�̃�1
(1 − 𝑐𝑌)(𝑋 − �̃�)(𝑌 − �̃�)

− [
𝑎2𝑐𝐾1�̃�

𝐵1�̃�1
+
𝑒(1−𝑚)𝐾2

𝐵2�̃�2
−
𝑎4(1−𝑚)

2�̃�

𝐵3�̃�3
] (𝑌 − �̃�)

2
−
𝑎4(1−𝑚)�̃�3

𝐵3�̃�3
(𝑌 − �̃�)(𝑍 − �̃�)

+
𝛾2𝑎5(1−𝑚)𝐾3

𝐵3�̃�3
(𝑌 − �̃�)(𝑍 − �̃�),

 

where 𝐵0 = 1 + 𝑓𝑌 , �̃�0 = 1 + 𝑓�̃� , 𝐵1 = 𝐾1 + (1 − 𝑐𝑌)𝑋 , �̃�1 = 𝐾1 + (1 − 𝑐�̃�)�̃� , 𝐵2 = 𝐾2 +

(1 −𝑚)𝑌, �̃�2 = 𝐾2 + (1 −𝑚)�̃�, 𝐵3 = 𝐾3 + (1 −𝑚)𝑌, and �̃�3 = 𝐾3 + (1 −𝑚)�̃�. 

Thus, by choosing 𝛾1 =
𝑎2

𝑎1
, and 𝛾2 =

𝑎4�̃�3

𝑎5𝐾3
 with maximizing the right-hand side, it is obtained 

that 

 

𝑑𝐿5

𝑑𝑇
< − [

𝑎2𝑟𝑓

𝑎1𝐵0�̃�0
+

𝛾1𝑎2

𝐵1�̃�1
(−𝑐𝐾1�̃� + (1 − 𝑐𝑌)(1 − 𝑐�̃�)�̃�)] (𝑋 − �̃�)(𝑌 − �̃�)

−
𝑎2

𝑎1
[𝑏 −

𝑎1

𝐾1�̃�1
(1 − 𝑐�̃�)�̃�] (𝑋 − �̃�)

2

−[
𝑎2𝑐𝐾1�̃�

(𝐾1+𝑋𝑚𝑎𝑥)�̃�1
+

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)𝑌𝑚𝑎𝑥)�̃�2
−
𝑎4(1−𝑚)

2�̃�

𝐾3�̃�3
] (𝑌 − �̃�)

2
,

 

where 𝑋𝑚𝑎𝑥  and 𝑌𝑚𝑎𝑥  represent the upper bound of the 𝑋  and 𝑌  respectively. Using the 

conditions (59) - (61) lead to: 
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𝑑𝐿5

𝑑𝑇
< −[√ℎ11(𝑋 − �̃�) + √ℎ22(𝑌 − �̃�)]

2
,                      (62) 

where 

 ℎ11 =
𝑎2

𝑎1
[𝑏 −

𝑎1

𝐾1�̃�1
(1 − 𝑐�̃�)�̃�], 

 ℎ22 =
𝑎2𝑐𝐾1�̃�

(𝐾1+𝑋𝑚𝑎𝑥)�̃�1
+

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)𝑌𝑚𝑎𝑥)�̃�2
−
𝑎4(1−𝑚)

2�̃�

𝐾3�̃�3
, 

 ℎ12 =
𝑎2𝑟𝑓

𝑎1𝐵0�̃�0
+

𝛾1𝑎2

𝐵1�̃�1
(−𝑐𝐾1�̃� + (1 − 𝑐𝑌)(1 − 𝑐�̃�)�̃�). 

Obviously, 
𝑑𝐿5

𝑑𝑇
 is negative sime definite, which leads to that, the positive equilibrium point is a 

stable point. Hence, the proof results from equation (62) and Lyapunov–Lasalle’s invariance 

principle [27]. 

 

5. LOCAL BIFURCATION 

The present section investigates the influence of the varying parameters on the qualitative 

dynamics of the system (2) near the non-hyperbolic. An application to the Sotomayor theorem [27] 

for local bifurcation is performed. 

Rewrite the system (2) as the following vector norm 

 
𝑑𝐗

𝑑𝑇
= 𝐅(𝐗, 𝜗), 𝑿 = (𝑋, 𝑌, 𝑍)T, 𝐅 = (𝑋𝑓1(𝐗, 𝜗), 𝑌𝑓2(𝐗, 𝜗), 𝑍𝑓3(𝐗, 𝜗))

T
.           (63) 

where 𝜗 ∈ ℝ is the bifurcation parameter and 𝑓𝑖(𝑿, 𝜗) for all 𝑖 = 1,2,3 are given in the system 

(2). Therefore, for any vector of the form 𝐕 = (𝑣1, 𝑣2, 𝑣3)
T, the following expressions can be 

determined 

 𝐷2𝐅(𝐗, 𝜗)(𝐕, 𝐕) = [𝑐𝑖1]3×1,                     (64) 

where 

 

𝑐11 = −
2[−𝑏𝑋3(−1+𝑐𝑌)3+(−1+𝑐𝑌)2(3𝑏𝑋2−𝑌𝑎1)𝐾1−3𝑏𝑋(−1+𝑐𝑌)𝐾1

2+𝑏𝐾1
3]𝑣1

2

(𝑋(1−𝑐𝑌)+𝐾1)3

+2(−
𝑓𝑟

(1+𝑓𝑌)2
−
𝑎1𝐾1(𝑋−𝑐𝑋𝑌+𝐾1−2𝑐𝑌𝐾1)

(𝑋(1−𝑐𝑌)+𝐾1)3
) 𝑣1𝑣2

+2𝑋 (
𝑓2𝑟

(1+𝑓𝑌)3
+

𝑐𝑎1𝐾1(𝑋+𝐾1)

(𝑋(1−𝑐𝑌)+𝐾1)3
) 𝑣2

2

, 

 
𝑐21 = −

2𝑎2𝐾1[𝑌(−1+𝑐𝑌)
2𝑣1

2+[𝑋(−1+𝑐𝑌)+(−1+2𝑐𝑌)𝐾1]𝑣1𝑣2+𝑐𝑋(𝑋+𝐾1)𝑣2
2]

(𝑋(1−𝑐𝑌)+𝐾1)3

−2(1 −𝑚)𝑣2 (
𝑒𝐾2

2𝑣2

(𝑌−𝑚𝑌+𝐾2)3
−
𝑎4𝐾3((−1+𝑚)𝑍𝑣2+(𝑌−𝑚𝑌+𝐾3)𝑣3)

((−1+𝑚)𝑌−𝐾3)3
)

, 
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 𝑐31 =
2(−1+𝑚)𝑎5𝐾3𝑣2[(−1+𝑚)𝑍𝑣2+(𝑌−𝑚𝑌+𝐾3)𝑣3]

((−1+𝑚)𝑌−𝐾3)3
. 

