
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2023, 2023:88

https://doi.org/10.28919/cmbn/8092

ISSN: 2052-2541

STABILITY ANALYSIS OF SLIV R COVID-19 EPIDEMIC MODEL WITH
QUARANTINE POLICY

YOUSSRA HAJRI, EL MEHDI FARAH∗, AMINA ALLALI, SAIDA AMINE

Laboratory of Mathematics, Computer Science and Applications, Faculty of Sciences and Technics, Hassan II

University of Casablanca, PO Box 146, Mohammedia 20650, Morocco

Copyright © 2023 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we present a mathematical model illustrating the dynamics of the COVID-19 disease with

vaccination and quarantine strategies. The presented model contains five equations that describe the interaction

between individuals who are susceptible, exposed, infected, vaccinated, and recovered. We start the study by veri-

fying the positivity and boundedness of solutions. The existence and the stability of both disease-free equilibrium

and endemic equilibrium are proved. Finally, numerical simulations are performed to demonstrate the behavior of

the infection over time and to say the influence of quarantine and vaccination on both the COVID-19 dynamics

and the basic reproduction number mathcalR0 for controlling the disease’s spread.
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1. INTRODUCTION

SARS-CoV-2, a coronavirus discovered in 2019, has produced a respiratory disease pan-

demic known as COVID-19. The virus spreads between people through direct contact or via

contaminated surfaces. This disease is currently spreading rapidly in many countries, and the

global number of COVID-19 cases is rapidly increasing.
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Mathematical modelling in epidemiology is a source of knowledge for understanding the spread

of an disease and an effective tool for controlling and predicting the dynamics of diseases such

as Cancer [1], VIH [2], influenza [3], Tuberculosis [4], HBV [5], COVID-19 [11, 12, 13] and

the co-infection of COVID-19 and HBV [6], other researchers are interested in modeling multi-

strain diseases [7, 8, 10, 9]. Many active studies are currently being conducted to investigate

various epidemic models applied to the spread of COVID-19 by scientists all over the world.

Ian et al. [14] developed a susceptible-infected-removed (SIR) model that provides a theoretical

framework to investigate the time evolution of different populations and monitor diverse signif-

icant parameters for the spread of the disease COVID-19 in various communities. In addition,

the SARS-COV-2 virus has a long incubation period, which refers to the time between being

exposed to the virus and developing symptoms. The average incubation period is 6 days, with

recorded variations ranging from 2 to 27 days [15]. As a result, many earlier studies considered

a new compartment to the classic SIR in model to account for the exposed population. An SLIR

model was implimented by Shaobo et al. [19], to analyse the spread of COVID-19 in Hubei

province. Additionally many mathematical models were constructed to study the outbreak of

COVID-19 in many countries [16, 17, 18].

Countries worldwide have implemented strict and adequate precautions to prevent and con-

trol the spread of COVID-19, including early detection approaches and social distancing [20] to

limit contact between individuals as much as possible, as well as medical treatment, to reduce

the number of infected citizens. Vaccination is a crucial strategy in fighting against many pre-

viously infected diseases. Recently, authors in [21] constructed a SLIR model by considering

vaccination and isolation factors as model parameters. Moreover, Amouch et al. [22] proposed

a new epidemiological mathematical model for the spread of the COVID-19 disease with a

special focus on the transmissibility of individuals with severe symptoms, mild symptoms, and

asymptomatic symptoms and take into consideration the vaccination of a portion of susceptible

individuals. More recently, a COVID-19 vaccine epidemic model has been tackled [23]. In this

work, we continue the investigation of the effect of vaccination by taking into account the effect

of quarantine measures on SLIVR COVID-19 epidemic model presented in [23]. Therefore, the
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SLIVR COVID-19 epidemic model is formulated as follows

(1)



dS (t)
dt

= Λ−β (1−ρ)(I (t)+αL (t))
S (t)

N
− (rv +d)S (t)+wvV (t)+ lmR(t),

dL (t)
dt

= β (1−ρ)(I (t)+αL (t))
S (t)

N
− (d + rs)L (t),

dI (t)
dt

= rsL (t)− (d +d0 + rc)I (t),

dV (t)
dt

= rvS (t)− (d +wv)V (t),

dR(t)
dt

= rcI (t)− (d + lm)R(t),

with

(2) S (0)≥ 0,L (0)≥ 0,I (0)≥ 0,V (0)≥ 0,R(0)≥ 0.

