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Abstract. The odour emitted by prey is typically regarded as a crucial factor in an ecosystem. The objective

of this study is to examine the stability and local bifurcations, specifically transcritical and Hopf bifurcation, of

a food chain model that takes into account the influence of odour. The proposed model has been developed by

incorporating a three-species food chain and an additional factor that is more representative of reality: the impact

of prey odour on predator population and, consequently, on the food chain. The system’s solutions have been

verified for positivity and boundedness. Subsequently, the conditions pertaining to the local stability and global

stability of the equilibrium points of the proposed system, have been established. Additionally, the criteria for

the emergence of bifurcations at certain equilibrium points are laid out. It has been observed that the equilibrium

state of coexistence becomes unstable in the event of the absence of prey odour. The odour effect has been noted

to play a role in promoting the coexistence of species within the food chain system, facilitated by the occurrence

of two supercritical Hopf bifurcations. Furthermore, a comprehensive analysis of the impact of other different

parameters within the system is presented. Subsequently, all the theoretical findings of this study are verified

through a numerical analysis and outcomes are visually exhibited. The biological implications of the results are

discussed and a conclusion has been drawn.
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1. INTRODUCTION

The preservation of ecological balance within the ecosystem has become a major challenge

for humanity throughout time. Consequently, the significance of investigating a dynamic sys-

tem, particularly an ecological system, is on the rise. An ecological system is a conceptual

representation of a trophic chain that depicts the interrelated relationships between predators

and prey. In the discipline of ecology, food chains are comprised of a sequential succession of

species that function to supply sustenance to the species located in close proximity to them. The

analysis of a predator-prey model in mathematics involves the development of a mathematical

model aimed at addressing fundamental ecological issues related to food chains. The mathemat-

ical model proposed by Lotka [1] and Volterra [2], which was first introduced in the literature,

has undergone subsequent modifications to effectively represent the dynamics of predator-prey

populations. The aforementioned alterations encompass the integration of pragmatic elements

such as sophisticated functional responses [3,4], time delay [5,6], stage structure [7,8], hunting

cooperation [9, 10], and fear effect [11, 12]. The present study examines a food chain model

comprising three distinct species, namely the prey, middle predator, and top predator.

The functional response plays a crucial role in the prey-predator model by defining the nature

of the interaction between the predator and prey. Therefore, the integration of appropriate func-

tional responses into the prey-predator model formulation is a critical component of the mod-

elling procedure. Numerous scholars have undertaken investigations into a range of predator-

prey models, considering diverse categories of functional responses, including but not limited

to Holling type I-IV, Beddington-De-Angelis type, Crowley-Martin type, and Ratio-dependent.

The research conducted by Bhattacharjee et al. [13] pertained to an investigation of a model

featuring two predators and one prey, utilising a Holling type I functional response. Majumdar

et al. [14] conducted a study on a model of prey-predator interaction that incorporates a Holling

type-II functional response. The utilisation of the Holling type III functional response has been

observed in a model consisting of two predators and one prey, as presented by Didiharyono [15].

In addition, several other scholars [16–19] have investigated diverse models employing different

functional responses.
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Numerous studies have been conducted in scientific literature pertaining to various predator-

prey interactions to date. The primary aspect of predator-prey dynamics that forms the basis

of their interaction is the mechanism through which the predator and prey identify each other,

even prior to any actual encounter. One of the noteworthy and significant interactions between

predators and prey pertains to the response of predators to the odour of their prey. It is widely

acknowledged [20] that individuals generate unique odours due to various factors such as meta-

bolic activities, hormonal changes, etc. . In most cases, such odours are inadvertently released

into the environment [20, 21]. The sense of odour can facilitate the differentiation and recog-

nition of conspecifics and heterospecifics across various mammalian species. For instance,

urinary scent marks are employed by mice as a means of communication with other members

of their species in various social situations [21–23]. It has been established [20] that predators

are attracted to the odours released by their prey. For example, blue crabs (Callinectes sapidus)

have been observed to track prey odour plumes during their foraging activities [24]. Accord-

ing to studies [25], predators use informative cues like odours to efficiently locate and pursue

potential prey. For instance, insectivorous avian species have the ability to utilise the chemical

signals released by female moths, known as pheromones, to lure male moths as a means of

detecting and capturing prey [26]. Canis lupus, commonly known as wolves, utilise olfactory

cues to facilitate their hunting behaviour [27]. Also, the accumulation of odours resulting from

roosting behaviour has the potential to attract predators and subsequently elevate the risk of

predation [28]. Foxes exhibit an attraction to olfactory cues emitted by their prey [29]. Hence,

the significance of odour is notably crucial. While the influence of prey odour on the process of

predation is widely recognised in scholarly literature, there has been limited investigation into

this subject matter within the context of a food chain. The impact of shelter on prey population

in the presence of predator odour disturbance was examined by Shen et al. [30]. Also, Xu et

al. [31] presented a model of predator-prey dynamics that incorporates the effects of odour dis-

turbance and group defence. To the best of the authors’ knowledge, these two articles are the

sole works that examine the impact of odour that is relevant to our paper. So, there is a lack

of literature in this area. To address this specific issue, the present work examines a food chain

model comprising of three species while taking into consideration the impact of prey odour on
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the food chain. The study incorporates a linear function response to model the consumption of

prey by the middle predator, and a Holling type II functional response to model the consumption

of middle predator, by the top predator.

The present manuscript is structured in the following manner: The fundamental description

of the mathematical model is presented in Section 3. Section 4 of the paper examines the

boundedness of solutions and the presence of a positive equilibrium point. In Section 5, the

discussion pertaining to the existence of equilibrium points and their local stability has been

undertaken. The global stability of the equilibrium points is addressed in Section 6. Bifurcation

analysis is done in Section 7. In Section 8, the dynamic behaviour of the considered model has

been discussed through graphical representations of its numerical findings. Section 9 concludes

this paper by summarising its key findings and contributions.

FIGURE 1. A graphical representation of the research methodology utilised for

the proposed model in the form of a flow chart.
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2. RESEARCH GAP AND CONTRIBUTION

Following a concise review of literature pertaining to food chain models in ecology, it is noted

that a majority of researchers focused on various different effects such as fear effect, prey refuge,

hunting cooperation by predators, etc that serve as extensions of the Lokta-Volterra model.

Nonetheless, the extant literature exhibits certain absences, which are itemised as follows:

(a) The literature currently lacks sufficient investigation into the influence of odour on a three-

species model consisting of a solitary prey and two predators.

(b) Several studies [30, 31] have explored the adverse impact of predator odour on prey, yet to

date, no research has examined the potential positive effects of prey odour on predator popula-

tions, as far as the authors are aware.

In order to address the aforementioned gaps, our proposed three-species food chain model

incorporates odour effect. In this paper, we have presented the olfactory impact as a detrimental

factor for the prey and a beneficial factor for the predator. We consider prey odour aids predators

in capturing their prey. Utilising this depiction, comprehensive theoretical and numerical eval-

uations pertaining to the stability and bifurcation of equilibrium points within the model have

been conducted. Figure (1) depicts the research methodology utilised in the proposed model.

3. MATHEMATICAL MODELLING

In this section, a mathematical model is formulated to illustrate the influence of odour on a

food chain system comprising three species. A system of three ordinary differential equations

is utilised to depict the population dynamics of the prey, middle predator, and top predator,

as well as their predation interactions. The mathematical formulation of the aforementioned

biosystem commences with the conventional three-species food chain structure, followed by a

gradual integration of the impact of prey odour on the intermediate predator (middle predator)

within the food chain structure. The general form of a classical three-species food chain system

is as follows.

ds
dt

= bs−ds− cs2− f1(s)p1

d p1

dt
= a1 f1(s)p1− f2(p1)p2−d1 p1

d p2

dt
= a2 f2(p1)p2−d2 p2

(1)
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The respective population sizes of the prey, middle predator, and top predator at a given

time t are represented by the notations s(t), p1(t), and p2(t). The variable b is utilised to

denote the birth rate of the prey, whereas the intra-species competition coefficient of the prey is

represented by c. The mortalities that occur naturally within the populations of the prey, middle

predator, and top predator are denoted by d, d1, and d2, respectively. The respective conversion

efficiencies of the middle predator and top predator are denoted as a1 and a2. Additionally, it

can be noted that f1(s) and f2(p1) represent the functional responses of the middle predator and

the apex predator, respectively, in relation to their prey.