While 

  𝐷3𝐅(𝐗, 𝜗)(𝐕, 𝐕, 𝐕) = [𝑑𝑖1]3×1,                        (65) 

where 

 

𝑑11 =
6𝑓2𝑟𝑣2

2((1+𝑓𝑌)𝑣1−𝑓𝑋𝑣2)

(1+𝑓𝑌)4
                           

+
6𝑎1𝐾1[𝑌(−1+𝑐𝑌)

3𝑣1
3+(−1+𝑐𝑌)(𝑋(−1+𝑐𝑌)+(−1+3𝑐𝑌)𝐾1)𝑣1

2𝑣2]

(𝑋(1−𝑐𝑌)+𝐾1)4

+
6𝑎1𝐾1[𝑐(𝑋

2(−1+𝑐𝑌)+2𝑐𝑋𝑌𝐾1+𝐾1
2)𝑣1𝑣2

2+𝑐2𝑋2(𝑋+𝐾1)𝑣2
3]

(𝑋(1−𝑐𝑌)+𝐾1)4

, 

 

𝑑21 =
6𝑎2𝐾1[−𝑌(−1+𝑐𝑌)

3𝑣1
3−(−1+𝑐𝑌)[𝑋(−1+𝑐𝑌)+(−1+3𝑐𝑌)𝐾1]𝑣1

2𝑣2]

(𝑋(1−𝑐𝑌)+𝐾1)4
             

+
6𝑎2𝐾1[−𝑐(𝑋

2(−1+𝑐𝑌)+2𝑐𝑋𝑌𝐾1+𝐾1
2)𝑣1𝑣2

2−𝑐2𝑋2(𝑋+𝐾1)𝑣2
3]

(𝑋(1−𝑐𝑌)+𝐾1)4

+6(−1 +𝑚)2𝑣2
2 [

𝑒𝐾2
2𝑣2

((1−𝑚)𝑌+𝐾2)4
+
𝑎4𝐾3((−1+𝑚)𝑍𝑣2+(𝑌−𝑚𝑌+𝐾3)𝑣3)

((1−𝑚)𝑌+𝐾3)4
]

, 

 𝑑31 = −
6(−1+𝑚)2𝑎5𝐾3𝑣2

2[(−1+𝑚)𝑍𝑣2+(𝑌−𝑚𝑌+𝐾3)𝑣3]

((1−𝑚)𝑌+𝐾3)4
. 

Theorem 11: Assume that condition (21) holds, then when the parameter 𝑟 passes through 𝑟 =

𝑑1 ≡ (𝑟
∗), the system (2) undergoes a transcritical bifurcation at the vanishing equilibrium point. 

Proof. When 𝑟 = 𝑑1 ≡ (𝑟
∗) the Jacobian matrix becomes 

𝐽0 = 𝐽(𝑝0, 𝑟
∗) = [

0 0 0
0 𝑎3 − 𝑑2 0
0 0 −𝑑3

]. 

Clearly, 𝐽0 has the eigenvalues 𝜆01 = 0, 𝜆02 = 𝑎3 − 𝑑2, and 𝜆03 = −𝑑3. Clearly, condition (21) 

guarantees that 𝜆02 < 0. Hence, the eigenvectors of 𝐽0 and 𝐽0
T corresponding 𝜆01 = 0 can be 

written as 𝐕0 = (𝑣01, 𝑣02, 𝑣03)
T and 𝐔0 = (𝑢01, 𝑢02, 𝑢03)

T respectively, where 

 𝐕0 = (1,0,0)
T, 𝐔0 = (1,0,0)

T. 

Moreover, with the use of equation (64), it is obtained that 

𝐅𝑟 = (

𝑋

1+𝑓𝑌

0
0

) ⟹ 𝐅𝑟(𝑝0, 𝑟
∗) = (

0
0
0
) ⟹ 𝐔0

T𝐅𝑟(𝑝0, 𝑟
∗) = 0 

𝐷𝐅𝑟(𝑝0, 𝑟
∗). 𝐕0 = (

1
0
0
) ⟹ 𝐔0

T[𝐷𝐅𝑟(𝑝0, 𝑟
∗). 𝐕0] = 1 
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𝐷2𝐅(𝑝0, 𝑟
∗)(𝐕0, 𝐕0) = (

−2𝑏
0
0
) ⟹ 𝐔0

T[𝐷2𝐅(𝑝0, 𝑟
∗)(𝐕0, 𝐕0)] = −2𝑏 

Then, as the parameter 𝑟  crosses through 𝑟∗ , the Sotomayor theorem makes the system (2) 

undergo a transcritical bifurcation at the equilibrium point 𝑝0. 

Theorem 12: When the parameter 𝑑2 passes through 𝑑2 = 𝑎3 +
𝑎2(𝑟−𝑑1)

𝑟−𝑑1+𝐾1𝑏
≡ (𝑑2

∗), the system (2) 

undergoes a transcritical bifurcation at the first axial equilibrium point. 

Proof. When 𝑑2 = 𝑑2
∗  the Jacobian matrix becomes 

𝐽1 = 𝐽(𝑝1, 𝑑2
∗) = [

−𝑟 + 𝑑1
(𝑟−𝑑1)

𝑏
(−𝑓𝑟 −

𝑏𝑎1

𝑟−𝑑1+𝐾1𝑏
) 0

0 0 0
0 0 −𝑑3

]. 

