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Abstract: This paper investigates the relationship between healthcare facilities and the spread of COVID-19 in 

Indonesia using a spatial autoregressive exogenous (SAR-X) model. The study aims to understand how the 

availability and accessibility of healthcare facilities influence the transmission dynamics of the virus at a regional 

level. The analysis utilizes a comprehensive dataset on COVID-19 cases, healthcare. The findings of this study 

contribute to a better understanding of the role of healthcare facilities in mitigating the spread of COVID-19 in 

Indonesia and can be a policy decision to strengthen healthcare infrastructure and resource allocation, facility 

locations, and other relevant variables. The SAR-X model allows for the incorporation of exogenous factors, such as 

healthcare capacity, population density, and mobility patterns, in examining their impact on the spatial patterns of 

COVID-19 transmission. 

Keywords: COVID-19; healthcare facilities; SAR-X model; spatial autoregressive; transmission dynamics; spatial 

analysis. 
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1. INTRODUCTION 

The COVID-19 pandemic has had a profound impact on global health systems and economies 

[1], including in Indonesia. As the number of COVID-19 cases continues to rise, understanding 

the factors that contribute to the spread of the virus is crucial for effective public health 

interventions. One such factor that plays a significant role in disease transmission is the 

availability and quality of healthcare facilities. Access to adequate healthcare services and 

infrastructure is essential for timely diagnosis, treatment, and containment of the virus [2]. 

Therefore, investigating the impact of healthcare facilities on the spread of COVID-19 in 

Indonesia is of utmost importance. In recent years, spatial analysis techniques have gained 

popularity in epidemiology research for understanding the spatial patterns of disease 

transmission [3]. Spatial Autoregressive (SAR) models have proven effective in capturing spatial 

dependencies and exploring the impact of exogenous factors on disease spread [4]. In this study, 

we employ a SAR-X model to analyze the relationship between healthcare facilities and the 

spread of COVID-19 in Indonesia. 

Previous research stated that the environmental sector played an important role in increasing 

positive confirmed cases of Covid-19 [5]–[13]. In addition, the age factor also greatly influences 

the spread of Covid-19 [10], [12], [14]. The primary objective of this research is to investigate 

how the availability and accessibility of healthcare facilities influence the spatial patterns of 

COVID-19 transmission in Indonesia. We hypothesize that areas with better healthcare 

infrastructure and higher capacity for testing and treatment will exhibit lower rates of COVID-19 

transmission. By incorporating exogenous variables such as the number of hospitals, clinics, and 

health centers, the SAR-X model allows us to examine the independent and combined effects of 

these factors on the spread of the virus. To accomplish our research objectives, we will utilize a 

comprehensive dataset on COVID-19 cases and healthcare facilities. By mapping the spatial 

distribution of COVID-19 cases and healthcare facilities, we can identify hotspots with high 

transmission rates and areas with limited access to healthcare services. The results of this 

analysis will provide valuable insights into the relationship between healthcare facilities and the 

spread of COVID-19 in Indonesia, informing policymakers and healthcare authorities on 
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strategies for improving healthcare infrastructure and resource allocation to mitigate the impact 

of the pandemic. 

 

2. MATERIALS AND METHODS 

The purpose of this paper aims to contribute to the existing literature on COVID-19 transmission 

by examining the impact of healthcare facilities in Indonesia using a SAR-X model. 

2.1. Spatial Weighted Matrix 

This matrix is used to define the weight between observed locations which is based on the 

neighborhood relationship between locations [15]. Neighborhood can be defined using the 

concept of queen contiguity which is illustrated in Figure 1. 

 

Figure 1. Queen Contiguity 

Figure 1 shows that the neighboring areas are determined based on the angles and sides that 

touch each other. There are two ways in obtaining the spatial weighting matrix W, that is the 

standardized and the unstandardized weighting matrix. The former is obtained by giving an equal 

weight to the nearest neighbors and zero to the others, whereas the latter is obtained by assigning 

a weight to the nearest neighbors and zero to the others. 

2.2. Moran’s Index 

To determine the presence of spatial autocorrelation between locations, a spatial dependency test 

was used [16]. The spatial dependence test is performed using the Moran's index. 

Hypothesis: 

𝑯𝟎∶ spatial autocorrelation between locations rejected. 
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𝑯𝟏: spatial autocorrelation between locations. 

