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Abstract. In this work, we present a fractional dynamic model to describe the spread of Hepatitis B disease

in human population under influence of campaign and treatment parameters. It was shown that the stability of

disease-free equilibrium and disease endemic equilibrium depend on the basic reproduction number. These results

are in accordance with the epidemic theory. A numerical example is given to demonstrate the validity of the results.

The results show that the media campaigns and treatment increase susceptible subpopulations, reduce infectious

ones, and increase recovered subpopulations, thus the model gives adequate information about the spread of the

Hepatitis B virus.
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1. INTRODUCTION

Hepatitis B is an inflammation of the liver that is caused by a variety of infectious viruses

leading to a range of health problems, some of which can be fatal. Usually this disease transmits

from one person by different ways to another, e.g., through semen, blood, and vaginal secretion
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etc.. Sexual transmission is also one of the dominant sources of hepatitis B virus transmission

[1, 2].

Mathematical modeling is a method to better understand the dynamics of hepatitis B virus

transmission and evaluate the effectiveness of various control and prevention strategies. Several

studies on the use of mathematical models to study the spread of hepatitis B can be seen in

[3, 4, 5, 6, 7, 8].

One of the well-known models of the spread of the hepatitis B virus is the SIR compartment

model where the model is given in the form of a nonlinear differential equation, see [4, 6, 9]

for a wide discussion. In this SIR model, the observed human population (N) is divided into

three epidemiological compartments denoted by susceptible S(t), infectious I(t) and recovered

individuals R(t), thus the total population at the time t is given by N(t) = S(t)+ I(t)+R(t).

The assumption made in developing this model can be found in [9] and the involve various

parameters in (1) are described in Table 1. The dynamics of SIR model for hepatitis B spread

TABLE 1. Parameter with biological meaning occuring in the model (1).

Parameter Biological meaning

Λ Birth rate

a Transmission rate of hepatitis B

d0 Natural death rate

d1 Disease induced death rate

b Recovery rate

ν Vaccination rate

c Saturation rate

in human population are governed by the following system of coupled nonlinear differential

equation [9],

(1)


Ṡ(t) = Λ− aS(t)I(t)

1+ cI(t)
− (d0 +ν)S(t)

İ(t) =
aS(t)I(t)
1+ cI(t)

− (d0 +d1 +b)I(t)

Ṙ(t) = bI(t)+νS(t)−d0R(t),
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with the initial conditions S(0) = S0 ≥ 0, I(0) = I0 ≥ 0,R(0) = R0 ≥ 0. In the model (1), quan-

tity
aS(t)I(t)
1+ cI(t)

is the saturated incidence rate, in which
aI(t)

1+ cI(t)
reaches the saturation level

whenever I increases [9].

Currently, several epidemiological model was formulated in the form of fractional order dif-

ferential equations and widely discussed by many researchers, see [10, 11, 12, 13, 14, 15, 16].

It is known that fractional order derivatives are generalizations of integer order derivatives, so

modeling using fractional differential equations is a powerful method for studying the overall

spread of the disease.

Motivated by the current study, in this manuscript, we modified model (1) by replacing the

first-order derivative with fractional-order derivatives and including the media campaign param-

eter (i.e. education about the threat of hepatitis B disease) (µ1) and the hepatitis B treatment

parameter to infected individuals (µ2) into the model, with µ1,µ2 ∈ [0,1), such that the model

(1) can be written as a following new model:

(2)


D (γ)S(t) = Λ− aS(t)I(t)

1+ cI(t)
(1−µ1)− (d0 +ν)S(t)

D (γ)I(t) =
aS(t)I(t)
1+ cI(t)

(1−µ1)− (d0 +d1 +b+µ2)I(t)

D (γ)R(t) = (b+µ2)I(t)+νS(t)−d0R(t).

In this new model, D (γ) is the fractional-order derivative operator of Caputo type of oder γ with

0 < γ < 1. We study the influence of parameters µ1 and µ2 on each compartment by inspecting

the stability behavior of the equilibrium points of the model (2). To the best of the author’s

knowledge, this issue has not been solved yet to date. Therefore the results of this research

constitute a new contribution in the field of fractional-order epidemic dynamics.