Clearly, 𝐽1  has the eigenvalues 𝜆11 = −𝑟 + 𝑑1 < 0 , 𝜆12 = 0 , and 𝜆13 = −𝑑3 . Hence, the 

eigenvectors of 𝐽1 and 𝐽1
T corresponding 𝜆12 = 0 can be written as 𝐕1 = (𝑣11, 𝑣12, 𝑣13)

T and 

𝐔1 = (𝑢11, 𝑢12, 𝑢13)
T respectively, where 

 𝐕1 = (−(
𝑓𝑟

𝑏
+

𝑎1

𝑟−𝑑1+𝐾1𝑏
) , 1,0)

T

=(𝜌1, 1,0)
T, 𝐔1 = (0,1,0)

T. 

Moreover, with the use of equation (64), it is obtained that 

𝐅𝑑2 = (
0
−𝑌
0
) ⟹ 𝐅𝑑2(𝑝1, 𝑑2

∗) = (
0
0
0
) ⟹ 𝐔1

T𝐅𝑑2(𝑝1, 𝑑2
∗) = 0 

𝐷𝐅𝑑2(𝑝1, 𝑑2
∗). 𝐕1 = (

0
−1
0
) ⟹ 𝐔1

T[𝐷𝐅𝑑2(𝑝1, 𝑑2
∗). 𝐕1] = −1 

𝐷2𝐅(𝑝1, 𝑑2
∗)(𝐕1, 𝐕1) =

(

 

−2𝑏𝜌1
2 − 2(𝑓𝑟 +

𝑎1𝐾1

(�̅�+𝐾1)2
) 𝜌1 + 2�̅� (𝑓

2𝑟 +
𝑐𝑎1𝐾1

(�̅�+𝐾1)2
)

−
2𝑎2𝐾1(−𝜌1+𝑐�̅�)

(�̅�+𝐾1)2
− 2(1 − 𝑚)

𝑒

𝐾2

0 )

   

Therefore, it is obtained that: 

 𝐔1
T[𝐷2𝐅(𝑝1, 𝑑2

∗)(𝐕1, 𝐕1)] = −
2𝑎2𝐾1(−𝜌1+𝑐�̅�)

(�̅�+𝐾1)2
−
2𝑒(1−𝑚)

𝐾2
≠ 0 

Then, as the parameter 𝑑2  crosses through 𝑑2
∗  , the Sotomayor theorem makes the system (2) 

undergo a transcritical bifurcation at the equilibrium point 𝑝1. 

Theorem 13: Assume that conditions (27)-(28) are staisfied, then when the parameter 𝑑3 passes 

through 𝑑3 =
𝑎5(1−𝑚)�̿�

𝐾3+(1−𝑚)�̿�
≡ (𝑑3

∗), the system (2) undergoes a transcritical bifurcation at the second 
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axial equilibrium point. 

Proof. As 𝑑3 = 𝑑3
∗  the Jacobian matrix becomes 

𝐽2 = 𝐽(𝑝2, 𝑑3
∗) =

[
 
 
 
 

𝑟

1+𝑓�̿�
− 𝑑1 −

𝑎1(1−𝑐�̿�)�̿�

𝐾1
0 0

𝑎2(1−𝑐�̿�)�̿�

𝐾1

𝑒(1−𝑚)2�̿�2

(𝐾2+(1−𝑚)�̿�)2
−

𝑒(1−𝑚)�̿�

𝐾2+(1−𝑚)�̿�

𝑎4(1−𝑚)�̿�

𝐾3+(1−𝑚)�̿�

0 0 0 ]
 
 
 
 

. 

Clearly, 𝐽2  has the eigenvalues 𝜆21 =
𝑟

1+𝑓�̿�
− 𝑑1 −

𝑎1(1−𝑐�̿�)�̿�

𝐾1
 , 𝜆22 =

𝑒(1−𝑚)2�̿�2

(𝐾2+(1−𝑚)�̿�)2
−

𝑒(1−𝑚)�̿�

𝐾2+(1−𝑚)�̿�
 , 

are negative due to conditions (27)-(28). While 𝜆23 = 0. Hence, the eigenvectors of 𝐽2 and 𝐽2
T 

corresponding 𝜆23 = 0  can be written as 𝐕2 = (𝑣21, 𝑣22, 𝑣23)
T  and 𝐔2 = (𝑢21, 𝑢22, 𝑢23)

T 

respectively, where 

 𝐕2 = (0,
𝑎4(𝐾2+(1−𝑚)�̿�)

2

𝑒𝐾2(𝐾3+(1−𝑚)�̿�)
, 1)

T

=(0, 𝜌2, 1)
T, 𝐔2 = (0,0,1)

T. 

Moreover, with the use of equation (64), it is obtained that 

𝐅𝑑3 = (
0
0
−𝑍
) ⟹ 𝐅𝑑3(𝑝2, 𝑑3

∗) = (
0
0
0
) ⟹ 𝐔2

T𝐅𝑑3(𝑝2, 𝑑3
∗) = 0 

𝐷𝐅𝑑3(𝑝2, 𝑑3
∗). 𝐕2 = (

0
0
−1
) ⟹ 𝐔2

T[𝐷𝐅𝑑3(𝑝2, 𝑑3
∗). 𝐕2] = −1 

𝐷2𝐅(𝑝2, 𝑑3
∗)(𝐕2, 𝐕2) =

(

 
 

0

−2(1 − 𝑚)𝜌2 (
𝑒𝐾2

2𝜌2

(�̿�−𝑚�̿�+𝐾2)3
+

𝑎4𝐾3

((1−𝑚)�̿�+𝐾3)2
)

2(1−𝑚)𝑎5𝐾3𝜌2

((1−𝑚)�̿�+𝐾3)2 )

 
 

  

Therefore, it is obtained that: 

 𝐔2
T[𝐷2𝐅(𝑝2, 𝑑3

∗)(𝐕2, 𝐕2)] =
2(1−𝑚)𝑎5𝐾3𝜌2

((1−𝑚)�̿�+𝐾3)2
≠ 0 

Then, as the parameter 𝑑3  crosses through 𝑑3
∗  , the Sotomayor theorem makes the system (2) 

undergo a transcritical bifurcation at the equilibrium point 𝑝2. 

