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Abstract. In this paper, a stochastic HIV-1 and HIV-2 epidemic model with drug resistance is presented to study the

effect of white noise intensities. We firstly prove the existence and uniqueness of the global positive solution for the

proposed stochastic model. The extinction of our studied disease is derived with sufficient conditions. In addition,

the persistence in the mean of the infection is also established. Finally, numerical simulations for different noises

disturbance are performed to illustrate the performance of our theoretical study.
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1. INTRODUCTION

Mathematical modeling of infectious diseases is a field of research that uses mathematical tools

to study the spread and control of infectious diseases within a population. By using this approach,

we can better understand diseases and their transmission mechanisms, assess the effectiveness of

prevention and control measures, and make more informed decisions about public health [1, 2].

A multi-strain epidemic model is used to study and simulate the spread of an epidemic involving
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several strains of a pathogen such as VIH [3], influenza [4], Tuberculosis [5], Other researchers are

exploring the modeling of diseases with multiple strains [6, 7, 8, 9].

In addition to deterministic models, mathematical models need to account for environmental

white noise, which provides an additional level of realism relative to deterministic models [10, 11,

12, 13, 14, 15, 16, 17].

The aim of this study is to improve the deterministic HIV-1 and HIV-2 epidemic model recently

proposed in [3]. The authors are studied a deterministically a HIV-1 and HIV-2 epidemic model

with drug resistance.

(1.1)



dS(t)
dt

= Λ−β1S(t)I1(t)−β2S(t)I2(t)−µS(t),

dI1(t)
dt

= β1S(t)I1(t)− (θ1 +ω1 +µ)I1(t),

dI2(t)
dt

= β2S(t)I2(t)− (θ2 +ω2 +µ)I2(t),

dDR(t)
dt

= ω1I1(t)+ω2I2(t)− (1−ρ)ηDR(t)− (ηρ +µ)DR(t),

dA(t)
dt

= (1−ρ)ηDR(t)+θ1I1(t)+θ2I2(t)− (d +µ)A(t),

dR(t)
dt

= ηρDR(t)−µR(t).

Here S is the susceptibles, I1 is HIV-1 infective individuals, I2 HIV-2 infective individuals, DR

drug resistance individuals, A are AIDS individuals and R is the removed ones. The parameters in

the model (1.1) are positive constants, where: Λ is recruitment rate,
1
µ

is natural mortality rate, β1

is the infection rate of the HIV-1 strain, β2 is the infection rate of the HIV-2 strain, θ1 rate at which

HIV-1 infected people progress to AIDS stage, θ2 rate at which HIV-2 infected people progress to

AIDS stage, ω1 progression rate from HIV-1 to drug resistance compartment, ω2 progression rate

from HIV-2 to drug resistance compartment, ρ therapy efficacy, η removed rate of drug resistance,

d AIDS induced death rate.

The diseases are both transmitted by contact between the individuals in the susceptible compart-

ment and those in I1 and I2 compartments with two bilinear incidence rates. We assume that the

populations who live in an environment with random accidents are mainly affected by the contact

rate, in the environment will manifest themselves mainly as fluctuations in the bilinear response
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rate, so that β1 turn into β1 +σ1Ḃ(t) and β2 turn into β2 +σ2Ḃ(t) where B(t) = (B1(t),B2(t)) is a

standard Brownian motion with intensities σ1 > 0 and σ2 > 0. Hence, we reach a stochastic version

of model (1.1) as follows

(1.2)



dS(t) =

(
Λ−β1S(t)I1(t)−β2S(t)I2(t)−µS(t)

)
dt

−σ1S(t)I1(t)dB1(t)−σ2S(t)I2(t)dB2(t),

dI1(t) =

(
β1S(t)I1(t)− (θ1 +ω1 +µ)I1(t)

)
dt +σ1S(t)I1(t)dB1(t),

dI2(t) =

(
β2S(t)I2(t)− (θ2 +ω2 +µ)I2(t)

)
dt +σ2S(t)I2(t)dB2(t),

dDR(t) =

(
ω1I1(t)+ω2I2(t)− (1−ρ)ηDR(t)− (ηρ +µ)DR(t)

)
dt,

dA(t) =

(
(1−ρ)ηDR(t)+θ1I1(t)+θ2I2(t)− (d +µ)A(t)

)
dt,

dR(t) =

(
ηρDR(t)−µR(t)

)
dt

S(t)

I1(t)

I2(t)

A(t) DR(t)

R(t)

Λ

β1SI1

β2SI2

µI1

µI2

(d +µ)A (1−ρ)ηDR

ηρDR

µDR

µR
ω1I1

ω2I2

θ1I1

θ2I2

σ1SI1

σ2SI2

µS

FIGURE 1. The diagram of the stochastic HIV-1 and HIV-2 model (1.2).
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The rest of the paper is organized as follows. In the next section, we establish the existence and

uniqueness of the solution for the stochastic system (1.2). In section , we analyze the conditions

for disease extinction. In Section 4, the persistence in mean is established. Section 5 presents

numerical examples that illustrate the theoretical results. Finally, Section 6 concludes the paper.

