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Abstract: This paper analyzes and examines the optimal control in the co-infection of COVID-19 with HIV/AIDS by 

providing preventive and treatment control measures. The population is divided into eight subpopulations. The 

preventive control of COVID-19 is denoted by u1. The preventive control of HIV/AIDS is denoted by u2. The treatment 

control of COVID-19 is denoted by u3, and the treatment control of COVID-19 for the subpopulation co-infected with 

HIV/AIDS is denoted by u4. Based on the model analysis, non-endemic and endemic equilibrium points are obtained, 

along with the basic reproduction number of the COVID-19, HIV/AIDS, and COVID-19-HIV/AIDS sub-models. 

Numerical simulations reveal that using preventive control u1 is more effective in reducing the spread of COVID-19 

compared to u3 or u4, both individually and together. Preventive control u2 is more effective in controlling the spread 

of HIV/AIDS compared to the absence of control. The sensitivity analysis of parameter identifies parameters that 

significantly affect the reduction or increase in the spread of COVID-19-HIV/AIDS co-infection. We found that in 

order to reduce the co-infection’s spread, we should pay attention to the reducing the contact rate of HIV/AIDS patients 
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or increasing their treatment rate.  

Keywords: COVID-HIV/AIDS co-infection; equilibrium points; the basic reproduction number; sensitivity analysis; 

optimal control. 

2020 AMS Subject Classification: 92D25, 93A30. 

 

1. INTRODUCTION 

The COVID-19 disease has subsided since the end of 2022, but it has had a significantly adverse 

impact on health, economy, education, social and cultural progress [1]. The pattern of COVID-19 

transmission with HIV/AIDS differs, but individuals with HIV may experience a higher prevalence 

of infection and COVID-19 complications compared to those without HIV [2]. Co-infection of 

COVID-19 with congenital diseases has led to numerous fatalities, including comorbidities with 

HIV/AIDS. Mathematics plays a pivotal role in modeling, analyzing, predicting, controlling, and 

optimizing the spread of infectious diseases [1]. 

The mathematical model of the COVID-19 disease spread in Wuhan was studied and analyzed 

in 2020 [3]. Ahmed (2021) conducted an analysis of the disease spread in the country, considering 

both symptomatic and asymptomatic cases [4]. The majority of COVID-19 fatalities were 

attributed to individuals with underlying congenital diseases [1]. A study examining COVID-19 in 

the context of hereditary diseases was conducted to identify relevant parameters for disease control 

[5]. In order to optimize the control of COVID-19, preventive measures, isolation, and treatment 

strategies are implemented [6]. The spread of HIV/AIDS can occur through needles and sexual 

relations [2], [7]. Massarvva (2021) conducted a literature review on addressing COVID-19 and 

HIV co-infection based on previous study findings [8]. It is essential to analyze optimal controls 

to reduce and prevent the spread of HIV, considering non-endemic, endemic, and threshold 

stability [9]. 

HIV-infected individuals who contract malaria are at risk of experiencing an increase in HIV 

virus levels in their bodies, thereby amplifying the chances of HIV transmission to their partners 

[10], [11]. The transmission pattern of malaria co-infection with HIV/AIDS is nearly identical to 

that of dengue fever co-infection with HIV/AIDS [12]. The diseases co-infected with HIV, such as 
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tuberculosis, can be studied to analyze the necessary parameters for optimizing the control of such 

co-infections [13], as well as co-infection studies with Human T-cell leukemia virus (HTLV) [14]. 

COVID-19 infection can worsen if infected individuals are not screened for congenital diseases 

[15]. The rise in mortality due to COVID-19 infection necessitates investigations into comorbid 

diseases with SARS [16].  

