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Abstract. In this paper, a model describing the dynamics of Cryptosporidiosis is developed and analysed using

ordinary differential equations with a non linear incidence called Beddington-DeAngelis function. We computed

the basic reproduction number (Rha) using the next generation matrix method and carry out the stability analysis

of the model equilibria. We applied the center manifold theory to investigate the local stability of the endemic

equilibrium and found that the model exhibits a forward bifurcation at Rha = 1. Further, the global stability of

the endemic equilibrium is obtained under a certain condition using Lyapunov’s method and LaSalle’S invariance

principle. The most sensitive parameters on the model outcome are also identified using the normalized forward

sensitivity index. Finally, we performed numerical simulations and displayed then graphically to validate our

analytical results, and the epidemiological implications of the key out comes were briefly discussed.
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1. INTRODUCTION

Cryptosporidiosis is an infection caused by an apicomplexan protozoan known as Cryp-

tosporidium. Cryptosporidium common parasites of vertebrates have recently attracted increas-

ing interest due to several serious waterborne outbreaks, and the life-threatening nature of in-

fection in immunocompromised patients, children, the elderly, and patients on chemotherapy,

pregnant women; and also the realization of economic losses caused by these pathogens in live-

stock. It is a common enteric pathogen in humans and domestic animals worldwide with a very

low infective dose of one to ten ooysts (Pereira [1]). The sporulated ooysts are immediately

infectious when excreted in faeces as there is no intermediate host. Cattle are reared throughout

Cameroon but the major production areas are in the West and North West Regions and from the

Adamawa Province [2]. The cattle are transported on foot to the cattle market and the dung they

pass along the road is likely to contaminate the environment and the oocysts possibly end up

in streams after torrential rains. In time past, following the description of Cryptosporidium in

mice by Ernest Edward Tyzzer [3], the genus Cryptosporidium has been studied, and now dis-

covered to contain numerous species and genotypes adapted to parasitic life in almost all classes

of vertebrates. Over the years, our knowledge has expanded from microscopic observations of

infection and environmental contamination to the knowledge obtained from large application

spread of molecular techniques to taxonomy and epidemiology. Although, the medical and

veterinary significance of this protozoan was not fully appreciated for an- other 70 years. The

interest in Cryptosporidium escalated tremendously over the last two and half decades [4, 5]. It

was later recognized as a cause of disease in 1976. As several methods were developed to ana-

lyze stool samples, the protozoa was increasingly reported as the cause of human disease [6]. At

first, Crypto was categorized as a veterinary problem because, majority of the early cases were

diagnosed due to individuals rearing farm animals such as cows. Furthermore, 155 species of

animals specifically mammals have been reported to be infected with Cryptosporidium parvum

which is also known as C. parvum [7]. Among the 15 named species of Cryptosporidium in-

fectious to non-human vertebrate hosts C. Baileyi, C. canis, C. felis, C. hominis, C meleagridis,

C. muris, and C. parvum have been reported to also infect humans. The primary hosts for C.

hominis are Humans, except for C. parvum, which is widespread in non-human hosts and is the
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most frequently reported zoonotic species, the remaining species left have been reported pri-

marily in immunocompromised or immunosuppressed humans [7]. The first Cryptosporidiosis

outbreak that was widely known occurred in 1987 [8] in Carrollton, Georgia. About 13,000 per-

sons became sick as a result of the outbreak the disease. The main cause was traced to a large

contaminated water system. In 1993, in Milwaukee area, Wisconsin, a massive outbreak of the

disease occurred, causing approximately 400,000 people to fell sick as a result of contaminated

drinking water in one of the two treatment plants serving the Milwaukee area [6]. Therefore,

motivated by the above discussion into account, in this paper, we propose and analyze a math-

ematical model of Cryptosporidiosis disease dynamics in humans and animals population with

the Beddington-DeAngelis incidence . We construct the compartmental model by considering

three different classes of individuals in the humans population and three different classes of

individuals in the animals population. We believe that the findings of our work will be helpful

in indicating appropriate measures to control the spread of the disease. The rest of the paper

is organized as follows: The model description and formulation are discussed in Section 2.

The basic properties of the model including non-negativity and boundedness of solutions, the

mathematical analysis of the model including the introduction of the threshold parameter Rha

obtained using the Next-Generation method, the stability of the disease-free and endemic- equi-

librium points as well as the bifurcation and sensitivity analysis are investigated in Section 3. In

Section 4, we perform numerical simulations to support some of the analytical results. A brief

discussion and conclusions are presented in the last section.

2. DESCRIPTION AND FORMULATION OF THE MODEL

2.1. Assumptions. The following assumptions will be used to simplify the model :

• In the presence of the disease we divide the model into two parts, the total human and

total animal (vector). These populations at any time, are also divided into six sub popu-

lations (compartments). The total human population also represented by H divided into

sub-populations of susceptible humans HS, infected humans HI and recovered humans

HR. The total human population is given by : H(t) = HS(t)+HI(t)+HR(t). The total
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animal population, represented by A, is divided into sub-populations of susceptible an-

imals AS, infected animals AI and recovered animals AR. The total animal population

becomes A(t) = AS(t)+AI(t)+AR(t).

• A susceptible human can be infected only by an infected animal.

• A susceptible animal can be infected only by an infected animal.