Test statistics uses: 

Zvalue =
𝐼 − E(𝐼)

√Var (𝐼)
 

with 

𝐼 =
𝑛 ∑ ∑ 𝑤𝑖𝑗𝑐𝑖𝑗 

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑤𝑖𝑗  
𝑛
𝑗=1 (𝑥𝑖 −𝑛

𝑖=1 �̅�)2
;  E(𝐼) = −

1

𝑛 − 1
;  Var(𝐼) =

𝑛2𝑆1 − 𝑛𝑆2 + 3𝑆0
2

(𝑛2 − 1)𝑆0
2 − [E(𝐼)]2; 

𝑐𝑖𝑗 = (𝑥𝑖 − �̅�)(𝑥𝑗 − �̅�);  𝑆0 = ∑∑𝑤𝑖𝑗 

𝑛

𝑗=1

𝑛

𝑖=1

;  𝑆1 =
1

2
∑(𝑤𝑖𝑗 + 𝑤𝑗𝑖)

2
 

𝑛

𝑗≠1

;  𝑆2 = ∑(𝑤𝑖𝑗 + 𝑤𝑗𝑖)
2 

𝑛

𝑗≠1

 

𝑰: Moran’s index value 

𝐕𝐚𝐫(𝑰): Moran index variance 

𝐄(𝑰): Moran’s index expected value 

𝒏: the number of incident locations 

𝒙𝒊: value at the 𝒊  

𝒙𝒋: value at the 𝒋 

�̅�: the average of variables 

𝒘𝒊𝒋: standardized spatial weight matrix 𝒊, 𝒋 

Decision:  

𝐻0 rejected if  Zvalue < −𝑍∝

2
  or  Zvalue > 𝑍∝

2
. 

2.3. Spatial Autoregressive Exogenous Model 

The SAR-X model is used to describe and predict the effect of location and exogenous variables 

on dependent variables with location-based data [17]. Referring to [18] in [16] it can be 

explained that the general model of the SAR-X regression can be written as follows: 

𝐲 = 𝜌𝐖𝐲 + 𝐗𝛃 + 𝛆, 𝛆~N(0, σ2𝐈) 

with, 

𝐲: dependent variable vector of size 𝒏 × 𝟏 

𝝆: spatial lag parameter coefficient of dependent variable 

iid 
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𝐖: spatial weighted matrix of size 𝒏 × 𝒏 

𝐗: independent variable matrix of size 𝒏 × (𝒑 + 𝟏) 

𝛃: regression parameter coefficient vector of size (𝒑 + 𝟏) × 𝟏  

𝛆: error vector of size 𝑛 × 1 

2.4. Parameter estimation using Maximum Likelihood Method 

The random error variable in the SAR-X model has a normal distribution and is assumed to be 

normal, so that the Maximum Likelihood Estimation (MLE) method will be used in the 

parameter estimation of the SAR-X model. Referring to [19] unknown parameters in the MLE 

method will be obtained by maximizing a likelihood function. 

SAR-X model can be written as follows: 

𝛆 = 𝐲 − 𝜌𝐖𝐲 − 𝐗𝛃 

The probability density function is defined as follows: 

𝑓(𝛆|𝜌, 𝛃) =
1

(2𝜋)
𝑛
2(𝜎2)

𝑛
2

exp (−
(𝐲 − 𝜌𝐖𝐲 − 𝐗𝛃)T(𝐲 − 𝜌𝐖𝐲 − 𝐗𝛃)

2𝜎2
) 

where the likelihood function: 

𝐿(𝜌, 𝛃|𝛆) = 𝑓(𝛆|𝜌, 𝛃)                                                                                             

                  =
1

(2𝜋)
𝑛
2(𝜎2)

𝑛
2

exp(−
(𝐲 − 𝜌𝐖𝐲 − 𝐗𝛃)T(𝐲 − 𝜌𝐖𝐲 − 𝐗𝛃)

2𝜎2
) . 

Thus, the log likelihood function is given as follows: 

ln 𝐿(𝜌, 𝛃|𝛆) = ln(
1

(2𝜋)
𝑛
2(𝜎2)

𝑛
2

exp(−
(𝐲 − 𝜌𝐖𝐲 − 𝐗𝛃)T(𝐲 − 𝜌𝐖𝐲 − 𝐗𝛃)

2𝜎2
)) 

                   = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln 𝜎2 −

(𝐲 − 𝜌𝐖𝐲 − 𝐗𝛃)T(𝐲 − 𝜌𝐖𝐲 − 𝐗𝛃)

2𝜎2
  

The estimation parameters 𝜌 and 𝛃  obtained by maximizing the log likelihood function are 

given as follows: 

�̂� = ((𝐖𝐲)𝐓𝐖𝐲)−𝟏(𝐖𝐲)𝐓(𝐲) 

�̂� = (𝐗𝐓𝐗)−𝟏𝐗𝐓(𝐲 − 𝜌𝐖𝐲) 

2.5. Parameter Significance Test with Wald 

Parameter significance test is carried out to determine the role of independent variables in the 
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model [20]. 

The hypothesis used: 

𝐻0: significant parameter rejected 

𝐻1: significant parameter 

The test statistics is as follows: 

Wald =
�̂�𝟐

Var(�̂�)
 

with, 

             Var(�̂�) = Var ((𝐗𝐓𝐗)−𝟏𝐗𝐓(𝐲 − 𝜌𝐖𝐲)) 

Decision:  

𝐻0 is rejected if Wald value > 𝜒(1,1−𝛼)
2 . 