Theorem 14: Assume that condition (33) is staisfied, then when the parameter 𝑑1 passes through 

𝑑1 =
𝑟

1+𝑓�̂�
−

𝑎1(1−𝑐�̂�)�̂�

𝐾1
≡ (𝑑1

∗), the system (2) undergoes a transcritical bifurcation at the prey-free 

equilibrium point provided that the following condition is met. 

 −𝑎1(1 − 𝑐�̂�)
2�̂�+ 𝑏𝐾1

2 ≠ 0.                              (66) 

Otherwise, a Pitchfork bifurcation takes place. 
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Proof. As 𝑑1 = 𝑑1
∗ the Jacobian matrix becomes 

𝐽3 = 𝐽(𝑝3, 𝑑1
∗) =

[
 
 
 

0 0 0
𝑎2(1−𝑐�̂�)�̂�

𝐾1
�̂� (−

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)�̂�)
2 +

𝑎4(1−𝑚)
2�̂�

(𝐾3+(1−𝑚)�̂�)
2) −

𝑎4(1−𝑚)�̂�

𝐾3+(1−𝑚)�̂�

0 �̂� ⌈
(1−𝑚)𝑎5𝐾3

(𝐾3+(1−𝑚)�̂�)
2⌉ 0 ]

 
 
 

. 

Clearly, 𝐽3  has the eigenvalues 𝜆31 = 0 , while 𝜆32 =
𝑇1

2
+
1

2
√𝑇1

2 − 4𝐷1 , and 𝜆33 =
𝑇1

2
−

1

2
√𝑇1

2 − 4𝐷1  have negative real parts due to condition (33), where 𝑇1  and 𝐷1  are given in 

equation (31). Hence, the eigenvectors of 𝐽3 and 𝐽3
T corresponding 𝜆31 = 0 can be written as 

𝐕3 = (𝑣31, 𝑣32, 𝑣33)
T and 𝐔3 = (𝑢31, 𝑢32, 𝑢33)

T respectively, where 

 𝐕3 = (1,0,
𝑎2(1−𝑐�̂�)(𝐾3+(1−𝑚)�̂�)

𝐾1𝑎4(1−𝑚)
)
T

=(1,0, 𝜌3)
T, 𝐔3 = (1,0,0)

T. 

Moreover, with the use of equation (64), it is obtained that 

𝐅𝑑1 = (
−𝑋
0
0
) ⟹ 𝐅𝑑1(𝑝3, 𝑑1

∗) = (
0
0
0
) ⟹ 𝐔3

T𝐅𝑑1(𝑝3, 𝑑1
∗) = 0 

𝐷𝐅𝑑1(𝑝3, 𝑑1
∗). 𝐕3 = (

−1
0
0
) ⟹ 𝐔3

T[𝐷𝐅𝑑1(𝑝3, 𝑑1
∗). 𝐕3] = −1 

𝐷2𝐅(𝑝3, 𝑑1
∗)(𝐕3, 𝐕3) =

(

 
 
−
2[−𝑎1(1−𝑐�̂�)

2�̂�+𝑏𝐾1
2]

𝐾1
2

−
2𝑎2(1−𝑐�̂�)

2�̂�

𝐾1
2

0 )

 
 

  

Therefore, by using condition (66), it is obtained that: 

 𝐔3
T[𝐷2𝐅(𝑝3, 𝑑1

∗)(𝐕3, 𝐕3)] = −
2[−(1−𝑐�̂�)2�̂�𝑎1+𝑏𝐾1

2]

𝐾1
2 ≠ 0 

Then, as the parameter 𝑑1  crosses through 𝑑1
∗ , the Sotomayor theorem makes the system (2) 

undergo a transcritical bifurcation at the equilibrium point 𝑝3. Otherwise, it is obtained with the 

help of equation (65) that 

 𝐷3𝐅(𝑝3, 𝑑1
∗)(𝐕3, 𝐕3, 𝐕3) =

(

 
 
−
6𝑎1�̂�(1−𝑐�̂�)

3

𝐾1
3

6𝑎2�̂�(1−𝑐�̂�)
3

𝐾1
3

0 )

 
 

 

Therefore, it is obtained that: 
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 𝐔3
T[𝐷3𝐅(𝑝3, 𝑑1

∗)(𝐕3, 𝐕3, 𝐕3)] = −
6𝑎1�̂�(1−𝑐�̂�)

3

𝐾1
3 ≠ 0 

Hence, a pitchfork bifurcation takes place in the sence of Sotomayor theorem and the proof is done. 

Theorem 15: Assume that conditions (37)-(38) are staisfied, then when the parameter 𝑎5 passes 

through 𝑎5 =
𝑑3(𝐾3+(1−𝑚)�̌�)

(1−𝑚)�̌�
≡ (𝑎5

∗), the system (2) undergoes a transcritical bifurcation at the top 

predator-free equilibrium point.  

Proof. As 𝑎5 = 𝑎5
∗  the Jacobian matrix becomes 

𝐽4 = 𝐽(𝑝4, 𝑎5
∗) =

[
 
 
 
 �̌� (−𝑏 +

𝑎1(1−𝑐�̌�)
2
�̌�

(𝐾1+�̌�(1−𝑐�̌�))
2) �̌� [−

𝑓𝑟

(1+𝑓�̌�)
2 −

𝑎1�̌�(1−𝑐�̌�)
2
+𝐾1(1−2𝑐�̌�)𝑎1

(𝐾1+�̌�(1−𝑐�̌�))
2 ] 0

�̌� [
(1−𝑐�̌�)𝐾1𝑎2

(𝐾1+�̌�(1−𝑐�̌�))
2] �̌� (−

𝑐�̌�𝑎2𝐾1

(𝐾1+�̌�(1−𝑐�̌�))2
−

𝑒(1−𝑚)𝐾2

(𝐾2+(1−𝑚)�̌�)
2) −

𝑎4(1−𝑚)�̌�

𝐾3+(1−𝑚)�̌�

0 0 0 ]
 
 
 
 

. 