2. EXISTENCE AND UNIQUENESS OF THE GLOBAL POSITIVE SOLUTION

In this section, we present the notations, definitions, and lemmas that were employed to analyze

our main findings.

Consider a filtration {Ft}t≥0 with a complete probability space
(
Ω,F ,{Ft}t≥0 ,P

)
that fulfills the

usual conditions with increasing and right continuous while F0 is the set of P-null sets.

For arbitrary integrable function h on [0,+∞), define 〈h(t)〉=
∫ t

0 h(θ)dθ

t
.

Definition 1. (1) The diseases I1 and I2 are said to go extinction if lim
t→+∞

I1(t) = 0 and

lim
t→+∞

I2(t) = 0.

(2) The diseases I1 and I2 will be persist in mean if ∃ c1 > 0 and c2 > 0 such that liminf
t→+∞

〈I1(t)〉>

c1 and liminf
t→+∞

〈I2(t)〉> c2.

Remark 2. Let the set

Γ = {(S(t), I1(t), I2(t), DR(t), A(t), R(t)) ∈ R6
+ : S(t)+ I1(t)+ I2(t)+DR(t)+A(t)+R(t)≤ Λ

µ
}

The total population N(t) = S(t)+ I1(t)+ I2(t)+DR(t)+A(t)+R(t) in systems (1.1) and (1.2)

verifies, the equation

dN(t)
dt
≤ Λ−µN(t),

which gives by integration

N(t)≤ e−dt(N(0)− Λ

µ
)+

Λ

µ
≤max(N(0),

Λ

µ
),

If (S(0), I1(0), I2(0), DR(0), A(0), R(0)) ∈ Γ, then N(t) ≤ Λ

µ
almost surely. Thus, the set Γ is

almost surely positively invariant by the systems (1.1) and (1.2) respectively, throughout the rest,

we assume that (S(0), I1(0), I2(0), DR(0), A(0), R(0)) ∈ Γ.
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Theorem 3. For any initial value (S(0), I1(0), I2(0), DR(0), A(0), R(0))∈Γ, there exists a unique

solution (S(t), I1(t), I2(t), DR(t), A(t), R(t)) of system (1.2) on t ≥ 0 and the solution will remain

in Γ with probability one for all t ≥ 0 almost surely.

Proof. Since the coefficients of system (1.2) satisfy the local Lipscitz condition, then for any given

initial value (S(0), I1(0), I2(0), DR(0), A(0), R(0)) ∈ Γ, there exists a unique local solution

(S(t), I1(t), I2(t), DR(t), A(t), R(t)) ∈ Γ on t ∈ [0,τe), where τe is the explosion time. To prove

that this solution is global, we need only to show that τe = ∞ almost surely.

To this end, let p0 ≥ 1 be sufficiently large such that S(0), I1(0), I2(0),DR(0),A(0) and R(0) all lie

within the interval
[

1
p0

, p0

]
, for each integer p≥ p0, define the stopping time

τp = inf
{

t ∈ [0,τe) : S(t) /∈ (
1
p
, p), or I1(t) /∈ (

1
p
, p), or I2(t) /∈ (

1
p
, p), or DR(t) /∈ (

1
p
, p),

or A(t) /∈ (
1
p
, p), or R(t) /∈ (

1
p
, p)
}
,

(2.1)

Where throughout this paper, we set inf /0 = ∞ ( /0 denotes the emptyset). Clearly, τp is increasing as

p→ ∞.