• The force of infection from infected animals to susceptible humans is modeling using

Beddington-DeAngelis incidence form as δ1HS(t)AI(t)
1+m1HS(t)+m2AI(t)

and δ2AS(t)AI(t)
1+m3AS(t)+m4AI(t)

from

infected animal to susceptible animal where δ1 and δ2 are infection rate, m1, m2, m3 and

m4 are parameters that measure the inhibitory effect.

2.2. The model derivation. Our proposed model divides the total human population H(t)

into three subclasses of susceptible HS(t), infected HI(t) and recovered HR(t).The total animal

population A(t) is divided into three subclasses of susceptible AS(t), infected AI(t) and recov-

ered AR(t) . For the model susceptible humans HS(t) are recruited at a rate ΛH , infected at a

rate δ1HS(t)AI(t)
1+m1HS(t)+m2AI(t)

and die naturally at a rate µH . Infected humans HI(t) are recruited at a

rate δ1HS(t)AI(t)
1+m1HS(t)+m2AI(t)

, die naturally at a rate µH , die from infection at a rate αH , recover and

has permanent immunity at a rate βH . Recovered humans are recruited at a rate βH and die

naturally at a rate µH . Susceptible animals AS(t) are recruited at a rate ΛA, infected at a rate
δ2AS(t)AI(t)

1+m3AS(t)+m4AI(t)
and die naturally at a rate µA. Infected animals AI(t) are recruited at a rate

δ2AS(t)AI(t)
1+m3HS(t)+m4AI(t)

, die naturally at a rate µA, die from infection at a rate αA, recover and has

permanent immunity at a rate βA. Recovered animals are recruited at a rate βA and die naturally

at a rate µA. The parameters of the model is summarized in Table 1 and the flow diagram of the

model is shown in Figure 1.
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Table 1. Notations and Description of model (1) parameters

Parameter Description

δ1 Infection or predation rate of infected animals on susceptible humans

δ2 Infection or predation rate of infected animals on susceptible animals

mi(i = 1,2,3,4) are parameters that measure the inhibitory effect

ΛH Human recruitment rate

µH Human natural death rate

αH Human cryptosporidiosis induced death rate

βH Human recovery rate

ΛA Animal recruitment rate

µA Animal natural death rate

αA Animal cryptosporidiosis induced death rate

βA Animal recovery rate

Based on the above description, we have the following compartmental diagram for the trans-

mission dynamics of Cryptosporidiosis

FIGURE 1. Flow diagram for the Cryptosporidiosis disease transmission dy-

namics
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Thus, from the above discussions, the model describing the transmission dynamics of Cryp-

tosporidiosis disease can be formulated mathematically by the following deterministic system

of nonlinear differential equations:

(1)



dHS(t)
dt = ΛH−µHHS(t)− δ1HS(t)AI(t)

1+m1HS(t)+m2AI(t)

dHI(t)
dt = δ1HS(t)AI(t)

1+m1HS(t)+m2AI(t)
− (αH +µH +βH)HI(t)

dHR(t)
dt = βHHI(t)−µHHR(t)

dAS(t)
dt = ΛA−µAAS(t)− δ2AS(t)AI(t)

1+m3AS(t)+m4AI(t)

dAI(t)
dt = δ2AS(t)AI(t)

1+m3AS(t)+m4AI(t)
− (αA +µA +βA)AI(t)

dAR(t)
dt = βAAI(t)−µAAR(t)

with initial condition HS(0)≥ 0, HI(0)≥ 0, HR(0)≥ 0, AS(0)≥ 0, AI(0)≥ 0, AR(0)≥ 0.

3. CRYPTOSPORIDIOSIS MODEL ANALYSIS

3.1. Positivity and boundedness of solutions. In this subsection, we must prove that at t ≥ 0

all solutions of the model system (1) are positive and bounded for the Cryptosporidiosis model

to be meaningful and well posed.

Theorem 3.1 A non-negative solution (HS(t),HI(t),HR(t),AS(t),AI(t),AR(t)) for model (1)

exists for all states with positive initial conditions (HS(0)≥ 0, HI(0)≥ 0, HR(0)≥ 0, AS(0)≥

0, AI(0)≥ 0, AR(0)≥ 0 ) for all t ≥ 0.

Proof. According to the first equation of the system of differential equation (1) we have:
dHS(t)

dt ≥−HS(t)
(

µH + δ1HS(t)AI(t)
1+m1HS(t)+m2AI(t)

)
that is:
dHS(t)
HS(t)

≥−
(

µH + δ1HS(t)AI(t)
1+m1HS(t)+m2AI(t)

)
dt

that is:
dHS(t)
HS(t)

≥−(µH + f (HS,AI)dt where f (HS,AI) =
δ1AI(t)

1+m1HS(t)+m2AI(t)

The integration of the inequality gives

HS(t)≥ HS(0)e−
∫ t

0(µH+ f (HS(ε),AI(ε)))dε > 0 since HS(0)> 0.

According to the second equation of the system of differential equation (1) we have:



CRYPTOSPORIDIOSIS TRANSMISSION DYNAMICS WITH BEDDINGTON-DEANGELIS INCIDENCE 7

dHI(t)
dt ≥−(αH +µH +βH)dt and integration of inequality gives

HI(t)≥ HI(0)e−(αH+µH+βH)t > 0 since HI(0)> 0.

Let us take the third equation we have:
dHR(t)
HR(t)

≥−µHdt that is HR(t)≥ HR(0)e−(µH)t > 0 since HR(0)> 0.