The release of olfactory cues by prey can play a pivotal role in facilitating the predatory

behaviour of predators, thereby assisting in the identification and capture of their prey [32]. For

instance, coyote (Canis latrans) [32] and bears [33,34], etc. exhibit a highly developed olfactory

system that allows them to perceive potential food from a distance, even in the absence of visual

stimuli. This enhances their ability to effectively locate and pursue their target. Following these

instances, it is clear that the role of prey odour in predation by the predators within a food chain

is of significant importance, neglecting this factor in mathematical modelling may result in a

less impactful model. So, in this study, the role of prey odour in facilitating efficient tracking

and hunting by predators is taken into consideration. We hypothesise that prey odour aids in the

predation process of the middle predator. We also assume that the quantity of odour released

by prey has a direct correlation with prey population size. To account for this relationship, we

incorporate the expression (1 + γ s) into the functional response of the middle predator with

respect to its prey. Consequently, the model (1) incorporating the odour effect becomes

ds
dt

= r1s(1− s)− r2(1+ γs)sp1

d p1

dt
= r3r2(1+ γs)sp1−

r4 p1 p2

(1+bp1)
−d1 p1

d p2

dt
=

r5r4 p1 p2

(1+bp1)
−d2 p2

(2)

with initial conditions: s(0) = s0 > 0 , p1(0) = p0
1 > 0 , and p2(0) = p0

2 > 0.
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Here, the population sizes of the prey, middle predator, and top predator at a specific time t

are denoted as s(t), p1(t), and p2(t) respectively. The meanings of all other parameters relevant

to the model (2) are delineated in table (1).

Parameter Significance

r1 Intrinsic growth rate of prey

r2 Intake rate of middle predator to prey

r3 Prey biomass conversion rate to middle predator biomass

r4 Intake rate of top predator to middle predator

r5 Middle predator biomass conversion rate to top predator biomass

b Top predator handling time per prey (middle predator)

γ coefficient of odor effect produced by a single prey.

d1 Intrinsic mortality rate of the middle predator

d2 Intrinsic mortality rate of the top predator

TABLE 1. The biological implications of the parameters associated with system

(2).

FIGURE 2. The dynamical interactions of prey, middle-predator, and top-

predator under the impact of prey odour are depicted in a schematic diagram.
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4. POSITIVENESS AND BOUNDEDNESS

Positiveness: From system (2), after some calculations, we get

s(t)=s(0) exp

[ ∫ t
0

(
r1(1− s(r))− r2(1+ γs(r))p1(r)

)
dr

]
,

p1(t)=p1(0)exp

[ ∫ t
0

(
r3r2(1+ γs(r))s(r)− r4 p2(r)

(1+bp1(r))
−d1

)
dr

]
, and

p2(t)=p2(0)exp

[ ∫ t
0

(
r5r4 p1(r)
(1+bp1(r))

−d2

)
dr

]

As s(0) = s0 > 0 , p1(0) = p0
1 > 0 , p2(0) = p0

2 > 0 i.e., s(t), p1(t), p2(t) > 0,∀t . Thus, all

the solutions of the system (2) are positive.

Boundedness: The population of prey is consistently restricted by an upper bound as
ds
dt ≤ r1s(1− s) which after integrating gives limt→∞ s≤ 1 .

Now, we define x = s+ p1+ p2, and ν > 0 be an arbitary real number. Taking derivative w.r.t

time ’t’ and using system (2), we get

dx
dt

+νx≤ (r1 +ν)s− (d1−ν)p1− (d2−ν)p2

Now, we choose ν ≤ min(d1,d2) and W is some constant, then

(r1 +ν)s− (d1−ν)p1− (d2−ν)p2 ≤ (r1 +ν)s≤ (r1 +ν) =W

. Now, we employ conventional results on differential inequalities and taking V is some constant

x(t)≤ W
ν
+
(
x(0)−W

ν

)
e−νt ≤ max

(
(x(0),

W
ν

)
=V

Hence, it can be deduced that there is a positive value V, which solely relies on the parameters

of system (2), such that 0 < w(t) ≤ V for values of t that are considerably large. Therefore, it

can be concluded that all populations within the system are ultimately limited by upper bounds.

5. EQUILIBRIUM POINTS AND THEIR STABILITY

5.1. Existence of equilibrium points. In order to calculate the fixed points of the system (2),

we solve the following simultaneous equations:
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r1s(1− s)− r2(1+ γs)sp1 = 0

r3r2(1+ γs)sp1−
r4 p1 p2

(1+bp1)
−d1 p1 = 0

r5r4 p1 p2

(1+bp1)
−d2 p2 = 0

(3)

Upon performing calculations, it has been found that model (2) exhibits five equilibrium

points that are non-negative in nature. These points are namely, extinction equilibrium E0 =

(0,0,0) , prey only equilibrium E1 = (1,0,0), boundary equilibrium point E2 = (A1,B1,0) and

the most important interior equilibria E
′
= (s

′
, p
′
1, p

′
2).

Here,

A1 =−
1
2γ

+

√
4d1γ + r2r3

2γ
√

r2r3
,B1 =−

r1(2d1γ +(1+ γ)
√

r2r3(−
√

r2r3−
√

4d1γ + r2r3))

2d1γ2r2
,

s
′
=

bd2r1 +d2r2− r1r4r5

bd2r1−d2γr2− r1r4r5
, p
′
1 =−

d2

bd2− r4r5
, p
′
2 =

β1

(bd2− r4r5)(−bd2r1 +d2γr2 + r1r4r5)2

and β1 = r5(b2d2
2r2

1(d1−(1+γ)r2r3)+(1+γ)r1r2r3r4r5(d2r2−r1r4r5)+d1(d2γr2+r1r4r5)
2−

bd2r1((1+ γ)r2r3(d2r2−2r1r4r5)+2d1(d2γr2 + r1r4r5))).

The existence conditions of these equilibrium points are as follows:

(1) E0 and E1 always exists.

(2) E2 exists if r2r3 >
d1

1+γ
.

(3) E
′
exists if r1 >− (d2r2)

(bd2−r4r5)
, r3 >

β2
β3

and b < r4r5
d2

.

Here, β2 = b2d1d2
2r2

1 − 2bd1d2
2γr1r2 + d1d2

2γ2r2
2 − 2bd1d2r2

1r4r5 + 2d1d2γr1r2r4r5 +

d1r2
1r2

4r2
5 , β3 = b2d2

2r2
1r2 + b2d2

2γr2
1r2 + bd2

2r1r2
2 + bd2

2γr1r2
2 − 2bd2r2

1r2r4r5 −

2bd2γr2
1r2r4r5−d2r1r2

2r4r5−d2γr1r2
2r4r5 + r2

1r2r2
4r2

5 + γr2
1r2r2

4r2
5 .

5.2. Local stability. This section pertains to the examination of the local stability of the

system (2) with the utilisation of the eigenvalue analysis approach, with regard to all equilib-

rium points. In order to assess the local stability of the equilibrium points of system (2), it is

necessary to derive the Jacobian matrix at each equilibrium point. The Jacobian matrix at a

point (s, p1, p2) is given by
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J(s,p1,p2) =


r1−2r1s− p1r2(1+2γs) −r2s(1+ γs) 0

p1r2r3(1+2γs) −d1 +
−p2r4+(1+bp1)

2r2r3s(1+γs)
(1+bp1)2 − p1r4

1+bp1

0 p2r4r5
(1+bp1)2 −d2 +

p1r4r5
1+bp1



(A) Local stability (B) Global stability

FIGURE 3. Local and global stability of the axial equilibrium point E1.

(A) Time series (B) Phase portrait

FIGURE 4. Local stability of the boundary equilibrium point E2.

