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Abstract. In this work, we present a continuous mathematical model, SEIQR, for monkeypox infection. We

study the dynamical behaviour of this model and discuss the basic properties of the system. By constructing

Lyapunov functions and using Routh-Hurwitz criteria, the stability analysis of the model confirms that the system

is globally, as well as locally, asymptotically stable at the free equilibrium E0 when R0 < 1. When R0 > 1, the

endemic equilibrium E∗exists, and the system is globally, as well as locally, asymptotically stable at the endemic

equilibrium E∗. Additionally, we conduct a sensitivity analysis of the model parameters to identify the parameters

that have a significant impact on the reproduction number R0. Finally, we perform numerical simulations to confirm

the theoretical analysis using Matlab.

Keywords: monkeypox model; analysis; stability.

2020 AMS Subject Classification: 34H15, 65K05, 65L03, 37N25, 37N35, 92B05.

∗Corresponding author

E-mail address: imanesmouni23@gmail.com

Received June 30, 2023
1



2 SMOUNI, ELMANSOURI, KHAJJI, LABZAI, BELAM, TIDLI

1. INTRODUCTION

Smallpox, caused by the simian orthopoxvirus, was one of the deadliest endemo-epidemic

diseases for a long time. It is a viral zoonotic disease, meaning it can be transmitted to humans

by animals. Another mode of transmission is through close contact with a person who has a

rash due to monkey pox, including face-to-face and skin-to-skin contact. Monkeypox has been

declared a global disease by the WHO, as it affects not only African countries but also the rest of

the world. In 2003, the first outbreak of smallpox in the monkey population reached the United

States of America. This outbreak was attributed to contact with infected domestic prairie dogs

that had been housed with cricetoma savannas and dormice imported from Ghana. Nearly 70

cases were identified in the USA between July and November 2021 and in the United Kingdom

in May 2022. The majority of monkeypox cases were reported in non-endemic countries. Nu-

merous studies are being conducted to better understand the epidemiology, infection sources,

and transmission modes [1].

Many specialists state that monkeypox is primarily manifested by fever, rashes, and swollen

lymph nodes. It can lead to a range of medical complications, with severe cases occurring more

frequently in children and being associated with the extent of exposure to the virus, the patient’s

health status, and the nature of the complications. Underlying immune deficiency can contribute

to an unfavourable progression. Individuals under the age of 40 to 50 (varying by country)

may be more susceptible to monkeypox due to the discontinuation of smallpox vaccination

campaigns worldwide after the eradication of the disease, even though past vaccination against

smallpox provided protection [1,2].

Monkeypox can lead to various complications such as secondary infections, bronchopneu-

monia, sepsis, encephalitis, and corneal infection that can result in vision loss. The extent to

which the infection may be asymptomatic is not yet known. Historically, the case fatality rate

of monkeypox has ranged from 0 to 11% in the general population, with higher rates in young

children. In recent times, the case fatality rate has been approximately 3 to 6% [1].

Since the epidemic started spreading in early May 2022, the WHO has taken the situation

very seriously, rapidly releasing clinical and public health guidance, actively engaging with

societies, and bringing together hundreds of scientists and researchers to accelerate monkeypox
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research and development, including the exploration of new diagnostic tools, vaccines, and

treatments [3].

Over 16,700 confirmed cases of monkeypox have been identified in more than 75 countries,

but the actual number is likely higher, according to the UN World Health Agency. Five deaths,

all in Africa, have been reported, and there have been 81 cases involving children under the age

of 17 reported internationally so far. According to the latest WHO count, the number of new

cases reported each week in the world has increased by 48% between July 18 and 24 (4045

cases) compared to 2740 cases between July 11 and 17 [4].

As of August 22, the United States (14,049 cases) leads the ten countries with the highest

number of cumulative cases worldwide, followed by Spain (6,119), Brazil (3,450), Germany

(3,295), the United Kingdom (3,225), France (2,889), Canada (1,168), the Netherlands (1,090),

Peru (937), and Portugal (810). These countries together account for almost 90% of the reported

cases worldwide, totalling 44,464 cases of monkeypox. The WHO reports a total of 13 deaths

as of August 25, 2022 [5].

Many studies and research in social, medical, and political sciences have focused on this topic

and other related topics [6, 7, 8, 9, 15, 16]. However, the mathematical studies and research on

this topic are still limited, with most of them focusing on the statistical and stochastic aspects

of the disease [10, 11]. Mathematical models can be used to analyze the spread of infectious

diseases or the social behaviour of individuals [12, 13].