2. SOME USEFUL RESULTS

In this section we recall several mathematical tools used in this study. Let y : [0,∞)→Rn is

an integrable vector function and γ ∈ (k−1,k) , k ∈N . The Caputo fractional-order derivative

of order γ is defined by

(3) D (γ)y(t) =
1

Γ(k− γ)

t∫
0

(t− τ)k−γ−1y(k)(τ)dτ
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where Γ(.) is the Euler Gamma function [19]. Let us consider the general fractional-order

dynamic system involving Caputo derivative

(4) D (γ)y(t) = g(t,y(t))

with suitable initial conditions y(t0) = y0, where y(t) is the state at time t of the system (4),

g : [0,∞)×Rn→Rn. Note that the system (4) may be non-linear, or vice versa. If g is linear,

the system (4) can be written as

(5) D (γ)y(t) = Ay(t)),

where A is a n by n matrix.

One important thing of the system (4) is stability of equilibrium point. When talking about

stability, one is interested in the behavior of the solutions of (4) for t → ∞ [17, 18]. The point

y∗ is said the equilibrium point of the system (4) if g(t,y∗) = 0. Note that the equilibrium point

is a constant solution to the dynamic system (4).

Definition 2.1. [19, 20] Let y∗ is an equilibrium point of the fractional-order system (4).

(1). y∗ is said to be stable if for ε > 0, there exists a ρ(ε)> 0 such that ‖y(t0)−y∗‖< ρ(ε)

implies ‖y(t)−y∗‖< ε for t ≥ t0.

(2). y∗ is said to be asymtotically stable if it is stable and limt→∞ y(t) = y∗.

Theorem 2.2. [19, 20] The equilibrium point y∗ of the fractional-order linear system (5) with

γ ∈ (0,1) is asymptotically stable if

(6) |arg(βi)|>
1
2

γπ,

where βi, i = 1,2, · · · ,n are eigenvalues of the matrix A.

Theorem 2.3. [19, 20] The equilibrium point y∗ of the the fractional-order nonlinear system

(4) with γ ∈ (0,1) is asymptotically stable if

(7) |arg(β )|> 1
2

γπ,

for all roots β of the equation

(8) |Jy∗−β I|= 0
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where Jy∗ is the Jacobian matrix of system (4) around the equilibrium y∗.

3. ASYMPTOTIC STABILITY OF THE EQUILIBRIA

By following the procedure in [3], it is easy to show that the solution of the model under

consideration is restricted to the feasible region given by

U =
{
(S, I,R) ∈R3

+ : 0≤ N(t)≤ N(0)
}

if the initial conditions S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0. It is well-known in

epidemiology that the dynamical behavior of the model (4) depends on the basic reproductive

number. By using the next generation method, the basic reproduction number for the model (2)

is given by

R0 =
aΛ

(d0 +ν)(d0 +d1 +b+µ2)
.(9)

In order to find the equilibrium point of the model (2), we must solve the following equations:

D (γ)S(t) = D (γ)I(t) = D (γ)R(t) = 0.

By assuming I = 0, one finds the disease-free equilibrium, denoted by E0, of the fractional order

Hepatitis B model (2), that is

E0 =

(
Λ

d0 +ν
,0,

Λν

d0(d0 +ν)

)
.

We will analyze the stability of this free disease equilibrium point. First of all, the Jacobian

matrix of the vector field corresponding to model (2) around E0 is

JE0 =



− aI0

1+ cI0 (1−µ1)− (d0 + v) − aS0

(1+ cI0)2 (1−µ1) 0

− aI0

1+ cI0 (1−µ1)
aS0

(1+ cI0)2 (1−µ1)− (d0 +d1 +b+µ2) 0

ν b+µ2 −d0



=


−(d0 + v) − aΛ

d0 +ν
(1−µ1) 0

0
aΛ

d0 +ν
(1−µ1)− (d0 +d1 +b+µ2) 0

ν b+µ2 −d0


.
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The stability of the free disease equilibrium point E0 is given in the following theorem.

Theorem 3.1. The free disease equilibrium point E0 is asymptotically stable if R0 < 1, and if

R0 > 1 then it becomes unstable.

Proof. Clearly JE0 has the following three eigenvalues given by

λ1 = −(d0 +ν),

λ2 = −d0,

λ3 = −(d0 +d1 +b+µ2)(1−R0).