The moderate increase in the risk of death is directly related to COVID-19 infection, with 

findings indicating that the risk of death for patients with HIV-positive comorbidities is almost 

double compared to patients with HIV-negative comorbidities [2]. The effects of tuberculosis and 

HIV-1 infection on the dynamics of COVID-19 spread and immune response were investigated, 

particularly in Africa [13], [17]. Elaiw (2022) conducted a global analysis of the HIV and SARS 

co-infection model, observing the interaction between healthy and latency epithelial cells [16]. 

HIV-infected patients have a higher likelihood of being infected with COVID-19, and the 

consequences of HIV disease are independently and positively correlated with increased mortality 

in patients with COVID-19 [18]. The role of digital health and HIV and COVID-19 care 

management has an impact on the cure rate for HIV, COVID, and co-infection of the two diseases 

[19]. People with HIV have a similar risk of severe COVID-19 infection compared to the general 

population [20], [21]. The COVID-19/AIDS co-infection model was employed to observe the 

effect on uninfected epithelial cells, infected epithelial cells, and free HIV-1 particles, aiming to 

reduce viral load in the host [22]. Teklu (2023) conducted numerical simulations in the study of 

the COVID-19/HIV model to identify the parameters that need intervention to decrease the number 

of infected individuals [23]. An evaluation of the effect of COVID-19-HIV-TB co-infection on 

decreasing people's income was conducted using a combination of protocols and the Burkina Faso 

method [24].  

To optimize the reduction of the spread of COVID-19 or HIV, the government is making efforts 

to provide prevention and treatment controls [1], [2]. Implementing controls to optimally manage 

COVID-19/HIV co-infection can effectively prevent the spread of both COVID-19 and HIV [25]. 

A study conducted in southern Africa demonstrated that prevention and care interventions for 

individuals infected with HIV and COVID-19 had an impact on the severity of COVID-19 
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infection [26]. Numerical simulations yielded results on the problem of optimal control, suggesting 

the most effective combination of prevention and treatment strategies to minimize the transmission 

of HIV/AIDS and COVID-19 co-infection in the community. Building upon the model developed 

by Teklu et al. (2023) [23], the author focused on vaccination parameters and subsequently 

examined the optimal prevention control for HIV/AIDS, as well as the optimal prevention and 

treatment control for COVID-19. 

 

2. MODEL FORMULATION AND ANALYSIS 

The population is categorized into eight subpopulations as follows: Susceptible subpopulation 

(S): This group comprises individuals who are still healthy but susceptible to infection with 

COVID-19 or HIV/AIDS. Vaccination subpopulation (VC): This group consists of individuals who 

are healthy and have been vaccinated against COVID-19. HIV/AIDS protected subpopulation (PH): 

Individuals in this group have received cellular immune antibody vaccines against the HIV virus, 

providing protection. Subpopulation infected with COVID-19 (IC): This subpopulation includes 

individuals who have already been infected with COVID-19. HIV/AIDS-infected subpopulation 

(IH): Individuals in this subpopulation are already infected with HIV/AIDS. Subpopulations co-

infected with COVID-19 and HIV/AIDS (C): This group comprises individuals who are 

simultaneously infected with both COVID-19 and HIV/AIDS. Treatment subpopulation (TH): This 

group includes individuals infected with HIV/AIDS who are undergoing treatment. Recovered 

subpopulation (R): Individuals in this category are either immune to or have recovered from 

COVID-19 or are protected against HIV/AIDS. 

 

Figure 1. The dynamics of the spread of COVID-19 co-infection with HIV/AIDS 
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Table 1. Parameter values for low transmission cases of COVID-19 co-infection with HIV/AIDS 

Parameter Description Value Referensi 

 Recruitment rate into the subpopulation S 2500 [26] 

 Vaccination rates from subpopulation S to VC 0.0015 [26] 

 Vaccination rates from subpopulation S to PH 0.0004 [26] 

1 S subpopulation contact rate with IC and C 0.1175 [26] 

1 S subpopulation contact rate with 1C 0.1 [23] 

2 S subpopulation contact rate with IH and C 0.3425 [26] 

2 S subpopulation contact rate with 2C 0.12 [23] 

 The natural death rate of each compartment 1

65 × 365
 [26] 

r1 Rate of recovered from VC subpopulation to R 0.036] [26] 