Several researchers have utilized mathematical analysis to study monkeypox dynamics. For

instance, they have developed and analyzed a deterministic monkeypox mathematical model,

and their results suggest that isolating infected individuals in the human population reduces

disease transmission. In a similar vein, [7] established a mathematical model for the dynamics

of the smallpox virus in monkey transmission, presenting it as a system of interactions rep-

resented by a system of nonlinear differential equations. Numerical simulations indicate that

the individuals’ immune status influences their recovery after being infected with the monkey-

pox virus. [8] Investigated the transmission dynamics and control of the monkeypox virus in

the population using both a classical model and a fractional-order model, exploring how the

fractional-order parameter affects monkeypox dynamics and whether it can be used as a control
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parameter. Additionally, in [9]’s study, numerical simulations carried out on the model revealed

that infectious individuals in human and non-human primate populations will disappear over

time due to the proposed interventions during the study period.

We will propose a continuous mathematical model that describes the spread of monkeypox

using differential equations. The virus primarily spreads through contact between humans and

animals, particularly through direct contact with an infected person. First, we will test the local

stability of the model at the disease-free equilibrium and the endemic equilibrium. Then, we

will examine the overall stability of the model. Since data collection often involves errors and

parameter values are assumed, we will also conduct sensitivity analysis of the model parameters

to identify those that have a significant impact on the reproduction number R0.

This article is organized as follows: Section 1 presents the formulation of the proposed model

and its basic properties. In Section 2, we discuss the equilibrium points of the model. Section

3 covers the analysis of local and global stability of the equilibrium point. The sensitivity

analysis of the parameters is discussed in Section 4. Section 5 presents numerical simulations

that confirm the theoretical results. Finally, we conclude by discussing the obtained results.

2. MATHEMATICAL MODEL FORMULATION AND PROPERTIES OF BASE

2.1. Mathematical model. In this section, we present a continuous mathematical model of

the disease denoted by S(t),E(t), I(t),Q(t), and R(t), where the population under investigation

is divided into five compartments:

The compartment S: Represents susceptible individuals who are at risk of acquiring the small-

pox virus. This compartment is increased by the birth rate denoted as Λ and decreased by

effective contact with asymptomatic infected cases at a rate β , as well as natural mortality at a

rate µ .

The compartment E: Consists of asymptomatic infected cases. It is increased by susceptible

individuals becoming asymptomatic infected people at a rate β . This compartment is reduced

when asymptomatic infected people develop symptoms and become carriers of the virus at a

rate α , and also decreases due to natural mortality at a rate µ .

The compartment I: Contains individuals with symptoms and carriers of the virus. It is in-

creased by asymptomatic infected people developing symptoms at a rate α This compartment
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decreases when infected individuals are admitted to the hospital at a rate δ , and also decreases

due to natural mortality at a rate µ and disease-related deaths at a rate λ .

The compartment Q: Represents infected individuals who are hospitalized. This compartment

increases at a rate δ , which represents the transmission coefficient of infected persons to hospi-

talized cases. It decreases as people recover at a rate θ and due to natural mortality at a rate µ .

The compartment R: Contains individuals who have recovered. It increases with the recruit-

ment of people who have been treated in the hospital at a rate θ and decreases due to natural

mortality at a rate µ .

The total size of the population is denoted as N, given by the equation:

N(t) = S(t)+E(t)+ I(t)+Q(t)+R(t),

and it is assumed to be constant.

The diagram in Figure 1 illustrates the flow of individuals among compartments, represented

by directed arrows:

FIGURE 1 -Relations between the five compartments S(t),E(t), I(t),Q(t),R(t)

The dynamics of this model is governed by the following differential equation system:

1



Ṡ(t) = Λ−β
S(t)E(t)

N −µS(t)

Ė(t) = β
S(t)E(t)

N − (α +µ)E(t)

İ(t) = αE(t)− (δ +µ +λ )I(t)

Q̇(t) = δ I(t)− (θ +µ)Q(t)

Ṙ(t) = θQ(t)−µR(t)

Where S(0)≥ 0, E(0)≥ 0, I(0)≥ 0, Q(0)≥ 0, R(0)≥ 0 the given initial states.
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2.2. Basic Properties: System (1) describes the human population and therefore it is neces-

sary to prove that all the solutions of system (1) with positive initial data will remain positive for

all time t > 0 and are bounded. This will be established by the following theorem and lemma.

a) Positivity of the model solutions:

Theorem 1. If S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0, the Solutions

S(t),E(t), I(t),Q(t),R(t) of system (1) are positive for all t > 0.