Set τ∞ = lim
p→+∞

τp, whence τ∞ 6 τe almost surely. If τ∞ = ∞ almost surely is true, then τe = ∞

almost surely and (S(t), I1(t), I2(t),DR(t),A(t),R(t)) ∈ R6
+ almost surely for all t > 0. In other

words, to show that τ∞ = ∞ almost surely. If this statement is not true, then there exists a pair of

constants T > 0 and ε ∈ (0,1) such that

(2.2) P{τ∞ 6T }> ε

Hence, there exist an integer p1 > p0 such that

(2.3) P{τp 6T }> ε for all p> p1

Let a C 2-function V : R6
+→ R6

+ by

V (S, I1, I2,DR,A,R) = (S−1− logS)+(I1−1− log I1)+(I2−1− log I2)+(DR−1− logDR)

+(A−1− logA)+(R−1− logR)

(2.4)
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Clearly, V is positive definite. Applying Itô’s formula to V , we get

(2.5) dV (S, I1, I2,DR,A,R) = LV (S, I1, I2,DR,A,R)dt +σ1(I1−S)dB1(t)+σ2(I2−S)dB2(t)

where LV : R6
+→ R6 is defined by

LV =

(
1− 1

S

)
(Λ−β1S(t)I1(t)−β2S(t)I2(t)−µS(t))

+

(
1− 1

I1

)
(β1S(t)I1(t)− (θ1 +ω1 +µ)I1(t))

+

(
1− 1

I2

)
(β2S(t)I2(t)− (θ2 +ω2 +µ)I2(t))

+

(
1− 1

DR

)
(ω1I1(t)+ω2I2(t)− (1−ρ)ηDR(t)− (ηρ +µ)DR(t))

+

(
1− 1

A

)
((1−ρ)ηDR(t)+θ1I1(t)+θ2I2(t)− (d +µ)A(t))

+

(
1− 1

R

)
(ηρDR(t)−µR(t))

≤ Λ+6µ +θ1 +ω1 +θ2 +ω2 +η +d +β1I1 +β2I2 +
σ2

1 I2
1

2
+

σ2
2 I2

2
2

+
σ2

1 S2

2
+

σ2
2 S2

2

≤:=C

where C is a positive constant. Therefore, we have

(2.6) dV (S, I1, I2,DR,A,R)≤Cdt +σ1(I1−S)dB1(t)+σ2(I2−S)dB2(t)

Integrating both sides of (2.6) from 0 to τp∧T = min{τp,T } and taking the expectations on both

sides, we have

EV

(
S(τp∧T ), I1(τp∧T ), I2(τp∧T ),DR(τp∧T ),A(τp∧T ),R(τp∧T )

)
≤ V

(
S(0), I1(0), I2(0),DR(0),A(0),R(0)

)
+CT

Let Ωp = {ω ∈ Ω : τp = τp(ω) ≤ T } for p ≥ p1 and in view of (2.3), we have P(Ωp) ≥ ε. Note

that for every ω ∈ Ωp, there exists S(τp,ω) or I1(τp,ω) or I2(τp,ω) or DR(τp,ω) or A(τp,ω) or

R(τp,ω) equals either p or
1
p
. Then, V

(
S(τp ∧T ), I1(τp ∧T ), I2(τp ∧T ),DR(τp ∧T ),A(τp ∧
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T ),R(τp∧T )

)
is not less than either p−1− log p or

1
p
−1+ log p. Therefore,

V

(
S(τp∧T ), I1(τp∧T ), I2(τp∧T ),DR(τp∧T ),A(τp∧T ),R(τp∧T )

)
≥
(

p−1− log p
)
∧
(

1
p
−1+ log p

)
Then we attain

V

(
S(0), I1(0), I2(0),DR(0),A(0),R(0)

)
+CT

≥ E
(

1ΩpV
(

S(τp,ω), I1(τp,ω), I2(τp,ω),DR(τp,ω),A(τp,ω),R(τp,ω)
))

(2.7)

≥ ε

(
p−1− log p

)
∧
(

1
p
−1+ log p

)
where 1Ωp(ω) is the indicator function of Ωp. Letting p→ ∞, we get

(2.8) ∞ > V

(
S(0), I1(0), I2(0),DR(0),A(0),R(0)

)
+CT = ∞,

is a contradiction. Hence, we must have τ∞ = ∞. This completes the proof. �

Lemma 4. ( [18], Strong Law of Large Numbers) Let M = {Mt}t≥0 be a real-valued continuous

local martingale vanishing at t = 0. Then

limsup
t→∞

〈M,M〉t
t

< ∞ a.s. =⇒ lim
t→∞

Mt

t
= 0 a.s.

3. EXTINCTION

We already have proved from the previous section that our model has a unique global positive

bounded solution. Our main goal in this section is the investigation of the conditions under which

disease will die out or persist in our stochastic model (1.2).

Proposition 5. If σ1 >
β1√

2(θ1 +ω1 +µ)
, then the HIV-1 infection disease of system (1.2) go to

extinction almost surely.