This model includes six variables: susceptible individuals (S ), the population that can make

contact with the infection, the exposed individuals (L ), the population exposed to the virus

but without developing clinical symptoms. The infectious individuals (I ), the population with

fully developed corona-virus symptoms. The vaccinated individuals (V ), and finally removed

individuals (R). All model parameters are assumed to be positive and are described as follows:

Λ denotes the population recruitment rate and d is natural mortality in all compartments. β

represent the effective contact rate, α represents relative transmissibility rate. rs represents rate

of infection development with symptoms, d0 is death rate due to infection and rc is rate of

recovery from infection. rv denote vaccination rate, wv is vaccine waning rate and lm is loss of

disease acquired immunity. The parameter ρ represent the efficiency of quarantine in reducing

the latent and infected individuals.The flowchart of our model is illustrated in Fig. 1.

The current work is divided into different sections. In the following section, we will demon-

strate the existence, the positivity and boundedness results. In Section 3, we will establish both

the local and global stability of both equilibrium. In Section 4, we will present some numerical

simulations to verify the theoretical results. The conclusion is stated in Section 5.
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FIGURE 1. The diagram of the COVID-19 model.

2. THE PROBLEM WELLPOSEDNESS AND STEADY STATES

In this section, we will prove that the system is biologically meaningful and mathematically

well posed. To do this, it is required to prove that the solutions of the system of ordinary

differential equation (1) are positive and bounded for all time.

2.1. Exixtence, positivity and boundedness.

Proposition 2.1. For all non-negative initial condition, the solutions of the system (1) exist,

non-negative and remain bounded for all t > 0. Moreover,

lim
t→+∞

N(t)≤ Λ

d
.

Proof. In order to prove the positivity result, we will show that any solution starting from non-

negative orthant R5
+ remains there forever.
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Let

(3) T = sup{τ > 0 : ∀t ∈ [0,τ] such that S (t)≥ 0, L (t)≥ 0, I (t)≥ 0, V (t)≥ 0, R(t)≥ 0}

Let us now show that T = +∞. Suppose the contrary. By continuity of solutions, we have

S (T ) = 0 or L (T ) = 0 or I (T ) = 0 or V (T ) = 0 or R(T ) = 0.

- If S (T ) = 0 before the other variables L , I , V , R, becomes zero. Hence,

dS

dt
= lim

t→T−

S (T )−S (t)
T − t

= lim
t→T−

−S (t)
T − t

≤ 0.

Using the first equation of system (1), we obtain

dS (T )
dt

=Λ−β (1−ρ)(I (T )+αL (T ))
S (T )

N
− (rv +d)S (T )+wvV (T )+ lmR(T ),

=Λ+wvV (T )+ lmR(T ),

So,
dS (T )

dt
> 0. Which presents a contradiction.

- If L (T ) = 0 before the other variables S , I , V , R, becomes zero. Hence,

dL

dt
= lim

t→T−

L (T )−L (t)
T − t

= lim
t→T−

−L (t)
T − t

≤ 0.

Using the first equation of system (1), we obtain

dL (T )
dt

=β (1−ρ)(I (T )+αL (T ))
S (T )

N
− (d + rs)L (t),

=
β (1−ρ)I (T )S (T )

N
,

So,
dL (T )

dt
> 0. Which presents a contradiction. Similar proof for I (t), V (t), R(t).

Therefore, T could not be finite, which implies that S , L , I , V and R are all positive

for all positive time. This proof the positivity of solutions.

To prove the subsequent part of Proposition (2.1), let the total population

N(t) = S (t)+L (t)+I (t)+V (t)+R(t).

By adding equations involved in the system (1), we have

dN
dt

= Λ−dN−d0I

≤ Λ−dN.