Demonstration:

It follows from the first equation of system (1) that:
dS
dt = λ −β

S(t)E(t)
N −µS(t)

=⇒ dS(t)
dt +β

S(t)E(t)
N +µS(t) = Λ≥ 0

=⇒ dS(t)
dt +(β E(t)

N +µ)S(t)≥ 0

We multiply the inequality by

exp(
∫ t

0
β

E(s)
N

+µds)

We obtain:

dS(t)
dt

exp(
∫ t

0
β

E(s)
N

+µds)+(β
E(t)

N
+µ)exp(

∫ t

0
β

E(s)
N

+µds)S(t)≥ 0

So
d
dt
(S(t)exp(

∫ t

0
β

E(s)
N

+µds))≥ 0

Let’s integrate this inequality

S(t)≥ S(0)exp(−
∫ t

0
β

E(s)
N

+µds)

Then S(t) is positive.

Similarly for the other equations we find,

E(t)≥ E(0)exp(−
∫ t

0
β

S(s)
N
−α−µds)≥ 0;

I(t)≥ I(0)e−(δ+λ+µ)t ≥ 0;

Q(t)≥ Q(0)e−(θ+µ)t ≥ 0;

R(t)≥ R(0)e−µt ≥ 0;
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b) Invariant region:

Lemma:The feasible region Ω defined by:

Ω = {S(t),E(t), I(t),Q(t),R(t),S+E + I +Q+R≤ Λ

µ
}

With the conditions S(0)≥ 0, E(0)≥ 0, I(0)≥ 0, Q(0)≥ 0, R(0)≥ 0.

Demonstration:

We add the system equations (1) we find:

dN
dt

= Ṡ+ Ė + İ + Q̇+ Ṙ

dN
dt
≤ Λ−µN

According to Gronwall’s lemma we have:

N(t)≤ N(0)exp(−µt)+
Λ

µ
(1− exp(−µt))

Where N(0) represents the initial values of the total population.

So limsupt−→+∞ N(t) = Λ

µ
. This implies that the region Ω a positively invariant set for system

(1). We therefore only need to consider the dynamics of the system on the set Ω.

The first three equations of system (1) are independent of the variables Q and R.Therefore,

the dynamics of the system of equations (1) is equivalent to the dynamics of the system of

equations:

2


Ṡ(t) = Λ−β

S(t)E(t)
N −µS(t)

Ė(t) = β
S(t)E(t)

N − (α +µ)E(t)

İ(t) = αE(t)− (δ +µ +λ )I(t)

3. THE EQUILIBRIUM POINTS:

System (1) has the following two equilibrium points:

3.1. Point of equilibrium without disease. Is giving by E0
eq(

Λ

µ
,0,0)and is reached in the

absence of disease E(t) = I(t) = Q(t) = R(t) = 0.
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3.2. Point of equilibrium with disease. is given by E∗eq(S
∗,E∗, I∗,Q∗,R∗) where

S∗ =
Λ

µR0
,

E∗ =
µN
β

(R0−1),

I∗ =
αµN(R0−1)
β (δ +λ +µ)

.

and

R0 =
βΛ

µN(α +µ)

R0 is the base reproduction number which measures the average number of newly infected

individuals generated by a single infected individual in a population of susceptible individuals.

4. STABILITY AND SENSITIVITY ANALYSIS OF MODEL PARAMETERS

In this section, we will study system’s stability behavior at equilibrium with and without

disease.

4.1. Local stability analysis. We analyze the local stability of the equilibrium points E0
eq and

E∗eq.

4.1.1. Disease-Free Equilibrium Point:

Theorem 2. Equilibrium points without disease E0
eq(

Λ

µ
,0,0)of the system (2) is asymptotically

stable if R0 < 1 and is unstable if R0 > 1.

Demonstration: The Jacobian matrix at E0
eq is given by:

J(E0
eq) =


−µ −βΛ

Nµ
0

0 βΛ

Nµ
− (α +µ) 0

0 α −(δ +λ +µ)


The characteristic equation of this matrix is given by det(J(E0

eq)− ζ I3) = 0, where I3 is an

identity matrix of order 3.

det(J(E0
eq)−ζ I4) =−(µ +ζ )[(βΛ

Nµ
− (µ +α)−ζ )(−(δ +µ +λ )−ζ )] = 0.