Proof. Let (S(t), I1(t), I2(t),DR(t),A(t),R(t)) be a solution of system (1.2) with initial value

(S(0), I1(0), I2(0),DR(0),A(0),R(0)) ∈ Γ.
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Applying Itô’s formula to system (1.2), we obtain

d ln I1(t) =
(

β1S(t)− (θ1 +ω1 +µ)−
σ2

1 S2(t)
2

)
dt +σ1S(t)dB1(t)

≤

(
−

σ2
1

2

(
S(t)− β1

σ2
1

)2

+
β 2

1
2σ2

1
− (θ1 +ω1 +µ)

)
dt +σ1S(t)dB1(t),

(3.1)

Integrating both sides of (3.1) from 0 to t and dividing by t, we get

(3.2) ln I1(t)≤−
(
(θ1 +ω1 +µ)−

β 2
1

2σ2
1

)
+

M1(t)
t

+
ln I1(0)

t

where M1(t) =
∫ t

0 σ1S(x)dB1(x) is the local continuous martingale satisfying M1(0) = 0, and by

lemma 4, we get lim
t→+∞

M1(t)
t

= 0.

Since σ1 >
β1√

2(θ1+ω1+µ)
, taking the limit superior of both sides of (3.2) leads to

limsup
t→+∞

ln I1(t)
t
≤−

(
θ1 +ω1 +µ−

β 2
1

2σ2
1

)
< 0,

which implies limt→+∞ I1(t) = 0. a.s. This completes the proof of Proposition. �

Proposition 6. If σ2 >
β2√

2(θ2 +ω2 +µ)
, then the HIV-2 infection disease of system (1.2) go to

extinction almost surely.

Proof. Let (S(t), I1(t), I2(t),DR(t),A(t),R(t)) be a solution of system (1.2) with initial value

(S(0), I1(0), I2(0),DR(0),A(0),R(0)) ∈ Γ.

Applying Itô’s formula to system (1.2), we obtain

d ln I2(t) =
(

β2S(t)− (θ2 +ω2 +µ)−
σ2

2 S2(t)
2

)
dt +σ2S(t)dB2(t)

≤

(
−

σ2
2

2

(
S(t)− β2

σ2
2

)2

+
β 2

2
2σ2

2
− (θ2 +ω2 +µ)

)
dt +σ2S(t)dB2(t),

(3.3)

Integrating both sides of (3.3) from 0 to t and dividing by t, we get

(3.4) ln I2(t)≤−
(
(θ2 +ω2 +µ)−

β 2
2

2σ2
2

)
+

M2(t)
t

+
ln I2(0)

t

where M2(t) =
∫ t

0 σ2S(x)dB2(x) is the local continuous martingale satisfying M2(0) = 0, and by

lemma 4, we get lim
t→+∞

M2(t)
t

= 0.
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Since σ2 >
β2√

2(θ2+ω2+µ)
, taking the limit superior of both sides of (3.4) leads to

limsup
t→+∞

ln I2(t)
t
≤−

(
θ2 +ω2 +µ−

β 2
2

2σ2
2

)
< 0,

which implies limt→+∞ I2(t) = 0. a.s. This completes the proof of Proposition. �

Remark 7. Proposition 5 and Proposition 6 shows that when σ1 > β1√
2(θ1+ω1+µ)

and σ2 >

β2√
2(θ2+ω2+µ)

, the HIV-1 and HIV-2 infectious diseases of system (1.2) die out almost surely. In

other words, large white noise stochastic disturbance yields the HIV-1 and HIV-2 extinct. There-

fore, we presume that the white noise stochastic disturbance is not too large in the rest of this

manuscript.

Let

R∗1 =
β1Λ

µ (θ1 +ω1 +µ)
−

σ2
1 Λ2

2µ2 (θ1 +ω1 +µ)

R∗2 =
β2Λ

µ (θ2 +ω2 +µ)
−

σ2
2 Λ2

2µ2 (θ2 +ω2 +µ)
,

Theorem 8. Let (S(t), I1(t), I2(t),DR(t),A(t),R(t)) be a solution of system (1.2) with initial value

(S(0), I1(0), I2(0),DR(0),A(0),R(0)) ∈ Γ. Then

(1) If R∗1 < 1 and σ1 ≤
√

2µβ1
Λ

, the HIV-1 disease of system (1.2) go to extinction almost

surely, i.e.

lim
t→+∞

I1(t) = 0.

(2) If R∗2 < 1 and σ2 ≤
√

2µβ2
Λ

, the HIV-2 disease of system (1.2) go to extinction almost

surely, i.e.

lim
t→+∞

I2(t) = 0.