Similarly, using the same argument, it can be shown that

AS(t) ≥ AS(0)e−
∫ t

0(µA+g(AS(ε),AI(ε)))dε > 0 since AS(0) > 0 with g(AS,AI) =
δ2AI(t)

1+m3AS(t)+m4AI(t)
,

AI(t)≥ AI(0)e−(αA+µA+βA)t > 0 since AI(0)> 0, AR(t)≥ AR(0)e−(µA)t > 0 since AR(0)> 0 and

this completes the proof of the Theorem 3.1.

Theorem 3.2 The solution of the model system (1) with positive initial conditions are ultimately

bounded in Ω⊂ R3×R3.

Proof. Human population at any time, t is given by: H(t) = HS(t)+HI(t)+HR(t)

so

dH(t)
dt

=
dHS(t)

dt
+

dHI(t)
dt

+
dHR(t)

dt

= ΛH−αHHI(t)−µH (HS(t)+HI(t)+HR(t))

= ΛH−αHHI(t)−µHH(t)

In the absence of mortality due to Cryptosporidiosis infection we obtain dH(t)
dt ≤ ΛH−µHH(t),

that is dH(t)
ΛH−µHH(t) ≤ dt, so we obtain ΛH − µHH(t) ≥ C1e−µH t where C1 is a constant. At

t = 0, we have C1 = ΛH − µHH(0), so ΛH − µHH(t) ≥ (ΛH−µHH(0))e−µH t , that is H(t) ≤
ΛH
µH
−
(

ΛH
µH
−H(0)

)
e−µH t . As t → ∞, we obtain H(t)→ ΛH

µH
, therefore 0 ≤ H(t) ≤ ΛH

µH
. We

define

Ω1 =

{
(HS(t),HI(t),HR(t)) ∈ R3

+ : 0≤ HS(t)+HI(t)+HR(t)≤
ΛH

µH

}
Animal population at any time t is given by: A(t) = AS(t)+AI(t)+AR(t). Similarly we get

0≤ A(t)≤ ΛA
µA

and we define

Ω2 =

{
(AS(t),AI(t),AR(t)) ∈ R3

+ : 0≤ AS(t)+AI(t)+AR(t)≤
ΛA

µA

}
Therefore the feasible solution set of Cryptosporidiosis model (1) remain in the following region

Ω = Ω1 ×Ω2. Thus, the Cryptosporidiosis model (1) is well posed epidemiologically and
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mathematically. Hence, it is sufficient to study the dynamics of the Cryptosporidiosis model in

Ω.

3.2. Disease-Free Equilibrium point. The disease-free equilibrium point (DFE) is the point

at which no disease is present in the population of human and animal. However, DFE is obtain

by setting HI(t) = HR(t) = 0 and AI(t) = AR(t) = 0. The DFE of the Cryptosporidiosis model

(1) is given by:

(2) E0 =

{
ΛH

µH
,0,0,

ΛA

µA
,0,0

}
3.3. Basic reproduction number (Rha). Using the “Next Generation Matrix” approach, we

determine Rha and its linear stability. Basic reproduction number refers to the number of sec-

ondary cases produced on average by one infected animal or person in completely susceptible

population. This combines the biology of infections with the social and behavioural factors

influencing contact rate [9, 10, 11]. It is the threshold parameter that determines or governs the

spread of disease. Considering only the infection classes in the system (1)

(3)
dHI(t)

dt
=

δ1HS(t)AI(t)
1+m1HS(t)+m2AI(t)

− (αH +µH +βH)HI(t)

(4)
dAI(t)

dt
=

δ2AS(t)AI(t)
1+m3AS(t)+m4AI(t)

− (αA +µA +βA)AI(t)

Let F be the number of new infection coming into the system and V be the number of infections

that are leaving the system either by death or birth, then

(5) F =

 δ1HS(t)AI(t)
1+m1HS(t)+m2AI(t)

δ2AS(t)AI(t)
1+m3AS(t)+m4AI(t)


and

(6) V =

 (αH +µH +βH)HI(t)

(αA +µA +βA)AI(t)


The jacobian matrix of F and V at disease-free equilibrium is obtained by f and v as follows:

(7) f =

 0 δ1ΛH
µH+m1ΛH

0 δ2ΛA
µA+m3ΛA
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and

(8) v =

 αH +µH +βH 0

0 αA +µA +βA


The inverse of v is found to be

(9) v−1 =

 1
αH+µH+βH

0

0 1
αA+µA+βA


The next generation matrix f v−1 is given by :

(10) f v−1 =

 0 δ1ΛH
(µH+m1ΛH)(αH+µH+βH)

0 δ2ΛA
(µA+m3ΛA)(αA+µA+βA)


By finding the eigenvalues of matrix f v−1 we get

(11) λ1 = 0, λ2 =
δ2ΛA

(µA +m3ΛA)(αA +µA +βA)

Then

(12) Rha = max(λ1,λ2) =
δ2ΛA

(µA +m3ΛA)(αA +µA +βA)

3.4. Local stability of the disease-free equilibrium. Local stability of the disease-free equi-

librium is given by Theorem 3.3

Theorem 3.3 The disease-free equilibrium is locally asymptotically stable if Rha < 1 and un-

stable if Rha > 1.