So, the eigenvalues of the characteristic equation of J(E0
eq) are:

ζ1 =−µ
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ζ2 = (α +µ)(R0−1)

ζ3 =−(δ +µ +λ )

where

R0 =
βΛ

µN(α +µ)

Therefore, all eigenvalues of the characteristic equation J(E0
eq) are clearly negative real num-

bers if R0 < 1.

So, we conclude that Equilibrium point without disease E0
eq(

Λ

µ
,0,0) of system (2) is asymptoti-

cally stable if R0 < 1 and is unstable if R0 > 1.

4.1.2. Point of equilibrium with disease.

Theorem 3. Equilibrium points with disease E∗eq(S
∗,E∗, I∗,Q∗,R∗) of system (2) is asymptoti-

cally stable if R0 > 1 and is unstable if R0 < 1.

Demonstration: The Jacobian matrix at E∗eq is given by:

J(E∗eq) =


−µR0 − βΛ

µNR0
0

µ(R0−1) βΛ

µNR0
− (α +µ) 0

0 α −(δ +λ +µ)


We notice that the characteristic equation ϕ(ζ ) of J(E∗eq)

ϕ(ζ ) = ζ
3 +a1ζ

2 +a2ζ +a3

where,

a1 = δ +λ +µ(Λ+R0)

a2 = (δ +µ +λ )µR0−
βΛ

NR0
(1−R0)

a3 =−
βΛ

NR0
(δ +µ +λ )(1−R0)

According to the Routh-Hurwitz criterion, the system (2) is locally asymptotically stable if a1 >

0,a2 > 0,a3 > 0 and a1a2 > a3 Therefore,E∗eq(S
∗,E∗, I∗,Q∗,R∗) of system (2) is asymptotically

stable if R0 > 1.

4.2. global stability.
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4.2.1. global stability without disease. To show that the system (2) is globally asymptotically

stable, we use the Lyapunov’s function theory for equilibrium points without disease and equi-

librium with disease. First, we present the global stability of the disease-free equilibrium E0
eq.

Theorem 4. Equilibrium points without disease E0
eq of system (2) is globally asymptotically

stable if R0 ≤ 1and is unstable if R0 > 1.

Demonstration: We consider the following Lyapunov function:

V : Γ−→ R

V (S,E, I) = E

where Γ = {(S,E, I) ∈ Γ/S > 0,E > 0, I > 0} Then the derivative of the Lyapunov function is

given by:
dV
dt

=
dE
dt

= (
βΛ

µN
− (α +µ))E

dV
dt

= (α +µ)(R0−1)E

So, dV
dt ≤ 0 if R0 ≤ 1 also dV

dt = 0 if and only if E = 0 then, E0
eq is globally asymptotically.

4.2.2. global stability with disease.

Theorem 5. Equilibrium point with disease E∗eq of system (2) is globally asymptotically stable

if R0 > 1.

Demonstration: We consider the following Lyapunov function:

V : Γ−→ R

V (S,E) = S−S∗ ln(
S
S∗

)+E−E∗ ln(
E
E∗

)

where Γ = {(S,E, I) ∈ Γ/S > 0,E > 0} Then, the derivative of the Lyapunov function is given

by:
dV (S,E)

dt
= (−Λ(S−S∗)

SS∗
− β

N
(E−E∗))(S−S∗)+

β

N
(S−S∗)(E−E∗)

Then,
dV (S,E)

dt
=−Λ(S−S∗)2

SS∗
≤ 0
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also,
dV (S,E)

dt
= 0 i f S = S∗

4.3. Sensitivity analysis of R0. Sensitivity analysis is commonly used to help us know the

parameters that have a high impact on the reproduction number R0 (because there are usually

errors in data collection and assumed parameter values). Using the approach of Chitnis and al

[14], we calculate the normalized forward sensitivity indices of R0 which is defined as

γ
R0
n =

∂R0

∂n
∗ n

R0

let’s Note the sensitivity index of R0 with respect to the parameter n, we obtain:

R0 =
βΛ

µN(α +µ)

γ
R0
β

= 1

γ
R0
α =− α

α +µ

γ
R0
µ =− µ

α +µ
−1

With the sensitivity values are:

The sensitivity values

We observe from above that the basic reproduction number R0 is the most sensitive to changes

in β . Indeed, if β increases R0 will also increase in the same proportion and if β decreases in

the same proportion, µ and α will have an inversely proportional relationship with R0. Thus,

an increase in one of them will lead to a decrease in R0.