 Transfer rate of the VC subpopulation to IH 0.081 [26] 

r2 Recovered rate of PH subpopulation to R  0.0667 [26] 

 Transfer rate of PH subpopulations to IC 0.081 [26] 

 Cure rates of the IC subpopulation 0.005 [26] 

 Co-infection rates of the IC subpopulation to C 0.1 [23] 

d1 Mortality rate in the IH subpopulation 0.00023 [23] 

d2 Mortality rate in the IC subpopulation 0.15 [26] 

 Treatment rates in the IH subpopulation 0.024 assumed 

 IH subpopulation infection rate to C 0.12 [23] 

 TH subpopulation infection rate to C 0.11 assumed 

 The cure rate of the subpopulation C from 

COVID-19 

0.005 [23] 

d3 Mortality rate in subpopulation C 0.15 [26] 

  

The assumptions of the model studied in this research are as follows: (1) The recruitment rate 

into the susceptible subpopulation takes into account COVID-19 vaccination and cellular immune 
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antibody against the HIV virus. (2) Vaccinated individuals have a possibility of immunity against 

COVID-19 or HIV/AIDS. (3) Individuals infected with COVID-19 and receiving treatment have 

a chance of recovery. (4) Individuals infected with COVID-19 or HIV/AIDS may potentially 

experience COVID-19 and HIV/AIDS co-infection. (5) Each subpopulation has a natural mortality 

rate, and individuals in the IC, IH, or C subpopulations may die due to illness. The schematic 

diagram of the studied model is shown in Figure 1 below. 

The differential equation system of the model of the spread of COVID-19 infection with 

HIV/AIDS is as follows: 

𝑑𝑆

𝑑𝑡
= Λ − (𝛼 + 𝛿 + 𝛽𝐶 + 𝛽𝐻 + 𝜇)𝑆                    

𝑑𝑉𝐶

𝑑𝑡
= 𝛼𝑆 − (𝑟1 + 𝜑𝛽𝐻 + 𝜇)𝑉𝐶                             

𝑑𝑃𝐻

𝑑𝑡
= 𝛿𝑆 − (𝑟2 + 𝜔𝛽𝐶 + 𝜇)𝑃𝐻                           

𝑑𝐼𝐶

𝑑𝑡
= 𝛽𝐶𝑆 + 𝜔𝛽𝐶𝑃𝐻 − (𝜓 + 𝜉𝛽𝐻 + 𝑑2 + 𝜇)𝐼𝐶

𝑑𝐼𝐻

𝑑𝑡
= 𝛽𝐻𝑆 + 𝜑𝛽𝐻𝑉𝐶 − (𝜏 + 𝜌𝛽𝐶 + 𝑑1 + 𝜇)𝐼𝐻

𝑑𝐶

𝑑𝑡
= 𝜉𝛽𝐻𝐼𝐶 + 𝜌𝛽𝐶𝐼𝐻 + 𝜃𝑇𝐻 − (𝜎 + 𝑑3 + 𝜇)𝐶

𝑑𝑇𝐻

𝑑𝑡
= 𝜏𝐼𝐻 + 𝜎𝐶 − (𝜃 + 𝜇)𝑇𝐻                              

𝑑𝑅

𝑑𝑡
= 𝑟1𝑉𝐶 + 𝑟2𝑃𝐻 + 𝜓𝐼𝐶 − 𝜇𝑅                            }

 
 
 
 
 
 

 
 
 
 
 
 

      (1) 

with 𝛽𝐶(𝑡) =
𝛽1

𝑁
(𝐼𝐶(𝑡) + 𝛾1𝐶(𝑡)), 𝛽𝐻(𝑡) =

𝛽2

𝑁
(𝐼𝐻(𝑡) + 𝛾2𝐶(𝑡)). 