Proof. The disease-free equilibrium point E0 is locally asymptotically stable if the real parts of

the eigenvalues of the jacobian matrix corresponding to the system (1) around the DFE are all

negatives. The Jacobian matrix corresponding to the system (1) around E0 is given by:

(13) J(E0) =



−µH 0 0 0 −δ1ΛH
µH+m1ΛH

0

0 −(αH +µH +βH) 0 0 δ1ΛH
µH+m1ΛH

0

0 βH −µH 0 0 0

0 0 0 −µA
−δ2ΛA

µA+m3ΛA
0

0 0 0 0 δ2ΛA
µA+m3ΛA

− (αA +µA +βA) 0

0 0 0 0 βA −µA
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The characteristic equation of the Jacobian matrix (13) is given by:

(14) (a−λ )(b−λ )(c−λ )(d−λ )(e−λ )(h−λ ) = 0

where a = −µH , b = −(αH + µH +βH), c = −µH , d = −µA, e = δ2ΛA
µA+m3ΛA

− (αA + µA +βA),

h =−µA.

Therefore the eigenvalues are a, b, c, d, e and h. Clearly, a, b, c, d and h are negative.

If e < 0, that is δ2ΛA
µA+m3ΛA

−(αA+µA+βA)< 0, that is δ2ΛA
µA+m3ΛA

< αA+µA+βA, that is Rha < 1.

If e > 0 we have Rha > 1. Therefore E0 is locally asymptotically stable if δ2ΛA
µA+m3ΛA

< αA+µA+

βA whenever Rha < 1.

3.5. Global stability of the disease-free equilibrium point. In this section we investigate

global asymptotic stability of the disease-free equilibrium point using the theorem by Castillo-

Chavez and Song [12] as done in [13]. To do so, we write system equation (1) as:

(15)


dX
dt = F(X ,Y )

dY
dt = G(X ,Y ), G(X ,0) = 0

Where X = (HS(t),HR(t),AS(t),AR(t)) ∈ R4 denotes uninfected population and Y =

(HI(t),AI(t)) ∈ R2 represents the infected population. Let X∗ be the disease-free equilibrium

of the system

(16)
dX
dt

= F(X ,0)

Then X∗ =
(

ΛH
µH

,0, ΛA
µA
,0
)

. The DFE of the model is E0 = (X∗,0) =
(

ΛH
µH

,0,0, ΛA
µA
,0,0

)
. Fur-

thermore, we list two conditions and if met will guarantee the global asymptotic stability of

E0.

(i) For dX
dt = F(X ,0), X∗ is globally asymptotically stable;

(ii) dY
dt = DY G(X∗,0)Y − Ĝ(X ,Y ), Ĝ(X ,Y ) ≥ 0 for all (X ,Y ) ∈ Ω, where DY G(X∗,0) is a

Metzler and the Jacobian matrix of G(X ,Y ) taken in (HI,AI) and evaluated at

E0 = (X∗,0).

Theorem 3.4 The disease-free equilibrium point E0 = (X∗,0) is globally asymptotically sta-

ble for the model (1) provided that Rha < 1 and that the conditions (i) and (ii) are satisfied.
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Proof. We only need to show that the conditions (i) and (ii) hold when Rha < 1. From the

model system (1) we obtain F(X ,Y ) and G(X ,Y ) as :

(17) F(X ,Y ) =


ΛH−µHHS(t)− δ1HS(t)AI(t)

1+m1HS(t)+m2AI(t)

βHHI(t)−µHHR(t)

ΛA−µAAS(t)− δ2AS(t)AI(t)
1+m3AS(t)+m4AI(t)

βAAI(t)−µAAR(t)



(18) G(X ,Y ) =

 δ1HS(t)AI(t)
1+m1HS(t)+m2AI(t)

− (αH +µH +βH)HI(t)
δ2AS(t)AI(t)

1+m3AS(t)+m4AI(t)
− (αA +µA +βA)AI(t)


From condition (i), we consider the reduced system dX

dt = F(X ,0) and we get:

(19)



dHS(t)
dt = ΛH−µHHS(t)

dHR(t)
dt =−µHHR(t)

dAS(t)
dt = ΛA−µAAS(t)

dAR(t)
dt =−µAAR(t)

X∗ =
(

ΛH
µH

,0, ΛA
µA
,0
)

is globally asymptotically stable equilibrium point for the reduced system
dX
dt = F(X ,0). We proved this by finding the solution of the equations in the system (19).

From the second and fourth equations of (19), we have HR(t) = HR,0 e−µH t , which approaches

0 as t → ∞, HR,0 is a constant and AR(t) = AR,0 e−µAt , which approaches 0 as t → ∞, AR,0 is a

constant. From the first and third equations of (19), we have HS(t) = ΛH
µH

+HS,0 e−µH t , which

approaches ΛH
µH

as t → ∞, HS,0 is a constant and AS(t) =
ΛA
µA

+AS,0 e−µAt , which approaches
ΛA
µA

as t → ∞, AS,0 is a constant. Thus, all points converge at X∗ =
(

ΛH
µH

,0, ΛA
µA
,0
)

. Hence,

X∗ =
(

ΛH
µH

,0, ΛA
µA
,0
)

is globaly asymptotically stable. Moreover

(20) DY G(X∗,0) =

−(αH +µH +βH)
δ1ΛH

µH+m1ΛH

0 δ2ΛA
µA+m3ΛA

− (αA +µA +βA)


Therefore, from the formula in condition (ii), we get the following expression

(21) Ĝ(X ,Y ) = DY G(X∗,0)Y −G(X ,Y )
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and we obtain after some calculation

(22) Ĝ(X ,Y ) =

δ1AI

(
ΛH

µH+m1ΛH
− HS(t)

1+m1HS(t)+m2AI(t)

)
δ2AI

(
ΛA

µA+m3ΛA
− AS(t)

1+m3AS(t)+m4AI(t)

)


From the invariant region Ω, we have ΛH
µH
≥ HS and ΛA

µA
≥ AS, therefore Ĝ(X ,Y ) ≥ 0 for all

(X ,Y ) ∈Ω, and we conclude that the DFE is globally asymptotically stable whenever Rha < 1.