(4)
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By simple manipulation, we have

N(t)≤ N(0)e−dt + e−dt
∫ t

0
Λe−dξ dξ

≤ N(0)e−dt +
Λ

d

(
1− e−dt

)
Thus,

lim
t→+∞

N(t)≤ Λ

d

�

2.2. Invariant region.

Proposition 2.2. The biological feasible region for the transmission dynamic of COVID-19

epidemic model (1) is given by Ω⊂ R5
+, where,

Ω =

{
(S ,L ,I ,V ,R) ∈ R5

+ : S +L +I +V +R ≤ Λ

d

}
.

Moreover, the closed region define by Ω ⊂ R5
+ is positive imvariant for the model (1) with

nonnegative initial conditions in R5
+.

Proof. As we know that

N(t) = S (t)+L (t)+I (t)+V (t)+R(t),

then,

(5)

dN(t)
dt

= Λ−dN(t)−d0I

≤ Λ−dN(t),

and
dN(t)

dt
≤ 0 if N(t)≥ Λ

d
for t ≥ 0,

but the solution of (5) is

N(t)≤ N(0)e−dt +
Λ

d

(
1− e−dt

)
.

Therefore, N(t) ≤ Λ

d
if N(0) ≤ Λ

d
as t → ∞. On other hand N(t) >

Λ

d
if N(0) >

Λ

d
as t → ∞.

Thus, the region Ω is positive invariant, and all the solutions trajectories are attracted in R5
+ �
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3. ANALYSIS OF THE MODEL

In this section, we will first calculate the basic reproduction number R0 for The COVID-19

model (1). Next, we will present the steady states and finally we will demonstrate the local and

global stability of all steady states.

3.1. The Basic Reproduction Number. Biologically, the basic reproduction number denoted

R0 represents the average number of new infections generated by each infected person in a

population where all individuals are susceptible to infection. We will use the next generation

matrix to calculate the basic reproduction number R0 [24]. The necessary matrices denoted by

F and Y are given by given by

F =


βα(1−ρ)

Λ(d +wv)

N0d (d +wv + rv)
β (1−ρ)

Λ(d +wv)

N0d (d +wv + rv)
0

0 0 0

0 0 0



and Y =


d + rs 0 0

−rs d +d0 + rc 0

0 0 d +wv

.

Since, N0 =
Λ

d
. Then, F =


β (1−ρ)α (d +wv)

d +wv + rv

β (1−ρ)(d +wv)

d +wv + rv
0

0 0 0

0 0 0



and Y =


d + rs 0 0

−rs d +d0 + rc 0

0 0 d +wv

.

Therefore,

FY−1 =


β (1−ρ)α (d +wv)

(d + rs)(d +wv + rv)
+

β (1−ρ)rs (d +wv)

(d + rs)(d +wv + rv)(d +d0 + rc)

β (1−ρ)(d +wv)

(d +wv + rv)(d +d0 + rc)
0

0 0 0

0 0 0

 .

The basic reproduction number R0 is obtained as the spectral radius of FY−1. Hence, we get

the following expression of R0
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R0 =
β (1−ρ)(d +wv)(rs +α (d +d0 + rc))

(d + rs)(d +wv + rv)(d +d0 + rc)
,

R0 = R1 +R2,

where R1 =
β (1−ρ)rs (d +wv)

(d + rs)(d +wv + rv)(d +d0 + rc)
and R2 =

β (1−ρ)α (d +wv)

(d + rs)(d +wv + rv)
.

3.2. Steady states. In the next Theorem, the steady states of the the COVID-19 epidemic

model (1) are given.

Theorem 3.1. -The COVID-19 epidemic model (1) has a disease free equilibrium defined by

P0 = (S0,L0,I0,V0,R0) =

(
Λ(d +wv)

d (d +wv + rv)
,0,0,

Λrv

d (d +wv + rv)
,0
)

.