5. NUMERICAL SIMULATIONS

In this section, we illustrate some numerical solutions of model (1) for different values of the

parameters. We use the following different initial values such that S+E + I +Q+R = 26000.
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5.1. Disease-free equilibrium: We use and present some numerical simulations of the system

(1) to illustrate our results, estimating Λ = 1500,µ = 0.04,β = 0.05,α = 0.09,δ = 0.05,λ =

0.5,θ = 0.05, and different initial values for each state variable, we have the disease-free equi-

librium (monkey pox) R0 = 0.1545 < 1.

In this case, according to theorem (4), the monkeypox disease-free equilibrium E0 of system (1)

is globally asymptotically stable on Ω. (See figures (2))

FIGURE 2a

FIGURE 2b
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FIGURE 2c

FIGURE 2d

FIGURE 2e
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From these Figures, using the different values of the initial variables S0,E0, I0,Q0 and R0, we

obtained the following remarks:

Remarks:

-The number of potential individuals increases and approaches that of the population S0 =

1.3867e+05 (See figure 2a).

- the number of asymptomatic infected cases decreases and converges towards zero (See figure

2b).

-The number of infected people with symptoms and carriers of the virus first increases, then

decreases and approaches zero (see Figure 2c).

-The number of hospitalized cases is decreasing and approaching zero (see Figure 2d).

-The number of recovered cases decreases and approaches zero (see Figure 2e).

Therefore, the solution curves towards the equilibrium Eeq
0 (S0,0,0,0,0) when R0 < 1.. There-

fore, the model (1) is globally asymptotically stable.

5.2. Point of equilibrium with disease: Also, we estimate for Λ = 1500,µ = 0.4,β =

0.09,α = 0.01,δ = 0.05,λ = 0.5,θ = 0.05, we have equilibrium point with monkeypox

disease E∗eq and R0 = 2.5755 > 1, In this case, according to theorem (5), the equilibrium with

monkeypox disease E∗ of system (1) is globally asymptotically stable on Ω. (See Figures (3))

FIGURE 3a
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FIGURE 3b

FIGURE 3c

FIGURE 3d



16 SMOUNI, ELMANSOURI, KHAJJI, LABZAI, BELAM, TIDLI

FIGURE 3e

Remarks:

- the number of potential individuals first increases, then it decreases slightly and approaches

the S∗ = 1.4444e+04 value (see figure 3a)

-the number of asymptomatic infected cases increases and converges towards the value of

E∗ = 1.8444e+04 (see figure 3b).

-The number of infected people with symptoms and carriers of the virus decreases, then in-

creases slightly towards the value of I∗ = 376.4172 (See figure 3c).

-The number of hospitalized cases decreases and approaches the value of Q∗ = 209.1207 (see

figure 3d).

-number of recovered cases decreases and converges towards the value of R∗ = 261.4009 (see

figure 3e).

Therefore, the solution curves towards the equilibrium Eeq
∗ (S∗,E∗, I∗,Q∗,R∗) when R0 > 1.

Therefore, model (1) is globally asymptotically stable.

6. CONCLUSION

In this work, we have formulated and presented a continuous SEIQR mathematical model

of monkeypox that describes the dynamics of individuals infected with this disease. We have

determined the base reproduction number of the system (1) as R0 = βΛ

µN(α+µ) which helps us
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understand the dynamics of the system. Additionally, we have conducted a sensitivity anal-

ysis of the model parameters to identify the parameters that have a significant impact on the

reproduction number R0. Using the theory of stability analysis for nonlinear systems, we have

analyzed the mathematical model of monkeypox and examined its local and global stability.

The disease-free equilibrium point E0
eq can exhibit local stability if the reproduction number

R0 ≤ 1. Conversely, if R0 > 1,the equilibrium points with disease E∗eq are locally asymptotically

stable. We have demonstrated global asymptotic stability of E0
eq using a Lyapunov function

when R0 ≤ 1. Similarly, we have shown global asymptotic stability of E∗eq using a Lyapunov

function when R0 > 1.
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