3.6. Existence of Endemic equilibrium point. In this section, we explore the existence of

the endemic equilibrium point (EE). In the presence of Cryptosporidiosis, HI(t) 6= 0, HR(t) 6= 0,

AI(t) 6= 0 and AR(t) 6= 0, our model has an equilibrium point called endemic equilibrium point

denoted by E1 = (H∗S ,H
∗
I ,H

∗
R,A

∗
S,A
∗
I ,A
∗
R). E1 is the steady state solution where Cryptosporid-

iosis persist in the population of human and animal. For the existence of E1, the elements must

satisfy; 0 < H∗S , 0 < H∗I , 0 < H∗R, 0 < A∗S, 0 < A∗I , 0 < A∗R. We find the endemic equilibrium

point by setting the right side of the model system equations (1) equal to zero, that is:

(23) ΛH−µHHS(t)−
δ1HS(t)AI(t)

1+m1HS(t)+m2AI(t)
= 0

(24)
δ1HS(t)AI(t)

1+m1HS(t)+m2AI(t)
− (αH +µH +βH)HI(t) = 0

(25) βHHI(t)−µHHR(t) = 0

(26) ΛA−µAAS(t)−
δ2AS(t)AI(t)

1+m3AS(t)+m4AI(t)
= 0

(27)
δ2AS(t)AI(t)

1+m3AS(t)+m4AI(t)
− (αA +µA +βA)AI(t) = 0

(28) βAAI(t)−µAAR(t) = 0

If Rha > 1, the system (1) has a unique endemic equilibrium point given by:

E1 = (H∗S ,H
∗
I ,H

∗
R,A

∗
S,A
∗
I ,A
∗
R), where

(29) A∗S =
ΛA(δ2 +m4µARha +m4ΛARha)

Rha(m4µA +δ2)(µA +m3ΛA)−δ2m3ΛA
> 0
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since Rha > 1 this implies Rha(m4µA + δ2)(µA + m3ΛA)− δ2m3ΛA > (m4µA + δ2)(µA +

m3ΛA)−δ2m3ΛA = µA(m4µA +δ2)+m3m4ΛAµA > 0,

(30) A∗I =
Rha(µA +m3ΛA)(ΛA−µAA∗S)

δ2ΛA
> 0

since dAS
dt < ΛA−µAAS,

(31) A∗R =
βA

µA
A∗I > 0

(32)

H∗S =
−(µH(1+m2A∗I )+δ1A∗I −m1ΛH)+

√
(µH(1+m2A∗I )+δ1A∗I −m1ΛH)2 +4m1µHΛH(1+m2A∗I )

2m1µH
> 0

(33) H∗I =
δ2H∗S A∗I

(1+m1H∗S +m2A∗I )(αH +µH +βH)
> 0

(34) H∗R =
βH

µH
H∗I > 0

3.7. Local stability of the Endemic equilibrium point. This section explores the local sta-

bility of the endemic equilibrium point E1. We can see from (29),(30),(32), (33) that the en-

demic equilibrium point has long expressions and the standard linearization method which con-

sist of finding the eigenvalues of the Jacobian matrix around the endemic equilibrium point can

be mathematically complicated. Hence, in oder to investigate the local asymptotic stability of

the endemic equilibrium point E1, we use the result based on the center manifold theory de-

scribed in [12, 13, 14] to investigate if the model system (1) exhibits a forward or backward

bifurcation when Rha = 1. When bifurcution is forward, it implies that the endemic equilib-

rium point is locally asymptotically stable for Rha > 1. This result is reproduced here for

convenience. To use that method we make the following simplification and change of variables

in the system (1). Let x1 = HS, x2 = HI , x3 = HR, x4 = AS, x5 = AI and x6 = AR. Futher by

introducing the vector notation x = (x1,x2,x3,x4,x5,x6)
T , system (1) has the form dx

dt = F(x),
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where F = ( f1, f2, f3, f4, f5, f6)
T , as follows

(35)



dx1
dt = ΛH−µHx1− δ1x1x5

1+m1x1+m2x5

dx2
dt = δ1x1x5

1+m1x1+m2x5
− (αH +µH +βH)x2

dx3
dt = βHx2−µHx3

dx4
dt = ΛA−µAx4− δ2x4x5

1+m3x4+m4x5

dx5
dt = δ2x4x5

1+m3x4+m4x5
− (αA +µA +βA)x5

dx6
dt = βAx5−µAx6

We set the transmission rate δ2 as the bifurcation parameter. Solving for δ2 the equation Rha = 1

gives δ2 = δ ∗2 as follows

(36) δ2 = δ
∗
2 =

(µA +m3ΛA)(αA +µA +βA)

ΛA

Linearisation of the system (35) at the disease-free equilibrium point E0 = (ΛH
µH