-If R0 > 1, then the COVID-19 epidemic model (1) has endemic equilibrium points given by

P∗ = (S∗,L∗,I∗,V∗,R∗), where

(6)



S∗ =
Λ(d +wv)M2

(d +wv + rv) [(R0−1)M1 +dM2]
,

L∗ =
Λ(d + lm)(d +d0 + rc)(R0−1)

(R0−1)M1 +dM2
,

I∗ =
rsΛ(d + lm)(R0−1)
(R0−1)M1 +dM2

,

V∗ =
ΛrvM2

(d +wv + rv)((R0−1)M1 +dM2)
,

R∗ =
rsrcΛ(R0−1)

(R0−1)M1 +dM2
,

where

M1 =d(d + lm)(d + rc)+drs(d + rc + lm)+d0(d + rs)(d + lm),

M2 =(d + lm)(d +d0 + rc)+ rs(d + rc + lm).
(7)

3.3. Local Stability.

Theorem 3.2. The disease-free equilibrium, P0 is locally asymptotically stable if R0 < 1 and

else unstable.
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Proof. The Jacobian of model (1) at disease-free equilibrium,

P0 =

(
Λ(d +wv)

d (d +wv + rv)
,0,0,

Λrv

d (d +wv + rv)
,0
)

is,

J (P0) =



−d− rv −β (1−ρ)α (d +wv)

d +wv + rv
−β (1−ρ)(d +wv)

d +wv + rv
wv lm

0 −rs−d +
β (1−ρ)α (d +wv)

d +wv + rv

β (1−ρ)(d +wv)

d +wv + rv
0 0

0 rs −d−d0− rc 0 0

rv 0 0 −d−wv 0

0 0 rc 0 −lm−d


,

and the corresponding characteristic polynomial is

P(ξ ) = (−ξ − lm−d)(ξ +d)(ξ +d +wv + rv)
(
a2ξ

2 +a1ξ +a0
)
,

where
a2 = 1,

a1 = d +d0 + rc +(rs +d)(1−R2) ,

a0 = (rs +d)(d +d0 + rc)(d +wv + rv)(1−R0) .

When R0 < 1, the coefficients a0 and a1 are positive. By Routh-Hurwitz stability criteria, the

disease-free equilibrium is locally asymptomatically stable in Ω. �

Theorem 3.3. The endemic equilibrium P∗ is locally asymptotically stable when R0 > 1.

Moreover, P∗ is otherwise unstable.

Proof. The Jacobian of system (1) at P∗ = (S∗,L∗,I∗,V∗,R∗) is

J (P∗) =



−p11 −p12 −p13 wv lm

−p21 −p22 p23 0 0

0 rs −p33 0 0

rv 0 0 −p44 0

0 0 rc 0 −p55


where

p11 = d + rv +λ , p12 = β (1−ρ)α
dS0

ΛR0
,

p13 = β (1−ρ)
dS0

ΛR0
, p21 = λ , p22 = d + rs−β (1−ρ)α

dS0

ΛR0
,
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p23 = β (1−ρ)
dS0

ΛR0
, p33 = d +d0 + rc, p44 = d +wv, p55 = d + lm.

The corresponding characteristics equation is given by

P(ζ ) = ζ
5 +b4ζ

4 +b3ζ
3 +b2ζ

2 +b1ζ +b0,

where

b4 =
Λ(d + rs)(d + lm)(d +d0 + rc)(R0−1)

dM2S0
+(d + rs)

(
1− R2

R0

)
+(d +d0 + rc) ,

b3 =p12 p21 + p33 p44 +(p33 + p44) p55 + p22 (p33 + p44 + p55)

+ p11 (p22 + p33 + p44 + p55)− (rs p23 +wvrv) ,

b2 =rs p13 p21 + p22 p33 (p44 + p55)+ p44 p55 (p11 + p22)+ p12 p21 (p33 + p44 + p55)

+ p11 (p33 p44 +(p33 + p44) p55 + p22 (p33 + p44 + p55))− rs p23 (p11 + p44 + p55)

−wvrv (p22 + p33 + p55) ,

b1 =p33 p44 p55 (p11 + p22)+ p11 p55 (p22 p33 +(p22 + p33) p44)

+ p21 (rs p13 (p44 + p55)+ p12 (p33 p44 + p55 (p33 + p44)))+ rswvrv p23,

− rs (p23 p44 p55 + p11 p23 (p44 + p55)+ lmrc p21)−wvrv (p22 p33− (p22 + p33) p55)

b0 =
(d + lm)(d +wv)(d + rs)(d +d0 + rc)M1 (R0−1)

dM2S0
.