Meanwhile,

lim
t→+∞

S(t) =
Λ

µ
, lim

t→+∞
DR(t) = 0, lim

t→+∞
A(t) = 0 and lim

t→+∞
R(t) = 0.
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Proof. Firstly, for both sides of (3.1), integrating from 0 to t first and then dividing by t yields

(3.5)

ln I1(t)
t

=
1
t

∫ t

0

(
β1S(x)− (θ1 +ω1 +µ)−

σ2
1 S2(x)

2

)
dx+

M1(t)
t

+
ln I1(0)

t

≤
(

β1Λ

µ
− (θ1 +ω1 +µ)−

σ2
1 Λ2

2µ2

)
+

M1(t)
t

+
ln I1(0)

t

= (θ1 +ω1 +µ)

(
β1Λ

µ (θ1 +ω1 +µ)
−

σ2
1 Λ2

2µ2 (θ1 +ω1 +µ)
−1
)
+

M1(t)
t

+
ln I1(0)

t

where M1(t) =
∫ t

0 σ1S(x)dB1(x) is the local continuous martingale satisfying M1(0) = 0, and by

lemma 4, we get lim
t→+∞

M1(t)
t

= 0.

Taking the superior limit of both sides of (3.5) yields

limsup
t→+∞

ln I1(t)
t
≤ (θ1 +ω1 +µ)(R∗1 −1)< 0

which implies limt→+∞ I1(t) = 0.

Secondly, for both sides of (3.3), integrating from 0 to t first and then dividing by t yields

(3.6)

ln I2(t)
t

=
1
t

∫ t

0

(
β1S(x)− (θ2 +ω2 +µ)−

σ2
2 S2(x)

2

)
dx+

M2(t)
t

+
ln I2(0)

t

≤
(

β2Λ

µ
− (θ2 +ω2 +µ)−

σ2
2 Λ2

2µ2

)
+

M2(t)
t

+
ln I2(0)

t

= (θ2 +ω2 +µ)

(
β2Λ

µ (θ2 +ω2 +µ)
−

σ2
2 Λ2

2µ2 (θ2 +ω2 +µ)
−1
)
+

M2(t)
t

+
ln I2(0)

t

where M2(t) =
∫ t

0 σ2S(x)dB2(x) is the local continuous martingale satisfying M2(0) = 0, and by

lemma 4, we get lim
t→+∞

M2(t)
t

= 0.

Taking the superior limit of both sides of (3.6) yields

limsup
t→+∞

ln I2(t)
t
≤ (θ2 +ω2 +µ)(R∗2 −1)< 0

which implies limt→+∞ I2(t) = 0.

Lastly, without loss of generality, we may assume that 0 < I1(t) < ε1 and 0 < I2(t) < ε2 for all

t ≥ 0, by the first equation of system (1.2), we have

(3.7)
dS(t)

dt
≥ Λ−

(
µ +beta1ε1 +β2ε2 +σ1ε1

∣∣Ḃ1(t)
∣∣+σ2ε2

∣∣Ḃ2(t)
∣∣)S(t)
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As ε1→ 0 and ε2→ 0, taking the inferior limit of both sides of (3.7) yields

liminf
t→+∞

S(t)≥ Λ

µ

and

limsup
t→+∞

S(t)≤ Λ

µ

Then,

lim
t→+∞

S(t) =
Λ

µ
.

Since limt→+∞ I1(t) = 0 and limt→+∞ I2(t) = 0 , then, limt→+∞ DR(t) = 0. a.s, limt→+∞ A(t) = 0

and limt→+∞ R(t) = 0. a.s. This finishes the proof of Theorem (8). �

Remark 9. From Theorem 8, we show that the HIV-1 and HIV-2 diseases will die out f the white

noise stochastic disturbance are large than certain values or R∗1 < 1 and R∗2 < 1, and the white

noise stochastic disturbance are not large.

4. PERSISTENCE IN MEAN

This section is devoted to determine sufficient conditions for the persistence of the infectious

disease.

Theorem 10. Let (S(t), I1(t), I2(t),DR(t),A(t),R(t)) be a solution of system (1.2) with initial value

(S(0), I1(0), I2(0),DR(0),A(0),R(0)) ∈ Γ

(i) If R∗1 > 1,R∗2 < 1 and σ2 ≤
√

2µβ2

Λ
, then the disease HIV-2 will go extinct and the disease

HIV-1 will persist, furthermore, I1 satisfies

liminf
t→+∞

〈I1(t)〉 ≥ (θ1 +ω1 +µ)(R∗1 −1) .