One can see that all eigenvalues of JE0 satisfy |arg(βi)| > γπ

2 if R0 < 1 for i = 1,2,3, and one

eigenvalue satisfy |arg(β3)| < γπ

2 when R0 > 1. Hence, E0 is asymptotically stable if R0 < 1

and becomes unstable if R0 > 1. �

To find the disease endemic equilibrium point (denoted by E ∗) of the fractional-order of

hepatitis model (2), we solve the model (2) at steady state for S, I and R. One can observe that

E ∗ = (S∗, I∗,R∗), where

S∗ =
1

a(1−µ1)
(d0 +d1 +b+µ2)(1+ cI∗),(10)

I∗ =
d0 +ν

d0 +ν +1
(R0−1),(11)

R∗ =
1
d0

((b+µ2)I∗+νS∗),(12)

is the disease endemic equilibrium poiny of hepatitis model (2). The stability of the disease

endemic equilibrium E ∗ is given in the following theorem.

Theorem 3.2. If R0 > 1, then the disease endemic equilibrium E ∗ is asymptotically stable and

becomes unstable when R0 < 1.

Proof. The Jacobian matrix of (2) around E ∗ is

JE ∗ =


− aq0I∗

1+ cI∗
−q1 − aq0S∗

(1+ cI∗)2 0

− aq0I∗

1+ cI∗
aq0S∗

(1+ cI∗)2 −q2 0

ν b+µ2 −d0
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where q0 = 1−µ1, q1 = (d0 +ν), q2 = (d0 +d1 +b+µ2). It is obvious that β1 =−d0 consti-

tutes an eigenvalue of JE ∗ that have negative real part. In order to find the remaining, we take

the following matrix

K =


− aq0I∗

1+ cI∗
−q1 − aq0S∗

(1+ cI∗)2

− aq0I∗

1+ cI∗
aq0S∗

(1+ cI∗)2 −q2

 .
The eigenvalues of the matrix K are negative if trace(K)< 0 and det(K)> 0. Observe that

trace(K) =−
(

aq0I∗

1+ cI∗
+q1

)(
aq0S∗

(1+ cI∗)2 −q2

)
(13)

de(K) = trace(K)−
(

aq0S∗

(1+ cI∗)2

)(
aq0I∗

1+ cI∗

)
.(14)

By subtituting (10), (11) into (13) and (14), and using the condition R0 > 1, one get trace(K)<

0 and det(K) > 0. It is easy to check that the negativity of all eigenvalues of JE ∗ implies

|arg(βi)| >
γπ

2
, for i = 1,2,3. Hence, E ∗ is asymptotically stable if R0 > 1 and becomes un-

stable if R0 < 1. �

In order to show the validity of the results, let us consider the following numerical exam-

ple. For the model (2), let us assume Λ = 0.088 day−1, c = 0.09 day−1, ν = 0.3 day−1, b =

0.03 day−1, a = 0.24 day−1, d0 = 0.002 day−1, d1 = 0.001 day−1, µ1 = 0.02, µ2 = 0.03 and

N = 270 individuals. The initial conditions are S0 = 100, I0 = 90 and R0 = 80. Based on these

parameter values, we find the basic reproduction number R0 = 1.1101 which shows that the

endemic equilibrium is asymptotic stable.

Graphs of the susceptible subpopulation, infectious subpopulation, and recovered subpopula-

tion under the effect of media campaign/education and the treatment for several fractional-order

γ , respectively, are given in Figure 1, Figure 2, and Figure 3. The graphs show that the me-

dia campaigns (education) and treatment increase susceptible subpopulations, reduce infectious

ones, and increase recovered subpopulations.
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FIGURE 1. The curves of Susceptible, Infectious, Recovered for γ = 0.4

FIGURE 2. The curves of Susceptible, Infectious, Recovered for γ = 0.75

FIGURE 3. The curves of Susceptible, Infectious, Recovered for γ = 0.95

4. CONCLUSION

We have found the fractional SIR model for the dynamic of Hepatitis B virus spread. An

example that illustrates the result has been presented. The analysis shows that the media cam-

paigns (education) and treatment increase susceptible subpopulations, reduce infectious ones,
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and increase recovered subpopulations, thus the SIR model gives adequate information about

the spread of the Hepatitis B virus.
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