The following theorem pertains to the local stability of the equilibria of system (2).

Theorem 1. (1) The population free equilibrium point E0 is unstable.

(2) The axial equilibrium point E1 is asymptotically stable if r2r3 <
d1

1+γ
.

(3) The top predator free equilibrium point E2 is locally stable if Ki > 0, i=1, 2, 3 and

K1K2 > K3. The meanings of the symbols Ki are given within the proof.

(4) The interior equilibrium point E
′
is asymptotically stable if Li > 0, i=1, 2, 3 and L1L2 >

L3. The meanings of the symbols Li are given within the proof.

Proof. (1) The eigenvalues of the Jacobian matrix of the system (2) at E0 are r1 , -d1 and

-d2. As, the eigenvalues are of opposite signs which indicates E0, i.e., the population

free equilibrium point is a saddle point, i.e., unstable.
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(2) The Jacobian matrix of the system (2) at E1 is

J(1,0,0) =


−r1 −(1+ γ)r2 0

0 −d1 +(1+ γ)r2r3 0

0 0 −d2


Hence, the eigenvalues are −r1, −d1 +(1+ γ)r2r3, and −d2. The eigenvalue −d1 +

(1+ γ)r2r3 is negative if r2r3 <
d1

1+γ
. As a result, E1 is locally stable if these conditions

hold.

(3) For the equilibrium point E2, the Jacobian matrix is

J(A1,B1,0) =


p11 p12 0

p21 0 p23

0 0 p33


Here,

p11 =−
(1+ γ)r1(2d1γ + r2r3−

√
r2r3

√
4d1γ + r2r3)

(2d1γ2)
, p12 =−

d1
r3

,

p21 =
r1
√

r3
√

4d1γ + r2r3(−2d1γ +(1+ γ)
√

r2r3(−
√

r2r3 +
√

4d1γ + r2r3))

2d1γ2√r2
,

p23 =
r1(2d1γ +(1+ γ)

√
r2r3(
√

r2r3−
√

4d1γ + r2r3))r4

2d1γ2r2 +br1(−2d1γ +(1+ γ)
√

r2r3(−
√

r2r3 +
√

4d1γ + r2r3))
,

p33 =−d2 +
r1(2d1γ− (1+ γ)

√
r2r3(
√

r2r3−
√

4d1γ + r2r3))r4r5

−2d1γ2r2 +br1(2d1γ +(1+ γ)
√

r2r3(
√

r2r3−
√

4d1γ + r2r3))

Let us consider, δ 3
1 +K1δ 2

1 +K2δ1+K3 = 0, be the characteristic equation of J(A1,B1,0).

Here, K1 = −(p11 + p33), K2 = −(p12 p21− p11 p33), and K3 = p12 p21 p33. By Routh-

Hurwitz criterion, the top predator free equilibrium is locally asymptotically stable pro-

vided Ki > 0, i=1, 2, 3 and K1K2 > K3 .

(4) The variational matrix at the coexistent equilibrium point E
′
is given by

J
(s′ ,p′1,p

′
2)
==


q11 q12 0

q21 q22 p23

0 q32 0
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Here,

q11 =−
bd2r1 +d2r2− r1r4r5

bd2− r4r5
,q12 =−

(1+ γ)r1r2(bd2− r4r5)(bd2r1 +d2r2− r1r4r5)

(−bd2r1 +d2γr2 + r1r4r5)2 ,

q21 =−
d2r2r3(bd2(1+2γ)r1 +d2γr2− (1+2γ)r1r4r5)

(bd2− r4r5)(bd2r1−d2γr2− r1r4r5)
,q22 =

ρ1

r4r5(−bd2r1 +d2γr2 + r1r4r5)2 ,

q23 =−
d2

r5
,q32 =

ρ2

r4(−bd2r1 +d2γr2 + r1r4r5)2 .

where,

ρ1 = bd2(b2d2
2r2

1(−d1 + r2r3(1+ γ)+ (1+ γ)r1r2r3r4r5(−d2r2 + r1r4r5)− d1(d2γr2 +

r1r4r5)
2 +bd2r1((1+ γ)r2r3(d2r2−2r1r4r5)+2d1(d2γr2 + r1r4r5))),

ρ2 = (−bd2 + r4r5)(b2d2
2r2

1(−d1 + (1 + γ)r2r3) + (1 + γ)r1r2r3r4r5(−d2r2 + r1r5)−

d1(d2γr2 + r1r4r5)
2−bd2r1((1+ γ)r2r3(d2r2−2r1r4r5)+2d1(d2γr2 + r1r4r5)))

Let, the characteristic equation of J
(s′ ,p′1,p

′
2)

is given by

(4) δ
3
2 +L1δ

2
2 +L2δ2 +L3 = 0

Here, L1 =−(q11+q22), L2 = (−q12q21+q11q22−q23q32), and L3 = q11q23q32. Using

Routh-Hurwitz criterion, the coexistent equilibrium point E
′

is locally asymptotically

stable if the conditions Li > 0, i=1, 2, 3 and L1L2 > L3 hold simultaneously.

�

(A) Local stability
(B) Global stability

FIGURE 5. Local and global stability of the interior equilibrium point E
′
.
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6. GLOBAL STABILITY

The analysis of local stability pertains to the study of the system’s behaviour in the immediate

proximity of the equilibrium point. On the contrary, global stability analysis pertains to the

examination of the system’s behaviour across its entire state space, encompassing not only the

vicinity of the equilibrium point. The inquiry pertains to the examination of the convergence

of all trajectories, irrespective of their initial conditions, towards the equilibrium point as time

progresses. Some related theorems are listed below.

Theorem 2. The global asymptotic stability of the axial equilibrium E1 is contingent upon the

fulfilment of the condition r2r3 <
d1

1+γ
.

Proof. The Jacobian matrix of the system (2) at the equilibrium point E1 is J(1,0,0) which is

given by

J(1,0,0) =


−r1 −(1+ γ)r2 0

0 −d1 +(1+ γ)r2r3 0

0 0 −d2


Now, the equilibrium point E1 is asymptotically stable if −d1 +(1+ γ)r2r3 < 0 as stated in the

previous section. From system (2), we have

d p1

dt
= r3r2(1+ γs)sp1−

r4 p1 p2

(1+bp1)
−d1 p1

< ((1+ γs)r2r3−d1)p1

As per the comparison theorem, p1(t)→ 0 as t→∞ if (1+γs)r2r3−d1 < 0 holds. Addition-

ally, it can be observed that p2(t) approaches to zero as p1(t) approaches to zero. Drawing from

the theoretical framework of asymptotical autonomous systems as outlined in [35], system (2)

can be simplified to a limiting system

ds
dt

= r1s(1− s)

This suggests that the function s(t) approaches to 1. This implies that the equilibrium point E1

exhibits global attractivity. Consequently, it can be concluded that the system denoted by E1

exhibits global asymptotic stability. �
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Theorem 3. Global asymptotic stability of the interior equilibrium point E
′

is ensured under

the fulfilment of the specified conditions:(a) ϑ1 >
s
′
p
′
1θ2+s

′
p
′
1r3θ2+s

′
ϑ2θ2+r3ϑ2θ 2

2
θ 2

1
, (b) r3 < 1, (c)

r5 < 1, (d) γ < 1−r3
s′r3

, and (e) r2 >
−p
′
2r4ϑ2−p

′
1r4Θ2

−γϑ1θ 2
1+s′ p′1γθ2+s′ p′1r3γθ2+s′γϑ2θ2+γr3ϑ2θ 2

2
.