Notation of parameters, description, and value of parameters as shown in Table 1. 

2.1 COVID-19 Sub-Model 

This case is only considered for the spread of COVID-19, so in this case, 𝑃𝐻 = 𝐼𝐻 = 𝑇𝐻 = 𝐶 =

𝑅 = 0. Thus, the sub-model for the case of the spread of COVID-19 is given by the following 

system of differential equations 

𝑑𝑆

𝑑𝑡
= Λ − (𝛼 + 𝛿 +

𝛽1

𝑁𝐶
𝐼𝐶 + 𝜇)𝑆   

𝑑𝑉𝐶

𝑑𝑡
= 𝛼𝑆 − (𝑟1 + 𝜇)𝑉𝐶                     

𝑑𝐼𝐶

𝑑𝑡
=

𝛽1

𝑁𝐶
𝑆𝐼𝐶 − (𝜓 + 𝑑2 + 𝜇)𝐼𝐶      }

 
 

 
 

         (2) 

with 𝑁𝐶 = 𝑆 + 𝑉𝐶 + 𝐼𝐶 . All equilibrium points of System (2) can be obtained by solving the 

following system of equations 
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𝑑𝑆

𝑑𝑡
=

𝑑𝑉𝐶

𝑑𝑡
=

𝑑𝐼𝐶

𝑑𝑡
= 0.       

One of the equilibrium points, which is often referred to as the disease-free equilibrium point (𝐸𝐶
0
), 

is obtained when 𝐼𝐶 = 0. The disease-free equilibrium point for the sub-model of the spread of 

COVID-19, namely 

𝐸𝐶
0 = (𝑆0, 𝑉𝐶

0, 𝐼𝐶
0) = (

𝛬

𝛼+𝛿+𝜇
,

𝛼𝛬

(𝛼+𝛿+𝜇)(𝑟1+𝜇)
 , 0 ).    

The basic reproduction number of System (2) is determined using the next-generation matrix [27]. 

Based on System (2), the 𝐹 and 𝑉 matrices are obtained as follows:       

𝐹 = (
𝛽1

𝑁𝐶
0 𝑆

0 0

0 0
), 𝑉 = (

𝜓 + 𝑑2 + 𝜇 0
0 𝑟1 + 𝜇

),  

with 𝑁𝐶
0 = 𝑆0 + 𝑉𝐶

0 + 𝐼𝐶
0. 

so that the next-generation matrix is obtained as follows: 

     𝐹𝑉−1 = (
𝛽1(𝑟1+𝜇)

(𝑟1+𝜇+𝛼)(𝜓+𝑑2+𝜇)
0

0 0
). 

The basic reproduction number of System (1) is the maximum eigenvalue of the 𝐹𝑉−1 matrix. So, 

by using the next-generation matrix, it is obtained the basic reproduction number for the sub-model 

of the spread of COVID-19 is  

𝑅𝐶 =
𝛽1(𝑟1+𝜇)

(𝑟1+𝜇+𝛼)(𝜓+𝑑2+𝜇)
. 

Suppose that 𝐸𝐶
∗ = (𝑆∗, 𝑉𝐶

∗, 𝐼𝐶
∗) endemic equilibrium point of system (2), then by solving system 

(2) is obtained 

𝑆∗ =
𝛬

𝛽𝐶+𝛼+𝛿+𝜇
 , 𝑉𝐶

∗ =
𝛼𝛬

(𝑟1+𝜇)(𝛽𝐶+𝛼+𝛿+𝜇)
 ,  𝐼𝐶

∗ =
𝛽𝐶𝛬

(𝜓+𝑑2+𝜇)(𝛽𝐶+𝛼+𝛿+𝜇)
, 

with 𝛽𝐶 =
𝛽1

𝑁𝐶
𝐼𝐶
∗ . If 𝐼𝐶

∗ substituted to 𝛽𝐶 =
𝛽1

𝑁
𝐼𝐶
∗ then obtained 

𝛽𝐶 =
𝛽1(𝑟1+𝜇)−(𝜓+𝑑2+𝜇)(𝑟1+𝜇+𝛼)