Clearly, 𝐽4 = (𝑏𝑖𝑗)3×3  has the eigenvalues 𝜆41 =
𝑇2

2
+
1

2
√𝑇2

2 − 4𝐷2 , and 𝜆42 =
𝑇2

2
−

1

2
√𝑇2

2 − 4𝐷2, which have negative real parts due to conditions (37)-(38), where 𝑇2 and 𝐷2 are 

given in equation (35).  while 𝜆43 = 0. Hence, the eigenvectors of 𝐽4 and 𝐽4
T corresponding 

𝜆43 = 0 can be written as 𝐕4 = (𝑣41, 𝑣42, 𝑣43)
T and 𝐔4 = (𝑢41, 𝑢42, 𝑢43)

T respectively, where 

 𝐕4 = (𝜌4, 𝜌5, 1)
T, 𝐔4 = (0,0,1)

T, 

where 

 𝜌4 =
𝑏12𝑏23

𝑏11𝑏22−𝑏12𝑏21
=

𝑏12𝑏23

𝐷2
> 0. 

 𝜌5 = −
𝑏11𝑏23

𝑏11𝑏22−𝑏12𝑏21
= −

𝑏11𝑏23

𝐷2
< 0. 

Moreover, with the use of equation (64), it is obtained that 

𝐅𝑎5 = (

0
0

(1−𝑚)𝑌𝑍

𝐾3+(1−𝑚)𝑌

) ⟹ 𝐅𝑎5(𝑝4, 𝑎5
∗) = (

0
0
0
) ⟹ 𝐔4

T𝐅𝑎5(𝑝4, 𝑎5
∗) = 0 

𝐷𝐅𝑎5(𝑝4, 𝑎5
∗). 𝐕4 = (

0
0

(1−𝑚)�̌�

𝐾3+(1−𝑚)�̌�

) ⟹ 𝐔4
T[𝐷𝐅𝑎5(𝑝4, 𝑎5

∗). 𝐕4] =
(1−𝑚)�̌�

𝐾3+(1−𝑚)�̌�
 

𝐷2𝐅(𝑝4, 𝑎5
∗)(𝐕4, 𝐕4) = [𝑐𝑖1(𝑝4, 𝑎5

∗)]3×1 , 

where 



26 

AHMED SAMI ABDULGHAFOUR, RAID KAMEL NAJI 

 

𝑐11(𝑝4, 𝑎5
∗) = −

2[𝑏�̆�3(1−𝑐�̌�)3+(1−𝑐𝑌)2(3𝑏�̌�2−�̌�𝑎1)𝐾1+3𝑏�̌�(1−𝑐�̌�)𝐾1
2+𝑏𝐾1

3]𝜌4
2

(�̌�(1−𝑐�̌�)+𝐾1)3

+2(−
𝑓𝑟

(1+𝑓�̌�)2
−
𝑎1𝐾1(�̌�−𝑐�̌��̌�+𝐾1−2𝑐�̌�𝐾1)

(�̌�(1−𝑐�̌�)+𝐾1)3
) 𝜌4𝜌5

+2�̌� (
𝑓2𝑟

(1+𝑓�̌�)3
+

𝑐𝑎1𝐾1(�̌�+𝐾1)

(�̌�(1−𝑐�̌�)+𝐾1)3
) 𝜌5

2

, 

 
𝑐21(𝑝4, 𝑎5

∗) = −
2𝑎2𝐾1[�̌�(1−𝑐�̌�)

2𝜌4
2−[�̌�(1−𝑐�̌�)+(1−2𝑐�̌�)𝐾1]𝜌4𝜌5+𝑐�̌�(�̌�+𝐾1)𝜌5

2]

(�̌�(1−𝑐�̌�)+𝐾1)3

−2(1 − 𝑚)𝜌5 (
𝑒𝐾2

2𝜌5

((1−𝑚)�̌�+𝐾2)3
+

𝑎4𝐾3

((1−𝑚)�̌�+𝐾3)2
)

, 

 𝑐31(𝑝4, 𝑎5
∗) =

2(1−𝑚)𝑎5𝐾3𝜌5

((1−𝑚)�̌�+𝐾3)2
. 

Therefore, it is obtained that: 

 𝐔4
T[𝐷2𝐅(𝑝4, 𝑎5

∗)(𝐕4, 𝐕4)] =
2(1−𝑚)𝑎5𝐾3𝜌5

((1−𝑚)�̌�+𝐾3)2
≠ 0 

Then, as the parameter 𝑎5  passes through 𝑎5
∗  , the Sotomayor theorem makes the system (2) 

undergo a transcritical bifurcation at the equilibrium point 𝑝4.  

Theorem 16: Assume that conditions (42)-(43) are satisfied, then when the parameter 𝑏 passes 

through 𝑏 =
𝑎1(1−𝑐�̃�)

2�̃�

(𝐾1+(1−𝑐�̃�)�̃�)2
≡ (𝑏∗) , the system (2) undergoes a saddle-node bifurcation at the 

positive equilibrium point.  

Proof. As 𝑏 = 𝑏∗ the Jacobian matrix becomes 

𝐽5 = 𝐽(𝑝5, 𝑏
∗) = [

0 𝑞12 0

𝑞21 𝑞22 𝑞23
0 𝑞32 0

], 

where 𝑞𝑖𝑗; 𝑖, 𝑗 = 1,2,3 are given in equation (39). Obviously, by using equation (40), 𝐽5 has the 

eigenvalues  

𝜆51 = 0, 𝜆52 =
𝐺1

2
+
1

2
√𝐺1

2 − 4𝐺2, 𝜆53 =
𝐺1

2
−
1

2
√𝐺1

2 − 4𝐺2,  

where 𝐺1 = −𝑞22 , and 𝐺2 = −𝑞12𝑞21 − 𝑞23𝑞32  are positive under the conditions (42)-(43). 