Proof. The establishment of the global stability of the interior equilibrium E
′

can be achieved

through the construction of a Lyapunov function W, which is constructed in the following man-

ner

W = (s− s
′
− s

′
ln

s
s′
)+(p1− p

′
1− p

′
1ln

p1

p′1
)+(p2− p

′
2− p

′
2ln

p2

p′2
)

Hence, the time derivative of the aforementioned equation is

dW
dt

=
(s− s

′
)

s
ds
dt

+
(p1− p

′
1)

p1

d p1

dt
+

(p2− p
′
2)

p2

d p2

dt
=W1 +W2 +W3

where, W1 =
(s−s

′
)

s
ds
dt , W2 =

(p1−p
′
1)

p1

d p1
dt , and W3 =

(p2−p
′
2)

p2

d p2
dt . Using equations of system (2),

we get

W1 =−r1(s− s
′
)2− r2(s− s

′
)(p1− p

′
1)− r2γ(s− s

′
)(sp1− s

′
p
′
1)

W2 = r3r2(p1− p
′
1)(s− s

′
)+ r3r2γ(s2− s

′2)+(p1− p
′
1)+ r4κ

W3 = r5r4(p2− p
′
2)(

p1

1+bp1
−

p
′
1

1+bp′1
)

(5)

where, κ = (p1− p
′
1)(

p
′
2

1+bp′1
− p2

1+bp1
). Upon performing some calculations to simplify W1, W2,

and W3, we get

W1 +W2 +W3 = −r1(s− s
′
)2 − r2γ(s− s

′
)(sp1 − s

′
p
′
1) + (s− s

′
)(p1 − p

′
1)(−r2 + r3r2 +

r3r2γs
′
)+(s−s

′
)(p1− p

′
1)r3r2γs+ p1 p2(−r4+r5r4))

1+bp1
+

r4 p
′
1 p2

1+bp1
− r5r4 p1 p

′
2

1+bp1
+

p
′
1 p
′
2(−r4+r5r4))

1+bp′1
+

r4 p
′
2 p1

1+bp′1
−

r5r4 p2 p
′
1

1+bp′1
Now, we may assume θ1 ≤ s≤ θ2, ϑ1 ≤ p1 ≤ ϑ2, and Θ1 ≤ p2 ≤Θ2 and thus we get

W1 +W2 +W3 ≤−r2γ(s− s
′
)(sp1− s

′
p
′
1)+(s− s

′
)(p1− p

′
1)(−r2 + r3r2 + r3r2γs

′
)

+(s− s
′
)(p1− p

′
1)r3r2γs+

p1 p2(−r4 + r5r4))

1+bp1
+

r4 p
′
1 p2

1+bp1
+

p
′
1 p
′
2(−r4 + r5r4))

1+bp′1
+

r4 p
′
2 p1

1+bp′1

Now, W1 +W2 +W3 < 0 if the expression

(6) r4 p
′
1Θ2 + r4 p

′
2ϑ2 + r3r2γθ

2
2 ϑ2 + r3r2γθ2s

′
p
′
1 + r2γθ2s

′
p
′
1 + r2γs

′
θ2ϑ2− r2γθ

2
1 ϑ1 < 0
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The abovementioned inequality (6) holds if the following criteria are met:

(a) ϑ1 >
s
′
p
′
1θ2+s

′
p
′
1r3θ2+s

′
ϑ2θ2+r3ϑ2θ 2

2
θ 2

1
, (b) r3 < 1, (c) r5 < 1, (d) γ < 1−r3

s′r3
, and

(e) r2 >
−p
′
2r4ϑ2−p

′
1r4Θ2

−γϑ1θ 2
1+s′ p′1γθ2+s′ p′1r3γθ2+s′γϑ2θ2+γr3ϑ2θ 2

2
.

Therefore, it can be concluded that dW
dt < 0, i.e., the interior equilibrium is globally stable

provided that the conditions (a), (b), (c), (d), and (e) are satisfied. �

7. BIFURCATION ANALYSIS

The analysis of bifurcation is of paramount importance in comprehending intricate systems

and forecasting their performance under varying circumstances. The study of bifurcations can

offer valuable insights into the manner in which minor alterations in parameters can result in

substantial alterations in the behaviour of a system.

7.1. Transcritical bifurcation. The transcritical bifurcation will be discussed in this section.

The phenomenon of transcritical bifurcation is characterised by a significant alteration in the

qualitative dynamics of a system, which occurs as a result of the exchange of stability properties

between equilibrium points.

Theorem 4. The system (2) yields a transcritical bifurcation at the critical parameter value

γ = d1−r2r3
r2r3

= γ tc around the equilibrium point E1 provided r2r3 6= 0.

Proof. The Jacobian matrix of the system (2) at the coexisting equilibrium point E1 is J
(s′ ,p′1,p

′
2)

as previously stated in the preceding section. Taking γ = d1−r2r3
r2r3

= γ tc, we get

J
(s′ ,p′1,p

′
2)γ=γtc

=


−r1 −(1+ γ)r2 0

0 0 0

0 0 −d2


Now, let us consider two eigenvectors U and V , which correspond to the zero eigen-

value of J
(s′ ,p′1,p

′
2)γ=γtc

and JT
(s′ ,p′1,p

′
2)γ=γtc

, respectively. After some computation, we get

U = (u1,u2,u3)
t = (− (r2+γr2)

r1
,1,0)t and V = (v1,v2,v3)

t = (0,1,0)t . Now, Sotomayor’s

theorem [36] is employed to establish the existence of a transcritical bifurcation on the

parametric surface −d1 +(1+ γ)r2r3=0 in the vicinity of E1. The prerequisites for transcritical
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bifurcation as per Sotomayor’s theorem are outlined as follows:

Zγ(E1;γ tb) =


0

0

0

 ,D(Zγ(E1;γ tb))U =


0 −r2 0

0 r2r3 0

0 0 1



− (r2+γr2)

r1

1

0

=


−r2

r2r3

0

 , and

D2(Zγ(E1;γ tb))(U,U) =


2γ(1+γ)r2

2
r1

− (2(1+γ)(1+2γ)r2
2r3

r1

0

 .

Therefore,

V T (Zγ(E1;γ
tb)) = 0

V T (D(Zγ(E1;γ
tb))U) = r2r3 6= 0,

V T (D2(Zγ(E1;γ
tb))(U,U)) =−

(2(1+ γ)(1+2γ)r2
2r3

r1
6= 0

Thus, the verification of a transcritical bifurcation in the vicinity of E1 at γ = d1−r2r3
r2r3

= γ tc is

established utilising Sotomayor’s theorem [36]. Alternatively, other parameters may also be

utilised as bifurcating parameters. �

7.2. Hopf bifurcation. This subsection discusses the Hopf bifurcation. A Hopf bifurcation

occurs when a system undergoes a significant change in stability, leading to the emergence of a

periodic solution, at a specific critical value of a parameter. In this section, the Hopf bifurcation

is examined in an analytical manner by investigating the coexistence equilibrium E
′
with regard

to the parameter denoting the odour effect γ , while holding all other parameters constant. In the

theorem presented below, we demonstrate the existence of a Hopf bifurcation by considering

the parameter γ as the bifurcation parameter.

Theorem 5. The system (2) undergoes Hopf bifurcation in the vicinity of the positive equilib-

rium E
′
, when the parameter γ passes a critical value γH if and only if the following conditions

are met:

(a) L1(γ
H) > 0 , (b) L3(γ

H) > 0, (c) L1(γ
H)L2(γ

H) = L3(γ
H), and (d) (L1(γ

H)L2(γ
H))

′ 6=

L
′
3(γ

H)
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Proof. The characteristic equation of the system (2) in the vicinity of coexisting equilibrium E
′

is given by the equation (4). When the parameter γ attains its critical value γH , i.e., γ = γH ,

then the equation (4) becomes

(7) (δ 2
2 +L2)(δ2 +L1) = 0

The roots of the equation (7) are δ1 = i
√

L2, δ2 =−i
√

L2, and δ3 =−L1. Now, in order to show

the occurrence of Hopf bifurcation at γ = γH , it is necessary to fulfil the transversality condition

(dδi
dγ
)γ=γH 6= 0, i=1, 2, 3. Let us consider, the roots are of the form

δ1(γ) = χ1(γ)+ iχ2(γ),

δ2(γ) = χ1(γ)− iχ2(γ),

δ3(γ) =−L1

Substituting the values of δi(γ), i=1, 2 in equation (7) and calculating the derivatives, we get