2.6. Mean Absolute Percentage Error (MAPE) 

Referring to Lewis in [21], MAPE is an evaluation forecasting method that considers the effect 

of actual values. The lower the MAPE value, the more accurate the method accuracy is. 

MAPE =
(∑

|𝑦𝑖 − �̂�𝑖|
𝑦𝑖

𝑛
𝑖=1 )

𝑛
× 100% 

with,  

𝑦𝑖: actual data 

�̂�𝑖: prediction data 

𝑛: the amount of data.  

Referring to Lewis in [21], there is a scale for assessing MAPE accuracy shown in Table 1. 

Table 1. MAPE score scale. 

Scale MAPE Accuracy Score 

≤ 10% Highly accurate prediction 

10% < MAPE ≤ 20% Good prediction 

20% < MAPE ≤ 50% Reasonable Prediction 

> 50%  Inaccurate Prediction 
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2.7. Coefficient of Determination 

The coefficient of determination is used to see the suitability of the model used [22]. Defining 

the total squared sum (TSS) 

𝑇𝑆𝑆 = ∑ (𝑦𝑖 − �̅�)2
𝑛

𝑖
 

and the sum of squared error (SSE) 

𝑆𝑆𝐸 = ∑ (𝑦𝑖 − 𝑦�̂�)
2

𝑛

𝑖
, 

gives the general formula for the coefficient of determination as follows: 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑇𝑆𝑆
 

Referring to [22], the closer 𝑅2 to 1, the more suitable the model is, conversely, the closer 𝑅2 

to 0, the less suitable the model is. 

 

3. RESULTS AND DISCUSSION 

The data used is the daily positive confirmed Covid-19 patients in West Java Province in 2022 

and the exogenous variable is the number of health facilities (hospitals, clinics, health centres) in 

2020. 

 

 

Figure 2. Map of West Java Province 
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Figure 2 shows a map of West Java Province consisting of 9 cities (Bandung, Banjar, Bekasi, 

Bogor, Cimahi, Cirebon, Depok, Sukabumi, Tasikmalaya) and 18 regencies (Bandung Barat, 

Bekasi, Bogor, Ciamis, Cianjur, Cirebon, Garut, Indramayu, Karawang, Kuningan, Majalengka, 

Pangandaran, Purwakarta, Subang, Sukabumi, Sumedang, Tasikmalaya). Applying the concept 

of queen contiguity to data in Figure 2, results in the spatial weighting matrix 𝐖. 

𝐖 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Results of applying spatial dependency testing using the Moran's I index with 𝛼 = 0.05, are 

shown in Table 2. 

Table 2. Moran Index 

I E(I) Var(I) Z𝑣𝑎𝑙𝑢𝑒 𝐻0 Autocorrelation 

0.5175357 -0.2 0.1224539 2.050500 Reject   

 

Based on Table 2, the computed 𝑍𝑣𝑎𝑙𝑢𝑒(2.050500) ≥ 𝑍𝛼

2
(1.96), indicating the presence of 

spatial autocorrelation. This is shown in Table 3. The estimated parameter results of the SAR-X 
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model were obtained using MLE. 

Table 3. Estimation result 

�̂� �̂� 

0.1983125 7.7181327 

The positive value of �̂� in Table 3 indicates the presence of spatial lag in the confirmed 

COVID-19 cases in West Java Province. The positive value of �̂� indicates that, holding other 

variables constant, an increase of 1 unit in the number of healthcare facilities is associated with 

an increase in the dependent variable. The significance testing of the parameters using the Wald 

test is shown in Table 4. 

Table 4. Wald test 

Wald value 𝐻0 Significance of parameters 

3.4990 Rejected  Significant 

Table 4 shows that the obtained Wald value is greater than 𝜒1,9.5
2 , indicating that the healthcare 

facilities variable is significant in relation to the confirmed COVID-19 cases. The MAPE 

obtained from the SAR-X model and the SAR-X prediction model for daily confirmed positive 

COVID-19 cases in West Java Province is shown in Table 5. 

Table 5. MAPE 

MAPE Accuracy Score 

14.5678% Good prediction 

Table 5 shows that the prediction result is accurate, indicating that the SAR-X model is suitable 

for predicting the impact of location and the number of healthcare facilities on daily confirmed 

positive COVID-19 cases. This is supported by the generated coefficient of determination of 

78%. 

 

4. CONCLUSION 

The results of the spatial dependence test indicate the presence of spatial autocorrelation in daily 

confirmed cases of Covid-19. The Wald test results show that the number of healthcare facilities 
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has a significant effect on daily confirmed cases of Covid-19 in West Java Province. The 

application of the SAR-X model can be used to predict the impact of location and the number of 

healthcare facilities on daily confirmed cases of Covid-19. This is supported by a coefficient of 

determination of 78%. The findings of this study can serve as a recommendation for the Health 

Department in addressing the challenges of managing Covid-19 patients. 
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