Hence the eigenvalues 𝜆52, and 𝜆53 have negative real parts. Moreover, the eigenvectors of 𝐽5 

and 𝐽5
T  corresponding 𝜆51 = 0  can be written as 𝐕5 = (𝑣51, 𝑣52, 𝑣53)

T  and 𝐔5 =

(𝑢51, 𝑢52, 𝑢53)
T respectively, where 

 𝐕5 = (1,0, 𝜌6)
T, 𝐔4 = (1,0, 𝜌7)

T, 

where 𝜌6 = −
𝑞21

𝑞23
> 0 and 𝜌7 = −

𝑞12

𝑞32
> 0. 

Moreover, with the use of equation (64), it is obtained that 
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𝐅𝑏 = (
−𝑋2

0
0

) ⟹ 𝐅𝑏(𝑝5, 𝑏
∗) = (

−�̃�2

0
0

) ⟹ 𝐔5
T𝐅𝑏(𝑝5, 𝑏

∗) = −�̃�2 ≠ 0 

𝐷2𝐅𝑏(𝑝5, 𝑏
∗)(𝐕5, 𝐕5) =

(

 
 
−
2𝑏∗[(1−𝑐�̃�)3�̃�3+2𝐾1(1−𝑐�̃�)

2�̃�2+𝐾1
2(1−𝑐�̃�)�̃�]

(�̃�(1−𝑐�̃�)+𝐾1)3

−
2𝑎2𝐾1�̃�(1−𝑐�̃�)

2

(�̃�(1−𝑐�̃�)+𝐾1)3

0 )

 
 

 , 

Therefore, it is obtained that: 

 𝐔5
T[𝐷2𝐅𝑏(𝑝5, 𝑏

∗)(𝐕5, 𝐕5)] = −
2𝑏∗[(1−𝑐�̃�)3�̃�3+2𝐾1(1−𝑐�̃�)

2�̃�2+𝐾1
2(1−𝑐�̃�)�̃�]

(�̃�(1−𝑐�̃�)+𝐾1)3
≠ 0 

Then, as the parameter b  passes through 𝑏∗ , the Sotomayor theorem makes the system (2) 

undergo a saddle-node bifurcation at the equilibrium point 𝑝5.  

 

6. NUMERICAL SIMULATION 

In the following, an investigation of the system's dynamics (2) is carried out using numerical 

simulation depending on the next set of hypothetical parameter values. The objective is to validate 

the theoretical finding and understand the influence of the varying parameter values on the 

system’s dynamics. 

 
𝑟 = 1, 𝑓 = 0.2, 𝑑1 = 0.1, 𝑏 = 0.2, 𝑎1 = 0.75, 𝑐 = 0.4, 𝐾1 = 1, 𝑎2 = 0.5, 𝑎3 = 0.15,

𝑑2 = 0.1, 𝑒 = 0.25,𝑚 = 0.5, 𝑎4 = 0.5, 𝐾2 = 1,𝐾3 = 1, 𝑎5 = 0.4, 𝑑3 = 0.1
}  (67) 

System (2) has an asymptotically stable positive equilibrium point for the set of data (67), as 

depicted in Figure (1). As you can see from the figures, the red star symbolizes the point of 

attraction for which system (2)'s solution is intended. 
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Fig. 1. The trajectories of the system (2), utilizing the set of data (67), starting from different initial 

points. (a) Phase portrait that approached to 𝑝5 = (3.38,0.66,1.83). (b) Time series. (c) Projection 

of phase portrait on 𝑋𝑌 −plane. (d) Projection of phase portrait on 𝑋𝑍 −plane. (e) Projection of 

phase portrait on 𝑌𝑍 −plane. 

 

In the following, depending on the result shown in figure (1), the influence of varying the 

parameter values on the stability of the positive equilibrium point is investigated. For the parameter 

𝑟  in the ranges 𝑟 ∈ (0,0.46] , 𝑟 ∈ (0.46,0.52] , 𝑟 ∈ (0.52,1.34] , and 𝑟 > 1.34  the solution of 

system (2) approaches asymptotically to 𝑝2 , 𝑝4 , 𝑝5 , and periodic dynamics respectively, see 

figure (2) for the selected  values of 𝑟.  
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Fig. 2. The trajectories of the system (2), utilizing the set of data (67) with different values of 𝑟, 

starting from different initial points. (a) Phase portrait for 𝑟 = 0.45  that approached to 𝑝2 =

(0,0.52,0) . (b) Time series for 𝑟 = 0.45 . (c) Phase portrait for 𝑟 = 0.51  that approached to 

𝑝4 = (0.03,0.63,0) . (d) Time series for 𝑟 = 0.51 . (e) Phase portrait for 𝑟 = 0.75  that 

approached to 𝑝5 = (2.08,0.66,1.54). (f) Time series for 𝑟 = 0.75. (g) Stable limit cycle for 𝑟 =

1.5. (h) Time series for 𝑟 = 1.5. 

 

 

Now, the influence of varying the parameter 𝑓 on the system's dynamics (2) is studied in two 

cases, first when the system (2) has a stable coexistence point and second when the system has a 

stable limit cycle. In the first case, it is observed that, for 𝑓 ∈ [0,1.76], 𝑓 ∈ (1.76,2.51], and 𝑓 >

2.52  the solution of system (2) approaches asymptotically to 𝑝5, 𝑝4, and 𝑝2, respectively. On 

the other hand, in the second case, it is observed that rising the value of 𝑓 stabilizes the system 

so that the solution approaches asymptotically the 𝑝5. Moreover, rising the parameter further leads 

to extinction in top predators first and then extinction in prey species, and then the system's  (2) 

solution stabilized at 𝑝2, see figure (3) for an explanation of the selected values of 𝑓. 
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Fig. 3. The trajectory of the system (2), utilizing the set of data (67) with different values of 𝑓, 

when 𝑟 = 1  and 𝑟 = 1.5 . (a) Phase portrait for 𝑟 = 1;  𝑓 = 1  that approached to 𝑝5 =

(1.67,0.66,1.4) . (b) Time series for 𝑟 = 1;  𝑓 = 1 . (c) Phase portrait for 𝑟 = 1;  𝑓 = 2  that 

approached to 𝑝4 = (0.02,0.61,0). (d) Time series for 𝑟 = 1;  𝑓 = 2. (e) Phase portrait for 𝑟 =

1;  𝑓 = 3 that approached to 𝑝2 = (0,0.5,0). (f) Time series for 𝑟 = 1;  𝑓 = 3. (g) Phase portrait 

for 𝑟 = 1.5;  𝑓 = 0.5 that approached to 𝑝5 = (4.71,0.66,2). (h) Time series for 𝑟 = 1.5;  𝑓 =

0.5. 