Q(γ)χ
′
1(γ)−R(γ)χ2(γ)+S(γ) = 0,

R(γ)χ
′
1(γ)+Q(γ)χ2(γ)+T (γ) = 0

where,

Q(γ) = 3χ
2
1 (γ)+2L1(γ)χ1(γ)+L2(γ)−3χ

2
2 (γ),

R(γ) = 6χ1(γ)χ2(γ)+2L1(γ)χ2(γ),

S(γ) = χ
2
1 (γ)L

′
1(γ)+L

′
2(γ)χ1(γ)+L

′
3(γ)−L

′
1(γ)χ

2
2 (γ),

T (γ) = 2χ1(γ)χ2(γ)L
′
1(γ)+L

′
2(γ)χ2(γ)

Since, χ1(γ
H) = 0, and χ2(γ

H) =
√

L2(γH), so we have

Q(γH) =−2L2(γ
H),R(γH) = 2L1(γ

H)
√

L2(γH),

S(γH) = L
′
3(γ

H)−L
′
1(γ

H)L2(γ
H),T (γH) = L

′
2(γ

H)
√

L2(γH)

Therefore,

d
dγ

(Re((δi)(γ)))γ=γH =−R(γH)T (γH)+Q(γH)S(γH)

Q2(γH)+R2(γH)
6= 0, i = 1,2
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if (L1(γ
H)L2(γ

H))
′ 6= L

′
3(γ

H) and δ3(γ
H) =−L1 6= 0.

Consequently, the conditions of transversality are satisfied. This suggests that a Hopf bifurca-

tion takes place when γ = γH . Therefore, the theorem holds true. Other parameters can also be

considered as bifurcating parameters. �

7.3. Direction and stability of Hopf bifurcations.

Theorem 6. [37] The direction of Hopf bifurcation can be elucidated by the sign of µ2α
′
(0).

The biosystem (2) undergoes a supercritical Hopf bifurcation when the condition µ2α
′
(0) > 0

is met, while a subcritical Hopf bifurcation occurs when µ2α
′
(0)< 0. The bifurcating periodic

solution’s stability is indicated by β2, whereby a negative value of β2 indicates stability, while

a positive value of β2 indicates instability. Here, α
′
(0), µ2, and β2 are being used in their

conventional sense.

8. NUMERICAL SIMULATIONS

The validation of analytical studies necessitates the numerical verification of the obtained

outcomes. In this section, we explore the dynamics of system (2) quantitatively by selecting

parameter values in biologically viable region. We present a computer simulation of various

solutions of system (2) utilising MATLAB and MATCONT [38]. Unless stated otherwise, the

numerical results presented in this study employ the parameter values outlined in table (2).

8.1. Numerical verification of equilibrium points. This section initially involves the com-

putation and numerical verification of the parametric conditions pertaining to the existence and

stability of the equilibrium points. The values of the parameters utilised in figure (3) are as

follows: r1 = 0.5, r2 = 0.5, r3 = 0.5, r4 = 0.5, r5 = 0.5, b = 1, γ = 0.5, d1 = 1, and d2 = 1. The

analysis of the figure (3) reveals that the proposed system (2) exhibits local asymptotic stability

in the vicinity of the axial equilibrium point E1(1,0,0). In addition, we numerically compute

the Jacobian matrix at the axial equilibrium point E1(1,0,0). The eigenvalues of the Jacobian

matrix at E1(1,0,0) are -1, -0.5, and -0.625. Given that all of the eigenvalues are negative, it

can be inferred that the axial equilibrium point E1(1,0,0) exhibits local asymptotic stability.

The set of parametric values, namely r1 = 0.215606, r2 =0.901961, r3 = 0.852217, r4 =

0.927631, r5 =0.043929, b =0.267475, γ = 1, d1 = 0.852217, and d2 = 0.826533, were utilised
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Parameter values

r1 0.875

r2 0.031

r3 19.518

r4 1

r5 1.5

b 0.8

γ 2

d1 1

d2 1

TABLE 2. The values assigned to the parameters that are associated with system

(2).

to generate the phase portrait depicted in figure (4). The figure (4) indicates that the solutions

converge towards the boundary equilibrium point (0.665631, 0.0479866, 0). Following some

computations, the values of K1,K2, and K3 (as specified in theorem (1)) are determined through

numerical methods for the abovementioned set of parameters. It is found that K1 = 1.958 > 0,

K2 = 2.66385 > 0 , K3 = 1.50779 > 0, and K1K2−K3 = 3.70803 > 0. Therefore, based on

the Routh-Hurwitz criteria, it can be concluded that the boundary equilibrium point denoted as

E2 exhibits asymptotic stability given the specified parametric conditions. The Jacobian ma-

trix is computed at the equilibrium point E2, and its corresponding eigenvalues are -0.824603,

−0.0861618+0.280297i, and−0.0861618−0.280297i. The negative real parts of all eigenval-

ues serve as evidence for the asymptotic stability of E2 under the given parametric conditions.

In order to establish the asymptotic stability of the interior equilibrium point E
′
, the pa-

rameter values presented in the table (2) are taken into consideration. Also, figure (5a)

has been generated utilising the same parametric values given in the table (2). The fig-

ure (5a) depicts that the solutions tend to converge towards the interior equilibrium point

E
′
(0.861111,1.42857,0.92166). Upon conducting computational analysis, the numerical val-

ues of L1,L2, and L3 (as stated in theorem (1)) were ascertained for the aforementioned set of
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parametric values. The results indicate that L1 = 0.600966, L2 = 0.293992, L3 = 0.166667,

and L1L2−L3 = 0.0100125, all of which are greater than zero. The conclusion can be drawn

that the interior equilibrium point E
′
demonstrates the local asymptotic stability under the given

parametric conditions, as per the Routh-Hurwitz criteria. Furthermore, the Jacobian matrix is

evaluated at the equilibrium point E
′
. The resulting eigenvalues associated with this Jacobian

matrix are -0.585235 , −0.00786537+0.533596i, −0.00786537−0.533596i. The presence of

negative real parts in all eigenvalues provides substantiation for the local asymptotic stability of

E
′
(0.861111,1.42857,0.92166) given the specified parametric conditions.

As depicted in figure (3b), the solution trajectories of system (2) exhibit convergence towards

the axial equilibrium point E1, although starting from four different coexistent initial values.

This observation indicates the global stability of the axial equilibrium point. Furthermore, in

a comparable manner, the diagram depicted in figure (5b) illustrates the global stability of the

interior equilibrium point E i, as numerous coexisting initial values tend to converge towards it.

FIGURE 6. The presence of Hopf bifurcations and transcritical bifurcation

within the equilibrium curve of the interior equilibrium is illustrated.

8.2. The impact of the parameter b on population stability. This section explores the im-

pact of the constant b on model (2), while holding the remaining parameters constant as speci-

fied in the table, and manipulating the value of the constant b. The aforementioned figure (see

figure (6)) is generated through the exclusive manipulation of the parameter b within the pre-

determined set of parameters outlined in table (2). The figure (6) illustrates that at two distinct

values of the parameter b, specifically at b = 0.359982 = bH1 and b = 0.759499 = bH2 , two
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Hopf bifurcation takes place. Initially, when b = 0, all three species coexist within the ecosys-

tem due to the stability of the interior equilibrium point (see figure (7a)). The numerical values

obtained for L1, L2, and L3 are 0.854167 > 0, 0.788254 > 0, and 0.536355 > 0, respectively.