,0,0, ΛA
µA
,0,0)

with δ2 = δ ∗2 is

(37) J(E0) =



−µH 0 0 0 −δ1ΛH
µH+m1ΛH

0

0 −(αH +µH +βH) 0 0 δ1ΛH
µH+m1ΛH

0

0 βH −µH 0 0 0

0 0 0 −µA
−δ2ΛA

µA+m3ΛA
0

0 0 0 0 δ2ΛA
µA+m3ΛA

− (αA +µA +βA) 0

0 0 0 0 βA −µA


The above matrix J(E0) has a simple zero eigenvalues. Moreover, Let v = (v1,v2,v3,v4,v5,v6)

T

be the right eigenvector of (37) associated with the simple zero eigenvalue.Then v is obtained

by solving J(E0)v = 0. By direct calculation, we get:

(38)

v =
(

−δ1ΛH

µH(µH +m1ΛH)
v5,

δ1ΛH

(µH +m1ΛH)(αH +µH +βH)
v5,

−δ1βHΛH

µ2
H(µH +m1ΛH)

v5,
−δ2ΛA

µA(µA +m3ΛA)
v5,v5,

βA

µA
v5

)T

with v5 = v5 > 0.

Let z = (z1,z2,z3,z4,z5,z6)
T be the left eigenvector of (37) associated with the simple zero

eigenvalue. It satisfies zv = 1 and the matrix J(E0) should be transposed so that JT (E0)z = 0.
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By direct calculation, we get: z = (0,0,0,0,0,z5,0)T . Now zv = 1 gives z5v5 = 1. Assume that

v5 = σ > 0, we obtain z5 =
1
σ

. Then, the right and left eigenvectors turn out to be:

(39)

v =
(

−δ1ΛHσ

µH(µH +m1ΛH)
,

δ1ΛHσ

(µH +m1ΛH)(αH +µH +βH)
,
−δ1βHΛHσ

µ2
H(µH +m1ΛH)

,
−δ2ΛAσ

µA(µA +m3ΛA)
,σ ,

βAσ

µA

)T

(40) z = (0,0,0,0,0,
1
σ
,0)T

Now we have to compute a and b give by the formulae

(41) a =
6

∑
k,i, j=1

zkviv j
∂ 2 fk

∂xi∂x j
(E0,δ

∗
2 ) and b =

6

∑
k,i=1

zkvi
∂ 2 fk

∂xi∂δ ∗2
(E0,δ

∗
2 )

We will only consider k = 5 because z1 = z2 = z3 = z4 = z6 = 0, that is the function f5 =

δ2x4x5
1+m3x4+m4x5

− (αA +µA +βA)x5. By direct calculation, we get:

(42) a =−2σ(αA +µA +βA)
2

ΛA
< 0 and b =

ΛA

µA +m3ΛA
> 0

Therefore, a < 0 and b > 0 at bifurcation parameter δ2 = δ ∗2 . This scenario indicates that the

Cryptosporidiosis model exhibits a forward bifurcation at Rha = 1. Its biological meaning is

that as long as Rha < 1, the Cryptosporidiosis can be eliminated from the human and animal

population. Hence the unique endemic equilibrium point E1 = (H∗S ,H
∗
I ,H

∗
R,A

∗
S,A
∗
I ,A
∗
R) is lo-

cally asymptotically stable whenever Rha > 1.

3.7.1. Bifurcation diagram.

FIGURE 2. Forward bifurcation for Cryptosporidiosis model.



16 AUBIN NANA MBAJOUN, RAOUL DOMINGO AYISSI, SAMUEL MUTUA

3.8. Global stability of the Endemic equilibrium point. In this section, we perform the

global stability analysis of system (1) around the positive endemic equilibrium point using the

method of Lyapunov functions with LaSalle’S invariant principle. Existing techniques for con-

structing Lyapunov functions have been improved by [15] because of the difficulties in con-

structing appropriate Lyapunov functions with nonlinear incidence.

Theorem 3.5 The Endemic equilibrium point E1 of the model (1) is globally stable if Rha > 1,

and condition (46) is hold.

Proof. We define the lyapunov function U as

(43)

U =U(HS,HI,HR,AS,AI,AR)

=

(
HS−H∗S −H∗S ln

HS

H∗S

)
+

(
HI−H∗I −H∗I ln

HI

H∗I

)
+

(
HR−H∗R−H∗Rln

HR

H∗R

)
+

(
AS−A∗S−A∗Sln

AS

A∗S

)
+

(
AI−A∗I −A∗I ln

AI

A∗I

)
+

(
AR−A∗R−A∗Rln

AR

A∗R

)
Hence U is C1 on the interior of Ω, E1 is the global maximum of U on Ω, and we then have

U(H∗S ,H
∗
I ,H

∗
R,A

∗
S,A
∗
I ,A
∗
R) = 0. The time derivative of U alongside the solutions trajectories of

system (1) is:

dU
dt

=

(
1−

H∗S
HS

)
dHS

dt
+

(
1− H∗I

HI

)
dHI

dt
+

(
1− H∗R

HR

)
dHR

dt

+

(
1−

A∗S
AS

)
dAS

dt
+

(
1− A∗I

AI

)
dAI

dt
+

(
1− A∗R

AR

)
dAR

dt

=

(
1−

H∗S
HS

)(
ΛH−µHHS−

δ1HSAI

1+m1HS +m2AI

)
+

(
1− H∗R

HR

)
(βHHI−µHHR)

+

(
1− H∗I

HI

)(
δ1HSAI

1+m1HS +m2AI
− (αH +µH +βH)HI

)
+

(
1−

A∗S
AS

)(
ΛA−µAAS−

δ2ASAI

1+m3AS +m4AI

)
+

(
1− A∗R

AR

)
(βAAI−µAAR)