 

 

It is observed that, when the system indergoes a periodic dynamics as for 𝑟 = 1.5 in figure (2g) 

increasing 𝑓 in the ranges 𝑓 ∈ (0,0.3), 𝑓 ∈ [0.3,3.4], 𝑓 ∈ [3.4, 5], and 𝑓 > 5 the solution of 

system (2) approaches to stable limit cycle, 𝑝5, 𝑝4, and 𝑝2, respectively, as shown in figure (3g) 

for 𝑓 = 0.5. For the parameters 𝑑1, and 𝑎1, they have a similar influence on the system’s (2) 

solution as that obtained for 𝑓 in the first case. Now, the influence of varying the parameter 𝑏 

on the system’s (2) dynamics is studied in figure (4) below at a selected values. It is obtained that 

for the ranges 𝑏 ∈ (0,0.13), and 𝑏 > 0.13 the solution approaches a stable limit cycle, and 𝑝5 

respectively. 
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Fig. 4. The trajectory of the system (2), utilizing the set of data (67) with different values of 𝑏. (a) 

Stable limit cycle for 𝑏 = 0.1. (b) Time series for 𝑏 = 0.1. (c) Phase portrait for 𝑏 = 0.5 that 

approached to 𝑝5 = (1.17,0.66,1.16). (d) Time series for 𝑏 = 0.5. 

 

 

Note that, a similar impact on the system’s (2) dynamics, as shown by the parameter 𝑏, is obtained 

when the parameter value 𝑐  varies. For the parameter 𝐾1  in the ranges 𝐾1 ∈ (0,0.14] , 𝐾1 ∈

(0.14,0.53], 𝐾1 > 0.53, it is observed that the system’s (2) solution approaches asymptotically to 

𝑝2, stable limit cycle, and 𝑝5 respectively, as shown in figure (5) for the selected parameter values.  
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Fig. 5. The trajectory of the system (2), utilizing the set of data (67) with different values of 𝐾1. 
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(a) Phase portrait for 𝐾1 = 0.1 that approached to 𝑝2 = (0,0.5,0). (b) Time series for 𝐾1 = 0.1. 

(c) Stable limit cycle for 𝐾1 = 0.5. (d) Time series for 𝐾1 = 0.5. (e) Phase portrait for 𝐾1 = 2 

that approached to 𝑝5 = (3.51,0.66,1.43). (f) Time series for 𝐾1 = 2.  

 

 

For the parameter 𝑎3  in the ranges 𝑎3 ∈ (0,0.26] , and 𝑎3 > 0.26  the system’s (2) solution 

approaches asymptotically to 𝑝5 and stable limit cycle respectively, as shown in figure (6) at the 

selected values of 𝑎3. 

 

Fig. 6. The trajectory of the system (2), utilizing the set of data (67) with different values of 𝑎3. 

(a) Phase portrait for 𝑎3 = 0.2 that approached to 𝑝5 = (3.38,0.66,2.1). (b) Stable limit cycle 

for 𝑎3 = 0.3.  

 

 

Note that, a similar impact on the system’s (2) dynamics, as shown by the parameter 𝑎3 , is 

obtained when the parameter value 𝐾2 varies. For the parameter 𝑑2 in the ranges 𝑑2 ∈ (0,0.44], 

𝑑2 ∈ (0.44,0.55] , 𝑑2 > 0.55 , it is observed that the system’s (2) solution approaches 

asymptotically to 𝑝5, 𝑝4, and 𝑝1 respectively, as shown in figure (7) for the selected parameter 

values.  
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Fig. 7. The trajectory of the system (2), utilizing the set of data (67) with different values of 𝑑2. 



37 

THREE-SPECIES FOOD CHAIN MODEL WITH CANNIBALISM 

(a) Phase portrait for 𝑑2 = 0.3  that approached to 𝑝5 = (3.38,0.66,0.76) . (b) Time series for 

𝑑2 = 0.3. (c) Phase portrait for 𝑑2 = 0.5 that approached to 𝑝4 = (3.93,0.34,0). (d) Time series 

for 𝑑2 = 0.5. (e) Phase portrait for 𝑑2 = 0.6 that approached to 𝑝1 = (4.5,0,0). (f) Time series 

for 𝑑2 = 0.6.  

 

For the parameter 𝑒 in the ranges 𝑒 ∈ (0,0.13], 𝑒 ∈ (0.13,1.61], and 𝑒 > 1.61 the system’s (2) 

solution approaches asymptotically to stable limit cycle, 𝑝5, and 𝑝4 respectively, see figure (8) 

for the selected values of the paramere 𝑒. 
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Fig. 8. The trajectory of the system (2), utilizing the set of data (67) with different values of 𝑒. (a) 

Stable limit cycle for 𝑒 = 0.1. (b) Time series for 𝑒 = 0.1. (c) Phase portrait for 𝑒 = 0.5 that 

approached to 𝑝5 = (3.38,0.66,1.5). (d) Time series for 𝑒 = 0.5. (e) Phase portrait for 𝑒 = 1.75 

that approached to 𝑝4 = (3.47,0.61,0). (f) Time series for 𝑒 = 1.75.  