The value of L1L2−L3, which is 0.136945, is also greater than zero. These results indicate that

the local stability of E
′

is established. As the parameter b is incremented, the stability of the

interior equilibrium experiences a transition and becomes unstable due to the emergence of a

Hopf bifurcation at b = 0.359982 = bH1 , resulting in the appearance of periodic solutions (see

figures (7c) and (8b)). Upon reaching a certain threshold, specifically at b = 0.759499 = bH2 ,

another Hopf bifurcation occurs resulting in the stabilisation of the coexisting equilibrium point

(see figures (7e) and (8d)). Upon increasing the value of parameter b substantially, an alteration

in the stability of the interior equilibrium point is detected, resulting in its instability due to a

transcritical bifurcation occurring at b = 1.227086 = btb. Consequently, the top predator free

equilibrium point E2 attains stability . This can be confirmed by selecting a parameter value for

b that exceeds btb. Upon setting b = 1.6, the values of Ki for i = 1,2,3 are determined. The

computed values are as follows: K1 = 2.31385 > 0, K2 = 5.33206 > 0, K3 = 0.256531 > 0,

and K1K2−K3 = 12.0811 > 0. Consequently, applying the Routh-Hurwitz criteria, it can be

inferred that the equilibrium point E2, which is devoid of top predators, is locally stable .

Additionally, we quantitatively verify Hopf bifurcations’ presence, directional change,

and stability. It is found that L1(bH1) = 0.71 > 0, L2(bH1) = 0.51 > 0, L3(bH1) =

0.36 > 0, L1(bH1)L2(bH1)− L3(bH1) = 0, and L1(bH1)L′2(b
H1)+ L2(bH1)L′1(b

H1)− L′3(b
H1) =

−0.199052 6= 0. which further supports the fact that a Hopf bifurcation occurs at b =

0.359982 = bH1 . In other words, it meets the NASC (as stated in Theorem (5)) required for

Hopf bifurcation to exist. Now, we use the procedures described by Hazzard [37] to deter-

mine the nature and direction of bifurcating periodic solutions for the parameter values given

in table (2) with b = bH1 , and we find C1(0) = −2.44877− 17.8463i, µ2 = −51.1664 < 0,

β2 = −4.89754 < 0, and α
′
(0) = −0.0478589 < 0. The Hopf bifurcation that takes place at

b = bH1 is characterised by its supercritical nature, as evidenced by the negative values of µ2

and α
′
(0) in tandem with the negative value of β2, as stated in theorem (6). In addition, the

value of first Lyapunov coefficient is −2.808933e−2 < 0.
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(A) Time series at b= 0 and the rest parameter

values are from table (2)

(B) Time series at b = 0.3 and the rest param-

eter values are from table (2)

(C) Time series at b = 0.359982 and the rest

parameter values are from table (2)

(D) Time series at b = 0.6 and the rest param-

eter values are from table (2)

(E) Time series at b = 0.759499 and the rest

parameter values are from table (2)

(F) Time series at b = 0.9 and the rest param-

eter values are from table (2)

FIGURE 7. Time series showing alteration in population dynamics at various

values of the parameter b taking initial population (0.86,1.42,0.92).

In a similar way, we compute L1(bH2) = 0.605 > 0, L2(bH2) = 0.305 > 0, L3(bH2) =

0.184 > 0, L1(bH2)L2(bH2)−L3(bH2) = 0, and L1(bH2)L′2(b
H2)+L2(bH2)L′1(b

H2)−L′3(b
H2) =

0.209134 6= 0. This finding provides additional evidence that a Hopf bifurcation transpires at

b = 0.759499 = bH2 as neccesary and sufficient condition for the manifestation of Hopf bifur-

cation is satisfied for the parameter values explicated in table (2) with b = bH2 (refer to theo-

rem (5)). Additionally, it is observed that C1(0) = −3.9825− 6.54994i, µ2 = −21.0693 < 0,

β2 = −7.96501 < 0, and α
′
(0) = −0.189019 < 0. The occurrence of the Hopf bifurcation at
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b = bH1 is identified as being of a supercritical nature, as indicated by the concomitant positive

value of µ2 α
′
(0) and negative value of β2, in accordance with theorem (6). Furthermore, it

is noteworthy that the first Lyapunov coefficient holds a value of −6.426589e−2, indicating a

negative value.

(A) Prey vs Middle predator phase portrait at

b = 0.3 with the remainder of the parameters

taken from the table (2)

(B) Prey vs Middle predator phase portrait at

b = 0.359982 with the remainder of the param-

eters taken from the table (2)

(C) Prey vs Middle predator phase portrait at

b = 0.6 with the remainder of the parameters

taken from the table (2)

(D) Prey vs Middle predator phase portrait at

b = 0.759499 with the remainder of the param-

eters taken from the table (2)

(E) Prey vs Middle predator phase portrait at

b = 0.9 with the remainder of the parameters

taken from the table (2)

FIGURE 8. The two-dimensional phase portraits serve as visual representations

of the changes in parameters and their corresponding impacts on the populations

of the prey, middle predator, and top predator.

8.3. Influence of prey odour on population dynamics. The objective of this section is to

examine the behaviour of the system (2) when prey odour is present. In order to conduct our

investigation, we utilised parameter values identical to those presented in table (2), with the

exception of the parameter γ which denotes the impact of odour. The figure depicted in figure
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(9) is generated using identical parameter values as those previously stated, with the exception

of the parameter γ , which is varied.

(A) Prey vs γ (B) Middle predator vs γ

FIGURE 9. Bifurcation diagrams in relation to the parameter γ .

The analysis of figure (9) suggests the occurrence of two distinct Hopf bifurcations at dif-

ferent parameter values of γ . At the initial setting of γ = 0, the axial equilibrium point is

deemed stable (see figure (10a)). This is due to the negative eigenvalues of the Jacobian ma-

trix J(1,0,0), which are -1, -0.875, and -0.389921. These eigenvalues satisfy the Routh-Hurwitz

criteria for stability. On the contrary, it should be noted that the interior equilibrium point ex-

hibits instability, given that L3 = −0.163156 < 0. As the parameter γ increases, a transcritical

bifurcation occurs at γ = 0.635785 = γ tb1 , resulting in a swap of stability between the equilib-

rium points E1 and E2 (see figures (10a) and (10b) ). Consequently, the stability of boundary

equilibrium point E2 is established while the instability of axial equilibrium E1 is confirmed

through the examination of the eigenvalues of the Jacobian matrices J(1,0,0) and J(A1,B1,0) at

some γ = 0.64 > γ tb1 (see figure 10b) . Specifically, the eigenvalues of J(1,0,0) are −1 < 0,

−0.875 < 0, and 0.000529644 > 0, while the eigenvalues of J(A1,B1,0) are −0.990297 < 0,

−0.874267 < 0, and −0.00052983 < 0. Upon a subsequent increase in the parameter γ , a tran-

scritical bifurcation arises at γ = 0.883166 = γ tb2 , resulting in the stabilisation of the interior

equilibrium E
′

and the destabilisation of the boundary equilibrium point E2 (see figure (10c)).

This can be confirmed via examining the eigenvalues of J(A1,B1,0) at some value γ = 0.9 > γ tb2 ,

which are −0.634244 < 0, −0.302155 < 0, and 0.0178547 > 0. The computed values, namely

L1 = 0.8274 > 0, L2 = 0.118336 > 0, L3 = 0.00214824 > 0, and L1L2− L3 = 0.095763 at

γ = 0.9 > γ tb2 , provide evidence for the stability of the interior equilibrium. By increasing the
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parameter γ beyond a certain threshold value, specifically γ = 2.114911 = γH1 , a Hopf bifurca-

tion occurs, resulting in the emergence of periodic solutions and rendering the interior equilib-

rium point unstable (see figures (10d) and (11b)). However, at a higher value of γ , specifically

γ = 54.624314 = γH2 , another Hopf bifurcation occurs, which actually stabilises the interior

equilibrium point (see figures (10f) and (11d)). The existence of the aforementioned Hopf bi-

furcations is numerically validated through the utilisation of theorem (5). We find, the values

L1(γ
H1) = 0.58011 > 0, L2(γ

H1) = 0.314398 > 0, L3(γ
H1) = 0.18182 > 0, , L1(γ

H1)L2(γ
H1)−

L3(γ
H1) = 0, and L1(γ

H1)L′2(γ
H1)+L2(γ

H1)L′1(γ
H1)−L′3(γ

H1) = −0.0829853 6= 0 and hence,

the verification of the existence of Hopf bifurcation at γ = 2.114911 = γH1 has been established

in accordance with theorem (5). In a similar vein, it is observed that L1(γ
H2) = 0.166051 >

0, L2(γ
H2) = 2.8744 > 0, and L3(γ

H2) = 0.48266 > 0, L1(γ
H2)L2(γ

H2)− L3(γ
H2) = 0, and

L1(γ
H2)L′2(γ

H2)+ L2(γ
H2)L′1(γ

H2)− L′3(γ
H2) = 0.0365616 6= 0 serves as evidence for the oc-

currence of Hopf bifurcation at γ = 54.624314 = γH2 , as stipulated by theorem (5).