The coefficients b4,b3,b2,b1,b0 are positive if R0 > 1.

It is obvious to show that the necessary conditions of Routh-Hurwitz stability criteria for degree

five polynomial, b4b3b2 > b2
2 +b2

4b1 and (b4b1−b0)
(
b4b3b2−b2

2−b2
4b1
)
> b0 (b4b3−b2)

2 +

b1b2
0 holds.

Therefore, the P∗ is locally asymptotically stable in Ω. �

3.4. Global stability. The following Theorem investigates the global dynamics of disease-

free equilibrium, P0, of the COVID-19 epidemic model described in (1).

Theorem 3.4. The disease-free equilibrium P0 is global asymptotically stable if R0 < 1,

otherwise unstable.
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Proof. Consider the Lyapunov function given by

F0(L ,I ) = L +gI , where g =
β (1−ρ)(d +wv)

(d +wv + rv)(d +d0 + rc)
.

Hence, the Lyapunov derivative is

dF0

dt
=

dL

dt
+g

dI

dt

=

[
β (1−ρ)(I +αL )

S

N
− (d + rs)L

]
+g [rsL − (d +d0 + rc)I ] ,

Since,

S (t)≤S0 =
Λ(d +wv)

d (d +wv + rv)
and N(t)≤ Λ

d
then

S (t)
N(t)

≤ d +wv

d +wv + rv

we have

dF0

dt
≤
[

α
d +wv

d +wv + rv
+grs− (d + rs)

]
L +

[
β (1−ρ)

d +wv

d +wv + rv
− (d +d0 + rc)g

]
I

=

[
β (1−ρ)α

d +wv

d +wv + rv
+

β (1−ρ)(d +wv)

(d +wv + rv)(d +d0 + rc)
rs− (d + rs)

]
L ,

+

[
β (1−ρ)

d +wv

d +wv + rv
− (d +d0 + rc)

β (1−ρ)(d +wv)

(d +wv + rv)(d +d0 + rc)

]
I

=(d + rs)

[
β (1−ρ)(d +wv)(rs +α (d +d0 + rc))

(d + rs)(d +wv + rv)(d +d0 + rc)
−1
]
L

=(d + rs) [R0−1]L .

If R0 < 1, Then
dF0

dt
< 0. Therefore, by LaSalle’s Invariance Principle, it follows that the

disease-free equilibrium point is globally asymptotically stable in Ω. �

The following Theorem investigates the global dynamics of The endemic equilibrium, P∗,

of the COVID-19 epidemic model described in (1).

Theorem 3.5. The endemic equilibrium point is globally asymptotically stable if R0 > 1.

Proof. The appropriate Lyapunov function is defined as

F ∗(S ,L ,I ,V ,R) = (m1V∗−m2S∗) ln
(

S +V

S∗+V∗

)
− (L∗+I∗+R∗) ln

(
L +I +R

L∗+I∗+R∗

)
,

where

m1 =
(d + rs)(d +wv + rv)

rv
, m2 =

β (1−ρ)(rs +α (d +d0 + rc))

d +d0 + rc
.
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Therefore

dF ∗

dt
=

(m1V∗−m2S∗)

S +V

(
dS

dt
+

dV

dt

)
−L∗+I∗+R∗

L +I +R

(
dL

dt
+

dI

dt
+

dR

dt

)
.

From (6), we have

(8) m1V∗−m2S∗ =
Λ(d + rs)M2 (1−R0)

(R0−1)M1 +dM2
and L∗+I∗+R∗ =

ΛM2 (R0−1)
(R0−1)M1 +dM2

.

by using the system (1) and the fact that S (t),L (t),I (t),V (t),R(t) are all non-negative for

t > 0, we get

(9)
dS

dt
+

dV

dt
≤ Λ+ lmR and

dL

dt
+

dI

dt
+

dR

dt
≤ β (1−ρ)(I +αL ).