(ii) If R∗2 > 1,R∗1 < 1 and σ1 ≤
√

2µβ1

Λ
, then the disease HIV-1 will go extinct and the disease

HIV-2 will persist, furthermore, I2 satisfies

liminf
t→+∞

〈I2(t)〉 ≥ (θ2 +ω2 +µ)(R∗2 −1) .
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(iii) If R∗1 > 1 and R∗2 > 1, then the HIV-1 and HIV-2 infectious diseases I1 and I2 are permanent

in mean, furthermore, I1 and I2 satisfy

liminf
t→+∞

〈I1(t)+ I2(t)〉 ≥
1

Wmax
[(θ1 +ω1 +µ)(R∗1 −1)+(θ2 +ω2 +µ)(R∗2 −1)] ,

where

Wmax = max
{
(θ1 +ω1 +µ)

β1 +β2

µ
;

β1 +β2

µ
(θ2 +ω2 +µ)

}
.

Proof. Case (i). By Theorem 8, since R∗2 < 1 and σ2 ≤
√

2β2µ

Λ
, then we have limt→+∞ I2(t) = 0.

Since R∗1 > 1, for ε small enough, such that 0 < I2(t)< ε for all t large enough and

β1 (Λ− (θ2 +ω2 +µ)ε)

µ (θ2 +ω2 +µ)
−

σ2
1 Λ2

2µ2 (θ1 +ω1 +µ)
> 1

Integrating from 0 to t and dividing by t on both sides of system (1.2) yields

X(t),
S(t)−S(0)

t
+

I1(t)− I1(0)
t

+
I2(t)− I2(0)

t

= Λ−µ〈S(t)〉− (θ1 +ω1 +µ)〈I1(t)〉− (θ2 +ω2 +µ)〈I2(t)〉

≥ Λ−µ〈S(t)〉− (θ1 +ω1 +µ)〈I1(t)〉− (θ2 +ω2 +µ)ε

then we get

〈S(t)〉 ≥ Λ− (θ2 +ω2 +µ)ε

µ
− (θ1 +ω1 +µ)

µ
〈I1(t)〉−

X(t)
µ

Applying Itô’s formula gives

(4.1)
d(ln I1(t)) =

[
β1S(t)− (θ1 +ω1 +µ)−

σ2
1 S2(t)

2

]
dt +σ1S(t)dB1(t)

≥
[

β1S(t)− (θ1 +ω1 +µ)−
σ2

1 Λ2

2µ2

]
dt +σ1S(t)dB1(t)

Integrating from 0 to t and dividing by t on both sides of (4.1), gives

(4.2)

(ln I1(t)− ln I1(0))
t

≥β1〈S(t)〉−
(

θ1 +ω1 +µ +
σ2

1 Λ2

2µ2

)
+

M1(t)
t

≥β1

(
Λ− (θ2 +ω2 +µ)ε

µ
− (θ1 +ω1 +µ)〈I1(t)〉−

X(t)
µ

)
+

M1(t)
t
−
(

θ1 +ω1 +µ +
σ2

1 Λ2

2µ2

)
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(4.3)
= (θ1 +ω1 +µ)

[
β1 (Λ− (θ2 +ω2 +µ)ε)

µ (θ1 +ω1 +µ)
−

σ2
1 Λ2

2µ2 (θ1 +ω1 +µ)
−1
]

− β1 (θ1 +ω1 +µ)

µ
〈I1(t)〉−

β1X(t)
µ

+
M1(t)

t
,

So, we get,

ln I1(t)
t
≥(θ1 +ω1 +µ)

[
β1 (Λ− (θ2 +ω2 +µ)ε)

µ (θ1 +ω1 +µ)
−

σ2
1 Λ2

2µ2 (θ1 +ω1 +µ)
−1
]

− β1 (θ1 +ω1 +µ)

µ
〈I1(t)〉−

β1X(t)
µ

+
M1(t)

t
+

ln I1(0)
t

,

(4.4)

where M1(t) =
∫ t

0 σ1S(x)dB1(x) is the local continuous martingale satisfying M1(0) = 0, and by

lemma 4, we get lim
t→+∞

M1(t)
t

= 0 and lim
t→+∞

X(t) = 0.

Taking the inferior limit of both sides of (4.4) yields

liminf
t→+∞

〈I1(t)〉 ≥ (θ1 +ω1 +µ)

[
β1 (Λ− (θ2 +ω2 +µ)ε)

µ (θ1 +ω1 +µ)
−

σ2
1 Λ2

2µ2 (θ1 +ω1 +µ)
−1
]

Letting ε −→ 0 yields

liminf
t→+∞

〈I1(t)〉 ≥ (θ1 +ω1 +µ)(R∗1 −1) .