+

(
1− A∗I

AI

)(
δ2ASAI

1+m3AS +m4AI
− (αA +µA +βA)AI

)
Separating positive and negative terms as U1 and U2, we have dU

dt =U1−U2, where

(44)
U1 = ΛH +ΛA +µHH∗S +µAA∗S +

δ1AI(H∗S +HS)

1+m1HS +m2AI
+

δ2AI(A∗S +AS)

1+m3AS +m4AI

+(αH +µH +βH)H∗I +(αA +µA +βA)A∗I +βHHI +βAAI +µHH∗R +µAA∗R
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and

(45)

U2 = µHHS +µAAS +
δ1HSAI

1+m1HS +m2AI
+

δ2ASAI

1+m3AS +m4AI
+ΛH

H∗S
HS

+ΛA
A∗S
AS

+(αH +µH +βH)HI +(αA +µA +βA)AI +
δ1HSAIH∗I

(1+m1HS +m2AI)HI
+µHHR

+
δ2ASAIA∗I

(1+m3AS +m4AI)AI
+µAAR +

βHHIH∗R
HR

+
βAAIA∗R

AR

If

(46) U1 <U2

then dU
dt ≤ 0, dU

dt = 0 if and only if HS =H∗S , HI =H∗I , HR =H∗R, AS = A∗S, AI = A∗I , and AR = A∗R.

The largest invariant set in

(47)
{
(H∗S ,H

∗
I ,H

∗
R,A

∗
S,A
∗
I ,A
∗
R) ∈Ω;

dU
dt

= 0
}

is a singleton of E1 with E1 as the endemic equilibrium. Therefore by the LaSalle’S invariant

principle, E1 is globally asymptotically stable in Ω if U1 <U2.

3.9. Sensitivity analysis of the model parameters. In this section, we investigated the sensi-

tivity of the parameters for the basic reproduction number of the model using the idea presented

in [16, 17]. It is important to carry out the sensitivity of the basic reproduction number Rha for

its parameters. This will give parameters with a high impact on the Cryptosporidiosis model (1)

and therefore allow to target on control measures to reduce the transmission of the disease. To

measure the sensitivity index of Rha to a given parameter p, we use the following relation:

(48) T Rha
p =

(
∂Rha

∂ p

)
×
(

p
Rha

)
An analytical expression for the sensitivity index of each parameter involved in Rha is derived

as follows: T Rha
δ2

= 1> 0, T Rha
ΛA

= 1− m3ΛA
µAm3ΛA

> 0, T Rha
αA = −αA

αA+µA+βA
< 0, T Rha

βA
= −βA

αA+µA+βA
< 0,

T Rha
µA =−µA

(
1

µA+m3ΛA
+ 1

αA+µA+βA

)
< 0.

In the following table of the parameters most are assumed (due to the lack of data) while few

are taken from the literature.
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Table 2. Parameter values for the model (1)

Parameter Value Source of data

ΛH 2000/36500 per day [18]

µH 5.48 × 10−5 per day [20,21]

αH 0.001 per day [20,21]

βH 0.1 per day [20,21]

δ1 2 × 10−6 per day [18]

ΛA 1000/245 per day [18,19]

µA 1/245 per day [18,19]

αA 1/400 per day [18]

βA 0.1 per day Assumed

δ2 5.1 × 10−4 per day [18]

m1 0.01 Assumed

m2 0.03 Assumed

m3 0.01 Assumed

m4 0.01 Assumed

Table 3. Sensitivity indices of Rha with respect to the model parameters

Parameter Value Sens. index(+ve/-ve)

δ2 5.1 × 10−4 1

ΛA 1000/245 0.0909

m3 0.01 -0.90909

αA 1/400 -0.02345

µA 1/245 -0.129204

βA 0.1 -0.93824

From Table 3, we can observe that only the parameter δ2, has the most positive influence on

Rha. This means that the increase of this parameter while keeping other parameters constant

will increase the value of Rha leading to an increase of the spread of Cryptosporidiosis in the

human and animal population. We likewise observe that the parameters m3,αA,µA and βA

respectively have the most negative impact on Rha. This implies that the increase of these
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parameters while keeping the other constant will decrease the value of Rha, meaning that they

will decrease the endemicity of Cryptosporidiosis in the human and animal population.

4. NUMERICAL SIMULATIONS

We performed numerical simulations of our proposed model (1) to support some of the ana-

lytical results. We use the set of parameters values given in Table 2 and the initial values of the

model are set as: HS(0) = 1000,HI(0) = 10,HR(0) = 5,AS(0) = 50,AI(0) = 500,AR(0) = 10.

We set the final time as t f = 120 days. This was chosen on the basis of the assumption that a

period of four month is enough for the disease spread. All simulations are done using Matlab

with the ode45 function.

4.1. Simulation of the population dynamics of the Cryptosporidiosis showing the exis-

tence of a unique endemic equilibrium point (EE) when Rha > 1. We observe from Figure

3 that whenever Rha > 1, the susceptible humans population drop exponentially and converges

to a steady state to acquire endemic equilibrium level while the infected humans increase expo-

nentially to a certain maximum point before exponential drop to a certain endemic level. This is

an indicator of Cryptosporidiosis outbreak. We also observe that the susceptible animals popu-

lation decrease exponentially due to natural death and acquisition of Cryptosporidiosis infection

and finally acquire the endemic equilibrium level. Hence, without intervention the populations

approach the endemic equilibrium levels in the long run implying the existence and stability of

endemic equilibrium point.
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FIGURE 3. Graph showing the population dynamics.