From (8) and (9), we have

dF ∗

dt
≤ ΛM2 (1−R0)

(R0−1)M1 +dM2

(
d + rs

S +V
(Λ+ lmR)+

1
L +I +R

(β (1−ρ)(I +αL ))

)
.

If R0 > 1, we have
dF ∗

dt
< 0. Therefore, according to LaSalle’s Invariance Principle, the

endemic equilibrium point P∗ is globally asymptotically stable in Ω. �

4. NUMERICAL SIMULATIONS

In this section, we will perform some numerical simulations in order to check the impact of

quratine and vaccination measures in controlling the spread of the COVID-19. Fig. 2 show

the evolution of the exposed and infected individuals for the following parameters: Λ = 8939,

β = 0.4114, α = 0.3131, d = 1/(67.7∗365), rs = 0.0164, d0 = 0.022, wv = 0.0057, rc = 0.1,

lm = 0.1762. In the first case, we ignore the effect of quarantine and take the vaccination

baseline, ρ = 0, rv = 0.0380, the disease persist and the exposed and infected cases reach a

very high level (the blue curve). In the second case, we increase the vaccination rate rv by 50

percent from the baseline value, ρ = 0, rv = 0.057, we can see that the disease persists with a

significant reduction in both exposed and infected individuals (the read curve). Furthermore, in

the third and the fourth cases, when the quarantine is maximally implemented simultaneously

with population vaccination, the disease dies out and the infected, as well as exposed population,

decreases very quickly (the yellow and purple curves).
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FIGURE 2. Impact of quarantine and vaccination strategies on exposed and in-

fected population.



14 YOUSSRA HAJRI, EL MEHDI FARAH, AMINA ALLALI, SAIDA AMINE

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

FIGURE 3. The figure on the left illustrates the variation of the basic reproduc-

tion number R0 as a function of the quarantine efficacy ρ in the absence of a

vaccination strategy, while the figure on the right represents the variation the

basic reproduction number R0 as a function of quarantine efficacy ρ when the

vaccination strategy is considered.

The basic reproduction number R0 is affected by the quarantine effectiveness parameter and

can be reduced by increasing quarantine efficacy. As a result, the quarantine strategy is critical

in controlling COVID-19 disease. The critical value of quarantine effectiveness in the absence

of vaccination of the population is estimated from Fig. (3) by 0.95, which means that the disease

can converge to a disease-free state after more than 95 percent of the quarantine. However, when

the vaccination strategy is considered, the critical value of quarantine efficiency is estimated

from Fig. (3) by 0.31, signifying that the disease can converge to a disease-free state with only

more than 31 percent of quarantine in the presence of vaccination.

5. CONCLUSION

In this paper, we have studied the mathematical model illustrating the dynamics of the

COVID-19 disease with both vaccination and quarantine strategies. This model includes five

equations describing the interaction between susceptible, exposed, infected, vaccinated, and re-

covered individuals. This study is oriented primarily toward to verify the positiveness and the

boundedness of solutions that are established to have the well-posedness of the formulation.

Furthermore, we have studied the existence and the stability of both disease-free equilibrium

and endemic equilibrium, the Disease-free equilibrium always exists, and it is stable when
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R0 < 1 but for the endemic equilibrium point exists and is stable when R0 > 1. Finally, the

numerical simulations are carried out in order to show the behavior of the infection over time

and to proclaim the effect of the quarantine and vaccination on both the COVID-19 dynamics

and the basic reproduction number R0 for controlling the spread of the disease. We have con-

cluded that the combination of quarantine and vaccination policies is the key aspect of infection

control related to the spread of the COVID-19 outbreak.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

[1] S. Amine, Y. Hajri, K. Allali, A delayed fractional-order tumor virotherapy model: Stability and Hopf bifur-

cation, Chaos Solitons Fractals. 161 (2022), 112396. https://doi.org/10.1016/j.chaos.2022.112396.