Now, the methodology outlined by Hazzard [37] is employed to ascertain the characteris-

tics and direction of bifurcating periodic solutions for the parameter values specified in table

(2) when γ = 2.114911 = γH1 . After some calculations, it is found that C1(0) = −4.14409−

5.71554i, µ2 = 22.332 > 0, β2 = −8.28818 < 0, and α
′
(0) = 0.185567 > 0. In accordance

with the theorem (6), the negative values of µ2 and α
′
(0) in combination with the negative

value of β2, establish the Hopf bifurcation’s supercritical nature at γ = 2.114911 = γH1 . Addi-

tionally, the primary Lyapunov coefficient associated with this Hopf bifurcation is calculated to

be −6.939086e−2. In a similar manner, using the parameter values specified in table (2), with

the exception of γ , which is set to γH2 = 54.624314, we obtain C1(0) =−23.5456−40.7732i,

µ2 = 2730.21 > 0, β2 =−47.0912 < 0, and α
′
(0) = 0.00862411 > 0. As per theorem (6), the

Hopf bifurcation under consideration exhibits a supercritical characteristic. Furthermore, the

first Lyapunov coefficient pertaining to the aforementioned Hopf bifurcation is calculated to be

−2.759372e−1.
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(A) Time series with γ = 0, and the rest of the
parameter values are taken from (2) with initial
value (0.86,1.42,0.92)

(B) Time series with γ = 0.64, and the rest of
the parameter values are taken from (2) with
initial value (0.86,1.42,0.92)

(C) Time series with γ = 0.9, and the rest of the
parameter values are taken from (2) with initial
value (0.86,1.42,0.92)

(D) Time series with γ = 2.11491, and the rest
of the parameter values are taken from (2) with
initial value (0.8,1.45,1)

(E) Time series with γ = 50, and the rest of the
parameter values are taken from (2) with initial
value (0.25,2,2).

(F) Time series with γ = 54.62431, and the rest
of the parameter values are taken from (2) with
initial value (0.25,2,2)

(G) Time series with γ = 58, and the rest of the
parameter values are taken from (2) with initial
value (0.25,2,2)

FIGURE 10. Time series showing how the dynamics of a population change at
different values of the parameter γ .
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(A) Prey vs Middle predator with γ = 2 and the

remaining parameter values from the table (2)

(B) Middle predator vs Top predator with γ =

2.11 and the rest parameter values from the ta-

ble (2)

(C) Prey vs Middle predator with γ = 50 and

the rest parameter values from the table (2)

(D) Prey vs Top predator with γ = 54.62431

and the rest parameter values from the table

(2)

(E) Prey vs Top predator with γ = 58 and the

rest parameter values from the table (2)

FIGURE 11. Phase portraits depicting alterations in the parameter and their

impact on the populations of top predator, middle predator, and prey in a two-

dimensional space.

8.4. Impact of the intake rate parameter r2 on the system. The parameter r2 in the biosys-

tem (2) is positively correlated with the consumption rate of middle predators on prey. To assess

the impact of the parameter r2, we employ parameter values as outlined in table (2). By varying
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the parameter value of r2 while keeping the other parameters consistent with those presented in

table (2), we have generated figure (12).

FIGURE 12. The bifurcation diagram exhibits the presence of Hopf bifurcations

and transcritical bifurcations across distinct values of the parameter r2.

The occurrence of a Hopf bifurcation is apparent at the parameter value r2 = 0.032321 = rH1
2 ,

as depicted in figure (12). In terms of numerical values, it can be observed that L1(r
H1
2 ) =

0.579743> 0, L2(r
H1
2 )= 0.31138> 0, L3(r

H1
2 )= 0.180643> 0, , L1(r

H1
2 )L2(r

H1
2 )−L3(r

H1
2 )= 0.

and L1(r
H1
2 )L′2(r

H1
2 )+L2(r

H1
2 )L′1(r

H1
2 )−L′3(r

H1
2 ) =−9.5425 6= 0 which verifies the existence of

Hopf bifurcation at r2 = 0.032321 = rH1
2 . The Hopf bifurcation results in the destabilisation

of the interior equilibrium point (see figures (13b) and (14b)). The confirmation of the Hopf

bifurcation’s supercritical nature can be established through the following conditions: C1(0) =

−4.10878− 5.6722i, µ2 = 0.208626 > 0, β2 = −8.21757 < 0, and α
′
(0) = 19.6945 > 0. By

sufficiently reducing the parameter r2, the stability of the interior equilibrium point is lost as a

result of a transcritical bifurcation that takes place at r2 = 0.020042 = rtb1
2 . Consequently, the

boundary equilibrium point attains stability. Subsequent to further reduction in the parameter

r2, an additional transcritical bifurcation arises at r2 = 0.017078 = rtb2
2 . As a result of this

bifurcation, the boundary equilibrium point undergoes a loss of stability to the axial equilibrium

point and becomes unstable.
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(A) The time series of all three populations at

r2 = 0.025, along with the remaining parame-

ter values listed in table (2).

(B) The time series of all three populations at

r2 = 0.032321, along with the remaining pa-

rameter values listed in table (2).

(C) Time series of all three populations with

r2 = 0.035 and the remaining parameter values

from the table (2).

(D) Time series of all three populations with

r2 = 0.407799 and the remaining parameter

values from the table (2).

(E) Time series of all three populations at r2 =

0.45 and rest parameter values from the table

(2).

FIGURE 13. The temporal progression of the prey, middle predator, and top

predator populations is depicted, highlighting distinct trends in their population

dynamics over time at different values of the parameter r2.

Added to that, it appears that another supercritical Hopf bifurcation emerges at the specific

parameter value of r2 = 0.407799 = rH2
2 , as depicted in figures (12), (13d), and (14d), which

results in the stabilisation of the interior equilibrium point (see figures (13e) and (14e)).



30 BHATTACHARJEE, DAS, SARMA, ACHARJEE

(A) Prey vs Middle predator at r2 = 0.025 with

the rest parameter values from the table (2)

(B) Prey vs Top predator at r2 = 0.032321 with

the rest parameter values from the table (2)

(C) Prey vs Middle predator at r2 = 0.035 with

the rest parameter values from the table (2)

(D) Middle predator vs Top predator at r2 =

0.407799 with rest parameter values from table

(2)

(E) Prey vs Top predator at r2 = 0.45 with the

rest parameter values from the table (2)

FIGURE 14. Phase portraits in a two-dimensional space are depicted which

illustrate the impact of parameter variations on the dynamics of populations.

The existence of the aforementioned Hopf bifurcation can be established numerically. In

this context, we calculate, L1(r
H1
2 ) = 0.0426723 > 0, L2(r

H1
2 ) = 1.49132 > 0, L3(r

H1
2 ) =

0.0639071 > 0, , L1(r
H1
2 )L2(r

H1
2 ) − L3(r

H1
2 ) = 0, and L1(r

H1
2 )L′2(r

H1
2 ) + L2(r

H1
2 )L′1(r

H1
2 ) −

L′3(r
H1
2 ) = 4.9649 6= 0 and its verification is established by theorem (5). In order to confirm the

type of Hopf bifurcation under consideration, the following conditions were evaluated: C1(0) =

−36.5099− 86.5669i, µ2 = 47.5052 > 0, β2 = −73.0199 < 0, and α
′
(0) = 0.768546 > 0.
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These conditions establish the supercritical nature of the Hopf bifurcation being discussed, in

line with theorem (6). At the critical value of the parameter r2 = 0.469544 = rtb3
2 , an additional

transcritical bifurcation arises, resulting in the instability of the interior equilibrium and the

stability of the boundary equilibrium point.