By the similar arguments as in Case (i), one can prove the second case.

Case (iii). Notice that

〈S(t)〉= Λ

µ
− (θ1 +ω1 +µ)

µ
〈I1(t)〉−

(θ2 +ω2 +µ)

µ
〈I2(t)〉−

X(t)
µ

.

Let define,

V (t) = ln(I1(t)I2(t)) ,

By Ito’s formula, we have

(4.5)

dV (t) =
[
(β1 +β2)S(t)−

(
θ1 +ω1 +µ +

σ2
1 S2

2

)
−
(

θ2 +ω2 +µ +
σ2

2 S2

2

)]
dt

+σ1S(t)dB1(t)+σ2S(t)dB2(t)

≥
[
(β1 +β2)S(t)−

(
θ1 +ω1 +µ +

σ2
1 Λ2

2µ2

)
−
(

θ2 +ω2 +µ +
σ2

2 Λ2

2µ2

)]
dt

+σ1S(t)dB1(t)+σ2S(t)dB2(t)
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Integrating both sides of (4.5) from 0 to t and dividing by t yields

(4.6)
V (t)

t
− V (0)

t
≥ (β1 +β2)〈S(t)〉−

(
θ1 +ω1 +µ +

σ2
1 Λ2

2µ2

)
−
(

θ2 +ω2 +µ +
σ2

2 Λ2

2µ2

)
+

M(t)
t

,

The inequality (4.6) can be rewritten as

(4.7)

V (t)
t
− V (0)

t
≥ (β1 +β2)

Λ

µ
−
(

θ1 +ω1 +µ +
σ2

1 Λ2

2µ2

)
−
(

θ2 +ω2 +µ +
σ2

2 Λ2

2µ2

)
+

M(t)
t

− (β1 +β2)
(θ1 +ω1 +µ)

µ
〈I1(t)〉− (β1 +β2)

(θ2 +ω2 +µ)

µ
〈I2(t)〉− (β1 +β2)X(t)

Hence

(4.8)

〈I1(t)〉+ 〈I2(t)〉 ≥
1

Wmax

[
(β1 +β2)

Λ

µ
−
(

θ1 +ω1 +µ +
σ2

1 Λ2

2µ2

)
−
(

θ2 +ω2 +µ +
σ2

2 Λ2

2µ2

)
+

M(t)
t

−β1 +β2

µ
X(t)− V (t)

t
+

V (0)
t

]
,

where M(t) =
∫ t

0 σ1S(x)dB1(x) +
∫ t

0 σ2S(x)dB2(x) is the local continuous martingale satisfying

M(0) = 0, and by lemma 4, we get lim
t→+∞

M(t)
t

= 0, lim
t→+∞

X(t) = 0 and limt→+∞
V (t)

t = 0.

Taking the inferior limit of both sides of (4.8) yields

liminf
t→+∞

〈I1(t)+ I2(t)〉 ≥
1

Wmax
[(θ1 +ω1 +µ)(R∗1 −1)+(θ2 +ω2 +µ)(R∗2 −1)] ,

where

Wmax = max
{
(θ1 +ω1 +µ)

β1 +β2

µ
;

β1 +β2

µ
(θ2 +ω2 +µ)

}
.

This completes the proof. �

5. NUMERICAL SIMULATIONS

This section will illustrate the mathematical results obtained in the previous section. To do this,

we give the following system, which is a discretization transformation of system (1.2), using the

Euler-Maruyama method for stochastic differential equations, as given in [19].
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(5.1)



Sn =

(
Λ−β1SnIn

1 −β2SnIn
2 −µSn

)
∆t−σ1SnIn

1 ζ1,n
√

∆t−σ2SnIn
2 ζ2,n
√

∆t,

In
1 =

(
β1SnIn

1 − (θ1 +ω1 +µ)In
1

)
∆t +σ1SnIn

1 ζ1,n
√

∆t,

In
2 =

(
β2SnIn

2 − (θ2 +ω2 +µ)In
2

)
∆t +σ2SnIn

2 ζ2,n
√

∆t,

Dn
R =

(
ω1In

1 +ω2In
2 − (1−ρ)ηDn

R− (ηρ +µ)Dn
R

)
∆t,

An =

(
(1−ρ)ηDn

R +θ1In
1 +θ2In

2 − (d +µ)An

)
∆t,

Rn+1 =

(
ηρDn

R−µRn

)
∆t,

where ζ1,n, ζ2,n are mutually independent N(0, 1) random variables, with ∆t is the step size. In the

following, we give some numerical simulations of the stochastic model (1.2) and its corresponding

deterministic model (1.1).