[2] S. Amine, E.M. Farah, Global stability of HIV-1 and HIV-2 model with drug resistance compartment, Com-

mun. Math. Biol. Neurosci. 2021 (2021), 38. https://doi.org/10.28919/cmbn/5643.

[3] E.M. Farah, S. Amine, S. Ahmad, et al. Theoretical and numerical results of a stochastic model describing

resistance and non-resistance strains of influenza, Eur. Phys. J. Plus. 137 (2022), 1169. https://doi.org/10.114

0/epjp/s13360-022-03302-5.

[4] Adnan, S. Ahmad, A. Ullah, et al. Complex dynamics of multi strain TB model under nonlocal and nonsingu-

lar fractal fractional operator, Results Phys. 30 (2021), 104823. https://doi.org/10.1016/j.rinp.2021.104823.

[5] Z. Yaagoub, K. Allali, Fractional HBV infection model with both cell-to-cell and virus-to-cell transmissions

and adaptive immunity, Chaos Solitons Fractals. 165 (2022), 112855. https://doi.org/10.1016/j.chaos.2022.1

12855.

[6] A. Din, S. Amine, A. Allali, A stochastically perturbed co-infection epidemic model for COVID-19 and

hepatitis B virus, Nonlinear Dyn. 111 (2022), 1921-1945. https://doi.org/10.1007/s11071-022-07899-1.

[7] E.M. Farah, S. Amine, K. Allali, Dynamics of a time-delayed two-strain epidemic model with general inci-

dence rates, Chaos Solitons Fractals. 153 (2021), 111527. https://doi.org/10.1016/j.chaos.2021.111527.

[8] A. Allali, S. Amine, Stability analysis of a fractional-order two-strain epidemic model with general incidence

rates, Commun. Math. Biol. Neurosci. 2022 (2022), 43. https://doi.org/10.28919/cmbn/7297.

[9] D. Bentaleb, S. Amine, Lyapunov function and global stability for a two-strain SEIR model with bilinear and

non-monotone incidence, Int. J. Biomath. 12 (2019), 1950021. https://doi.org/10.1142/s1793524519500219.

[10] Z. Yaagoub, J. Danane, K. Allali, On a two-strain epidemic mathematical model with vaccination, Computer

Methods Biomech. Biomed. Eng. (2023), 1-19. https://doi.org/10.1080/10255842.2023.2197542.

https://doi.org/10.1016/j.chaos.2022.112396
https://doi.org/10.28919/cmbn/5643
https://doi.org/10.1140/epjp/s13360-022-03302-5
https://doi.org/10.1140/epjp/s13360-022-03302-5
https://doi.org/10.1016/j.rinp.2021.104823
https://doi.org/10.1016/j.chaos.2022.112855
https://doi.org/10.1016/j.chaos.2022.112855
https://doi.org/10.1007/s11071-022-07899-1
https://doi.org/10.1016/j.chaos.2021.111527
https://doi.org/10.28919/cmbn/7297
https://doi.org/10.1142/s1793524519500219
https://doi.org/10.1080/10255842.2023.2197542


16 YOUSSRA HAJRI, EL MEHDI FARAH, AMINA ALLALI, SAIDA AMINE

[11] J. Nainggolan, J. Harianto, H. Tasman, An optimal control of prevention and treatment of COVID-19 spread

in Indonesia, Commun. Math. Biol. Neurosci. 2023 (2023), 3. https://doi.org/10.28919/cmbn/7820.

[12] S. Ahmad, A. Ullah, Q.M. Al-Mdallal, et al. Fractional order mathematical modeling of COVID-19 trans-

mission, Chaos Solitons Fractals. 139 (2020), 110256. https://doi.org/10.1016/j.chaos.2020.110256.

[13] K.S. Nisar, S. Ahmad, A. Ullah, et al. Mathematical analysis of SIRD model of COVID-19 with Caputo

fractional derivative based on real data, Results Phys. 21 (2021), 103772. https://doi.org/10.1016/j.rinp.202

0.103772.