8.5. Effects of growth rate of prey r1 and death rates of the two predator species d1 and

d2 on the food chain. The intrinsic growth rate of prey denotes the theoretical maximum rate

at which a population of prey can expand in optimal circumstances, without any constraining

factors such as resource scarcity, competition, or predation. The parameter r1 in the biosystem

(2) is associated with the intrinsic growth rate of the prey. By keeping all parameter values

constant as specified in table (2), with the exception of r1, and manipulating r1 as a variable,

we have generated figure (15a). A transcritical bifurcation occurs when the parameter value r1

reaches its critical value of rtb
1 = 0.341143. Consequently, the stability of the interior equilib-

rium is achieved, although the occurrence of a supercritical Hopf bifurcation at the critical value

of r1 = 0.923231 = rH
1 , destabilises the interior equilibrium point. This observation is readily

discernible from figure (15a).

The mortality rate is a crucial ecological metric that impacts various aspects of population

dynamics, species relationships, community organisation, ecosystem operation, and conserva-

tion endeavours. The variables d1 and d2 represent the mortality rates of the middle predator

and top predator, respectively, within the biosystem (2). The graphical representation depicted

in figure (15b) was constructed utilising the parameter values explicated in table (2), while

solely manipulating the parameter d1. Similarly, figure (15c) has been generated utilising the

parameter values explicated in table (2), while solely altering the parameter d2. The occur-

rence of a backward bifurcation is depicted in figure (15b) at the critical value of the parameter

d1 = 0.982152 = dH
1 , which results in the stabilisation of the interior equilibrium. However,

a transcritical bifurcation transpires at d1 = 1.432262 = dtb
1 , rendering the previously stable

equilibrium unstable. A comparable situation is illustrated in figure (15c). The presence of

a backward Hopf bifurcation is detected at d2 = 0.978465 = dH
2 , as depicted in figure (15c),

resulting in the stabilisation of the interior equilibrium. Moreover, a transcritical bifurcation
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occurs at d2 = 1.398062 = dtb
2 , resulting in a shift in the stability of the interior equilibrium

point.

(A) Bifurcation diagram with respect to the pa-

rameter r1

(B) Bifurcation diagram with respect to the pa-

rameter d1

(C) Bifurcation diagram with respect to the pa-

rameter d2

FIGURE 15. The bifurcation diagrams with respect to various parameters are

provided, illustrating the existence of various bifurcations.

9. SUMMARY

The biological process of predator-prey relationship is a fundamental subject in the field of

ecology. It is very much evident that prey and predators utilise various strategies to maximise

their biomass and increase their chances of survival. One such strategy employed by predators

is to utilise the olfactory cues of their prey in order to enhance their likelihood of successful

predation. The objective of this manuscript is to investigate a mathematical framework that

represents a food chain system involving prey (s), intermediate predator, i.e, middle predator

(p1), and apex predator, i.e, top predator (p2). The consistent utilisation of prey odour is as-

sumed to aid the middle predator population in predation. The inclusion of prey odour into

this predator-prey population model enhances its realism. The model assumes that the middle

predator exhibits a linear functional response in consuming its prey, while top predator also
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utilise a Holling type II functional response in hunting its own prey i.e, middle predator. The

dynamics of model (2) have been subjected to theoretical analysis to derive insights pertaining

to its long-term behaviour. Theoretical evidences have been provided regarding the positiveness

and boundedness of the solutions of the system (2). Subsequently, various equilibrium points

were identified and subjected to a local stability analysis. The global stability of both the axial

equilibrium point and the interior equilibrium point has been examined. A comprehensive nu-

merical analysis has been performed to examine the Hopf bifurcation phenomenon with respect

to several parameters. These parameters include the intake rate of middle predators (r2), the

intrinsic growth rate of prey (r1), the coefficient of odour effect (γ), and the death rates of both

predator species (d1 and d2), as well as the handling time of middle predators (the top predator’s

prey) by the top predator during predation (b). The findings are thoroughly addressed, providing

insights into the impact of odour effect on the interactions within the food chain system. Ad-

ditionally, we conducted a numerical investigation into the effects of the remaining parameters

and illustrated our findings through the use of figures, which offer enhanced visual representa-

tion and ease of comprehension for a broader audience. The findings indicate that the dynamics

of this system can be highly diverse, contingent upon the parameter ranges. These dynamics en-

compass the attainment of a solitary co-existence equilibrium, the eradication of either the top

predator or both predator populations, and the persistence of oscillations or periodic behaviour.

Upon examination of the model, it has been determined that the trivial equilibrium point func-

tions as a saddle point, thereby precluding the possibility of the extinction of all three species.

Additionally, it has been observed that the axial equilibrium, boundary equilibrium, and inte-

rior equilibrium states exhibit asymptotic stability under certain parametric constraints, as de-

picted in figures (3a), (4), and (5a). Moreover, the presence of the top predator free equilibrium

negates the stability of the equilibrium solely occupied by the prey. Under certain parametric

conditions, the prey-only equilibrium and the interior equilibrium can attain global stability, as

demonstrated in figures (3b) and (5b) respectively.

Our numerical investigation into the influence of the odor-related parameter has yielded note-

worthy and significant findings, demonstrating the manner in which the odour effect impacts

long-term population dynamics. The absence of the odour effect in the model (2) has been



34 BHATTACHARJEE, DAS, SARMA, ACHARJEE

observed to render the coexistence of all three species unattainable, ultimately leading to the

collapse of the food chain (refer to figures (9) and (10a)). As the level of odour influence in-

tensifies, the middle predator’s viability is established through a transcritical bifurcation, and

with subsequent elevations, the sustainability of all three species is affirmed via an additional

transcritical bifurcation. At a certain threshold of odour impact, a Hopf bifurcation occurs in the

population dynamics of system (2), resulting in periodic oscillation. The system is subsequently

stabilised at a specific parameter value through another Hopf bifurcation (refer to figures (9),

(10), and (11)).

The handling time of middle predators by the top predator during predation has been noted to

play a significant role in the biosystem (2). The coexistence of all three species can be achieved

when handling time is negligible, as depicted in figures (6) and (7a). Additionally, periodic

fluctuations in the population of the three species arise from two supercritical Hopf bifurcations

that take place at distinct values of the parameter linked to handling time. Furthermore, it has

been observed that a transcritical bifurcation transpires at a specific value of the parameter b,

which results in an alteration of the stability of the coexistence equilibrium state (refer to figures

(6), (7), and (8)).

Analogously, the system (2) exhibits intriguing dynamics with respect to the intake rate (r2),

prey growth rate (r1), and the death rates of both predators (d1 and d2). As the intake rate r2

varies, periodic fluctuations in the population dynamics of the system (2) are observed due to

the existence of two supercritical Hopf bifurcations. Also, two transcritical bifurcations occur

at different intake rates, indicating that it plays a significant role in sustaining all three species in

the food chain (refer to figures (12), (13), and (14)). The population stability within the system

(2) is also influenced by the intrinsic growth rate of the prey (r1). At a specific value of the

growth rate parameter of prey r1, a Hopf bifurcation is observed in the biosystem, leading to

the emergence of periodic oscillations. Additionally, the intrinsic growth rate of the prey causes

a transcritical bifurcation to occur (see figure (15a)).The population dynamics in the biosystem

(2) are impacted by the mortality rates of both predators, denoted as d1 and d2 respectively.

Periodic variations resulting from Hopf bifurcations and changes in the stability of the interior
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equilibrium due to transcritical bifurcations can be detected across various values of the param-

eters related to the death rates of the two predator species, namely d1 and d2 (see figure (15)).

This research provides evidence to substantiate the perspective that the odour of prey can serve

as a pivotal element in maintaining cohabitation within a model comprising of multiple species.

In future research, it would be of academic interest to broaden the realism of the system (2) by

incorporating real-world authentic data to estimate the parameters.
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