4.2. Simulation of the effects of transmission rate (δ1) on susceptible and infected hu-

mans. Figure 4 shows the simulation of the model by varying the value of the transmission

rate from infected animals to susceptible humans (δ1) to see its effects on the susceptible and

infected humans. From Figure 4 (A), we observe that as the value of (δ1) increases, the number

of susceptible humans decreases and from Figure 4 (B), we see that the number of infected hu-

mans increases as the value of (δ1) increases, leading to the increase of the basic reproduction

number Rha which also ascertain the sensitivity analysis.

(A) (B)

FIGURE 4. Graph of the effects of transmission rate (δ1) on susceptible and

infected humans.
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4.3. Simulation of the effects of transmission rate (δ2) on infected animals and infected

humans. Figure 5 depicts the simulation results of the model by varying the value of transmis-

sion rate from infected animals to healthy animals (δ2) to see its effects on the infected animals

and infected humans. We observe from Figure 5 (A) and Figure 5 (B) that the number of in-

fected humans along with the number of infected animals increase as the transmission rate (δ2)

increases, leading to the increase of the basic reproduction number Rha.

(A) (B)

FIGURE 5. Graph of the effects of transmission rate (δ2) on infected animals

and infected humans.

4.4. Simulation of the effects of saturation level m1 and m2 on the infected humans pop-

ulation. From the analytical results, we observed that the saturation levels m1 and m2 do not

contribute on the basic reproduction number Rha, but they have the effects on infected popu-

lation. Figure 6 is simulation results of the model showing the effects of the saturation levels

m1 and m2 on the infected humans population. We observe that an increase in m1 (Figure 6

(A)) and m2 (Figure 6 (B)), respectively produces a decrease in the number of infected humans.

In this fact, the saturation levels ultimately affect the dynamics of the model system and then,

minimizing contacts between infected and susceptible populations are highly recommended.
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(A) (B)

FIGURE 6. Graph showing the effect of saturation levels m1 and m2 on the in-

fected humans population.

4.5. Simulation of the effects of saturation level m3 and m4 on the infected animals popu-

lation. From the analytical results, we observed that the saturation levels m3 contribute on the

basic reproduction number and m4 do not contribute on the basic reproduction number Rha,

but they have the effects on infected population. Figure 7 is simulation results of the model

showing the effects of the saturation levels m3 and m4 on the infected animals population. We

observe that an increase in m3 (Figure 7 (A)) and m4 (Figure 7 (B)), respectively produces a de-

crease in the number of infected animals. In this fact, the saturation levels ultimately affect the

dynamics of the model system and then, minimizing contacts between infected and susceptible

populations are highly recommended.

(A) (B)

FIGURE 7. Graph showing the effect of saturation levels m3 and m4 on the in-

fected animals population.
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4.6. Simulation of the effects of natural death of animals µA, and disease induced mor-

tality αA on the infected animals population. Figure 8 is drawn by varying the value of (µA)

and (αA) to show its effects on the infected animals population. It is observed from both Figure

8 (A) and Figure 8 (B) that the increase in the values of µA and αA, respectively decrease the

number of infected animals leading to the decrease of the basic reproduction number Rha which

also ascertain the sensitivity analysis result.

(A) (B)

FIGURE 8. Graph showing the effects of µA and αA on infected animals.

4.7. Simulation of the effects of harvesting µH , and disease induced mortality on the in-

fected humans. Figure 9 is the simulation results of the model showing the effects of harvest-

ing of humans µH and the disease induced mortality rate αH on the infected humans population.

From Figure 9 (A) and Figure 9 (B), we observe that an increase in αH and µH , respectively

produces a decrease in the number of infected humans. This leads to the decrease of the basic

reproduction number Rha which also validate the sensitivity analysis result.

(A) (B)

FIGURE 9. Graph showing the effects of µH and αH on infected humans.
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5. DISCUSSIONS AND CONCLUSIONS

In this paper, we have formulated and analyzed a mathematical model describing the

transmission dynamics of Cryptosporidiosis disease in human and animal population with

Beddington-DeAngelis incidence function. We computed the basic reproduction number (Rha)

which led to the following findings: the disease-free equilibrium (E0) is locally asymptotically

stable if Rha < 1 , as confirmed by the Routh-Hurwitz criterion, and the endemic equilibrium

(E1) is globally asymptotically stable if Rha > 1, as confirmed by Lyapunov’s method and

LaSalle’s invariance principle. Further, we applied the center manifold theory to establish that

the model undergoes the forward bifurcation at Rha = 1. Computationally, we performed sen-

sitivity analysis of the threshold quantity (Rha) and the results showed that only the parameter

(δ2) has the most sensitive to the spread of Cryptosporidiosis. The rate of Cryptosporidiosis

infection can be reduced by ensuring that the rate of interaction between susceptible humans

and infected animals, (δ1) is minimised. Moreover, the spread of Cryptosporidiosis infection

can be curbed by reducing the rate of interaction between susceptible animals and contact with

infected animals. The proposed model is not exhaustive. Following some authors who consid-

ered that in the persistent mode of transmission, the infection process of human or animal by

protozoan parasites Cryptosporidium takes time for the appearance of disease symptoms, we

plan to use this assumption to study the existence of periodic solutions of the model. Hence, in

our next paper, we will increase realism by exploring the effects of time delays on the dynamics

of Cryptosporidiosis.
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