[14] I. Cooper, A. Mondal, C.G. Antonopoulos, A SIR model assumption for the spread of COVID-19 in different

communities, Chaos Solitons Fractals. 139 (2020), 110057. https://doi.org/10.1016/j.chaos.2020.110057.

[15] S.A. Lauer, K.H. Grantz, Q. Bi, et al. The incubation period of coronavirus disease 2019 (COVID-19) from

publicly reported confirmed cases: estimation and application, Ann. Internal Med. 172 (2020), 577-582.

https://doi.org/10.7326/m20-0504.

[16] G. Pandey, P. Chaudhary, R. Gupta, et al. SEIR and regression model based COVID-19 outbreak predictions

in India, arXiv:2004.00958 (2020). http://arxiv.org/abs/2004.00958.

[17] S. Rezapour, H. Mohammadi, M.E. Samei, SEIR epidemic model for COVID-19 transmission by Caputo

derivative of fractional order, Adv. Differ. Equ. 2020 (2020), 490. https://doi.org/10.1186/s13662-020-029

52-y.

[18] Z. Yang, Z. Zeng, K. Wang, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in

China under public health interventions, J. Thorac. Dis. 12 (2020), 165-174. https://doi.org/10.21037/jtd.202

0.02.64.

[19] S. He, Y. Peng, K. Sun, SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dyn. 101 (2020),

1667-1680. https://doi.org/10.1007/s11071-020-05743-y.

[20] S. Mwalili, M. Kimathi, V. Ojiambo, et al. SEIR model for COVID-19 dynamics incorporating the environ-

ment and social distancing, BMC Res. Notes. 13 (2020), 352. https://doi.org/10.1186/s13104-020-05192-1.

[21] S. Annas, M.I. Pratama, M. Rifandi, et al. Stability analysis and numerical simulation of SEIR model for

pandemic COVID-19 spread in Indonesia, Chaos Solitons Fractals. 139 (2020), 110072. https://doi.org/10.1

016/j.chaos.2020.110072.

[22] M. Amouch, N. Karim, Modeling the dynamic of COVID-19 with different types of transmissions, Chaos

Solitons Fractals. 150 (2021), 111188. https://doi.org/10.1016/j.chaos.2021.111188.

[23] A.A. Khan, S. Ullah, R. Amin, Optimal control analysis of COVID-19 vaccine epidemic model: a case study,

Eur. Phys. J. Plus. 137 (2022), 156. https://doi.org/10.1140/epjp/s13360-022-02365-8.

[24] O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic repro-

duction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990),

365-382. https://doi.org/10.1007/bf00178324.

https://doi.org/10.28919/cmbn/7820
https://doi.org/10.1016/j.chaos.2020.110256
https://doi.org/10.1016/j.rinp.2020.103772
https://doi.org/10.1016/j.rinp.2020.103772
https://doi.org/10.1016/j.chaos.2020.110057
https://doi.org/10.7326/m20-0504
http://arxiv.org/abs/2004.00958
https://doi.org/10.1186/s13662-020-02952-y
https://doi.org/10.1186/s13662-020-02952-y
https://doi.org/10.21037/jtd.2020.02.64
https://doi.org/10.21037/jtd.2020.02.64
https://doi.org/10.1007/s11071-020-05743-y
https://doi.org/10.1186/s13104-020-05192-1
https://doi.org/10.1016/j.chaos.2020.110072
https://doi.org/10.1016/j.chaos.2020.110072
https://doi.org/10.1016/j.chaos.2021.111188
https://doi.org/10.1140/epjp/s13360-022-02365-8
https://doi.org/10.1007/bf00178324

	1. Introduction
	2. The Problem Wellposedness and Steady States
	2.1. Exixtence, positivity and boundedness
	2.2. Invariant region

	3. Analysis of the Model
	3.1. The Basic Reproduction Number
	3.2. Steady states
	3.3. Local Stability
	3.4. Global stability

	4. Numerical Simulations
	5. Conclusion
	Conflict of Interests
	References