 

For the parameters 𝐾3, 𝑑3, and 𝑚, they have a similar influence on the system’s (2) solution as 

that obtained for 𝑒  in the first case. Now, the influence of varying the parameter 𝑎5  on the 

system’s (2) dynamics is studied in figure (9) below at a selected values of 𝑎5, so that for the 

ranges 𝑎5 ∈ (0,0.18], and 𝑏 ∈ (0.18,0.5] the solution approaches 𝑝4, and 𝑝5 respectively. 
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Fig. 9. The trajectory of the system (2), utilizing the set of data (67) with different values of 𝑎5. 

(a) Phase portrait for 𝑎5 = 0.1 that approached to 𝑝4 = (2.31,2.28,0). (b) Time series for 𝑎5 =

0.1. (c) Phase portrait for 𝑎5 = 0.3 that approached to 𝑝5 = (2.83,1,1.68). (d) Time series for 

𝑎5 = 0.3.  

The influence of the rest of the parameter values on the dynamics of the system (2) using the data 

(67) is summarized in table (2) below. However, for the data (67) with 𝑟 = 0.09, and 𝑎3 = 0.09 

it is observed that, the system (2) approaches asymptotically to 𝑝0 = (0,0,0) as shown in figure 

(10).   

 

Fig. 10. The trajectory of the system (2), utilizing the set of data (67) with 𝑟 = 0.09, and 𝑎3 =

0.09. (a) Phase portrait approached to 𝑝0. (b) Time series. 
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Clearly, for the data used in figure (10), the conditions (20)-(21) are satisfied and hence the stability 

of 𝑝0 is confirmed.  

Table 2: The dynamics of system (2) as a function of the specific parameter with rest of parameters as given in (67) 

Parameter Range The dynamics 

𝑑1 

𝑑1 ∈ (0,0.52] The system (2) approaches asymptotically to 𝑝5 

𝑑1 ∈ (0.52,0.58] The system (2) approaches asymptotically to 𝑝4 

𝑑1 > 0.58 The system (2) approaches asymptotically to 𝑝2 

𝑎1 
𝑎1 ∈ (0,2.01] The system (2) approaches asymptotically to 𝑝5 

𝑎1 > 2.01 The system (2) approaches asymptotically to 𝑝2 

𝑐 
𝑐 ∈ (0,0.17] The system (2) approaches asymptotically to limit cycle 

𝑐 ∈ (0.17,1] The system (2) approaches asymptotically to 𝑝5 

𝑎2 𝑎2 ∈ (0, 𝑎1] The system (2) approaches asymptotically to 𝑝5 

𝑎4 𝑎4 > 0 The system (2) approaches asymptotically to 𝑝5 

𝑚 

𝑚 ∈ (0,0.32] The system (2) approaches asymptotically to limit cycle 

𝑚 ∈ (0.32,0.86] The system (2) approaches asymptotically to 𝑝5 

𝑚 ∈ (0.86,1] The system (2) approaches asymptotically to 𝑝4 

𝐾2 
𝐾2 ∈ (0,2.47] The system (2) approaches asymptotically to 𝑝5 

𝐾2 > 2.47 The system (2) approaches asymptotically to limit cycle 

𝐾3 

𝐾3 ∈ (0,0.81] The system (2) approaches asymptotically to limit cycle 

𝐾3 ∈ (0.81,3.42] The system (2) approaches asymptotically to 𝑝5 

𝐾3 > 3.43 The system (2) approaches asymptotically to 𝑝4 

𝑑3 

𝑑3 ∈ (0,0.06] The system (2) approaches asymptotically to limit cycle 

𝑑3 ∈ (0.06,0.21] The system (2) approaches asymptotically to 𝑝5 

𝑑3 > 0.22 The system (2) approaches asymptotically to 𝑝4 

 

7. CONCLUSIONS 

This work proposes and investigates a three-species food chain model including fear cost, predator-

dependent refuge, and cannibalism at the second level. Food consumption between stages of the 

food chain is designed using the Holling type II functional response. The solution's entire 
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collection of characteristics was investigated. It is noted that the system has six nonnegative 

equilibrium points. Each one's stability analysis is looked into locally. The system's persistence 

requirements have been identified. The transcritical bifurcation of system (2) is demonstrated to 

occur close to the boundary equilibrium point, with the pitchfork bifurcation occurring possibly 

also at the prey-free equilibrium point. Saddle-node bifurcation is, nevertheless, discovered close 

to the positive equilibrium point. Finally, the model is investigated numerically using a 

hypothetical set of parameter values to confirm the obtained finding and understand the impact of 

varying the parameters on the system’s (2) dynamics. The following results were obtained 

numerically depending on the parameter values (67). 

• The prey birth rate has three bifurcation points. As its value increases, the system (2) loses 

its stability at the positive equilibrium point and transfers to periodic dynamics through 

Hopf bifurcation. On the other hand, decreasing its value leads to extinction in the top 

predator first and then in the prey so that the solution approaches the second axial 

equilibrium point through the top predator-free equilibrium point. 

• The prey’s fear level (similarly the prey’s natural death rate and the intermediate predator’s 

attack rate) causes extinction in the top predator first and then in the prey when its value 

exceeds a specific value. On the other hand, when the system undergoes periodic dynamics, 

it is observed that increasing the prey’s fear level stabilizes the system at the positive 

equilibrium point. 

• The prey intraspecific competition (similarly the prey’s refuge rate and the middle 

predator’s half-saturation constant) has a stabilizing effect on the system’s dynamics. 

• The conversion rate of cannibalism into middle predator birth (similarly the half-saturation 

constant of cannibalism) has a destabilizing effect on the system’s dynamics. 

• The middle predator’s natural death rate causes extinction in the system and the solution 

ultimately approaches the first axial equilibrium point. 

• The cannibalism rate in the middle predator (similarly the middle predator’s refuge rate, 

the top predator’s natural death rate, and the top predator’s half-saturation constant) has a 

stabilizing effect on the system’s dynamics up to a threshold value and then the persistence 

of the system (2) is lost through extinction in top predator. 
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• The conversion rate of middle predator’s biomass into top predator biomass makes the 

system persist at the positive equilibrium point. 
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