First, we set the following parameters values: Λ= 4, β1 = 0.08, β2 = 0.012, θ1 = 0.27, θ2 = 0.25,

ω1 = 0.2, ω2 = 0.15, ρ = 0.48, η = 0.05, d = 0.3, µ = 0.2 and (σ1, σ2) = (0.01, 0.009). Within

this parameters R∗1 = 1.1533 > 1, R∗2 = 0.3197 < 1, σ1 <

√
2µβ1

Λ
= 0.0632 and σ2 <

√
2µβ2

Λ
=

0.0245. Thus, conditions of Theorem 10 are fulfilled for the stochastic model (1.2) and the disease

HIV-1 persists while the disease HIV-2 will die out. Clearly, Fig.2 supports the Theorem 10.
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FIGURE 2. Dynamic of the deterministic and the stochastic models (1.1)-(1.2) de-

scribing the persistence of I1(t) and the extinction of I2(t).

In Fig.3, we take the parameters values: Λ = 4, β1 = 0.051, β2 = 0.06, θ1 = 0.7, θ2 = 0.25,

ω1 = 0.2, ω2 = 0.15, ρ = 0.48, η = 0.05, d = 0.3, µ = 0.2 and (σ1, σ2) = (0.049, 0.01). Based

on the above parameters, we have R∗1 = 0.4152 < 1, R∗2 = 1.9667 > 1,

√
2µβ1

Λ
= 0.0505 and√

2µβ2

Λ
= 0.0548. Obviously, we obtain from Fig.3 that the disease HIV-1 will die out while the

disease HIV-2 persists. This result is consistent with the theoretical result given in Theorem 10.
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FIGURE 3. Dynamic of the deterministic and the stochastic models (1.1)-(1.2) de-

scribing the extinction of I1(t) and the persistence of I2(t).

Finally, using the parameters values Λ = 4, β1 = 0.095, β2 = 0.09, θ1 = 0.27, θ2 = 0.25, ω1 =

0.2, ω2 = 0.15, ρ = 0.48, η = 0.05, d = 0.3, µ = 0.2 and (σ1, σ2) = (0.013, 0.012). With these

parameters we have, R∗1 = 2.7854 > 1, and R∗2 = 2.9520 > 1. Fig. 4 shows that the stochastic

model (1.2) solution fluctuate for a large time around the endemic equilibrium of model (1.1).

Hence, the diseases HIV-1 and HIV-2 persist.

0 10 20 30 40 50

time

0

5 Without Brownian noise

With Brownian noise

0 10 20 30 40 50

time

2

4

6
Without Brownian noise

With Brownian noise

FIGURE 4. Dynamic of the deterministic and the stochastic models (1.1)-(1.2) de-

scribing the persistence of I1(t) and I2(t).
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6. CONCLUSION AND DISCUSSION

In this research, we have delved into a comprehensive study of a stochastic epidemic model,

which incorporates both HIV-1 and HIV-2, taking into account a critical aspect often encountered

in real-world scenarios: drug resistance. Our analysis has yielded several important findings and

contributions to our understanding of the dynamics of these infections in a stochastic environment.

First and foremost, we have rigorously established that the solutions of the stochastic system are

not only positive but also bounded. This is a fundamental result, ensuring the biological relevance

of our model’s predictions. It confirms that our mathematical framework accurately captures the

dynamics of HIV-1 and HIV-2 infections within populations affected by drug resistance.

Furthermore, we have identified and documented precise conditions governing the extinction

and persistence of these diseases. These conditions are invaluable for healthcare practitioners and

policymakers, as they provide insights into when and how interventions should be implemented to

control and manage the spread of HIV-1 and HIV-2, particularly in cases involving drug-resistant

strains. By recognizing the factors that drive these diseases toward extinction or persistence, we

empower public health efforts to be more effective and targeted.

To strengthen the validity and applicability of our theoretical findings, we have conducted nu-

merical simulations. These simulations serve as practical demonstrations of the outcomes predicted

by our model under various scenarios. Through these simulations, we have not only validated our

theoretical results but also provided a visual representation of how different factors, such as drug

resistance, can influence the course of the HIV-1 and HIV-2 epidemics. This combination of theory

and simulation contributes to a more holistic understanding of the complex dynamics at play in

these infectious diseases.

In summary, this study has not only enhanced our comprehension of stochastic HIV-1 and HIV-2

epidemic models but has also provided valuable insights for disease control strategies. Our findings

offer a solid foundation for future research in this field, and we hope they will be of practical use

to those working tirelessly to combat the spread of these infections, particularly in the face of drug

resistance challenges.
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