(𝑟1+𝜇)
=

(𝜓+𝑑2+𝜇)(𝑟1+𝜇+𝛼)

(𝑟1+𝜇)
(𝑅𝐶 − 1),  

this shows that if 𝑅𝐶 > 1, then 𝛽𝐶 is positive, so 𝐼𝐶
∗ is also positive. In other words, the endemic 

equilibrium point for the sub-model of the spread of COVID-19 exists and is single if 𝑅𝐶 > 1. 

The local stability of the disease-free equilibrium point of System (1) is determined by the 
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linearization approach. The Jacobian matrix of System (2) at 𝐸𝐶
0 is  

𝐽(𝐸𝐶
0) = (

−(𝛼 + 𝛿 + 𝜇) 0
𝛽1

𝑁𝐶
0 𝑆

0

𝛼 −(𝑟1 + 𝜇) 0

0 0 −(𝜓 + 𝑑2 + 𝜇)

).  

It is clear that all the eigenvalues of the matrix 𝐽(𝐸𝐶
0)  are negative. Thus, the disease-free 

equilibrium point 𝐸𝐶
0 is locally asymptotically stable if 𝑅𝐶 < 1. Next, global stability analysis of 

the endemic equilibrium point 𝐸𝐶
∗  was performed using the Lyapunov method. The Lyapunov 

function [28] used to determine the global stability of 𝐸𝐶
∗ is defined as follows: 

𝐿(𝑆, 𝑉𝐶 , 𝐼𝐶) =
1

2
((𝑆 − 𝑆∗) + (𝑉𝐶 − 𝑉𝐶

∗) + (𝐼𝐶 − 𝐼𝐶
∗))

2
. 

The Lyapunov function L is a continuously differentiable function and is always positive and zero 

only at the endemic equilibrium point 𝐸𝐶
∗. If the Lyapunov function L [28] is derived with respect 

to t, then it is obtained 

𝑑𝐿

𝑑𝑡
= ((𝑆 − 𝑆∗) + (𝑉𝐶 − 𝑉𝐶

∗) + (𝐼𝐶 − 𝐼𝐶
∗)) × (

𝑑𝑆

𝑑𝑡
+
𝑑𝑉𝐶

𝑑𝑡
+
𝑑𝐼𝐶

𝑑𝑡
)  

               = (𝑁𝐶 −
𝛬−𝛿𝑆∗−𝑟1𝑉𝐶

∗−(𝜓+𝑑2)𝐼𝐶
∗

𝜇
) (𝛬 − 𝛿𝑆 − 𝑟1𝑉𝐶 − (𝜓 + 𝑑2)𝐼𝐶 − 𝜇𝑁𝐶)  

        ≤ (𝑁𝐶 −
𝛬

𝜇
) (𝛬− 𝜇𝑁𝐶) ≤ −

(𝛬−𝜇𝑁𝐶)
2

𝜇
≤ 0. 

Since 𝑅𝐶 > 1, there is a unique endemic equilibrium point 𝐸𝐶
∗, and the Lyapunov L function with 

𝑑𝐿

𝑑𝑡
< 0 is obtained. Thus, it can be concluded that the endemic equilibrium point 𝐸𝐶

∗ is globally 

asymptotically stable. 

2.2 HIV/AIDS Sub-Model 

This case is only concerned with the spread of HIV/AIDS; in this case, 𝑉𝐶 = 𝐼𝐶 = 𝐶 = 𝑅 = 0. 

Thus, the sub-model for the case of the spread of COVID-19 is given by the following system of 

differential equations 

𝑑𝑆

𝑑𝑡
= Λ − (𝛼 + 𝛿 +

𝛽2

𝑁𝐻
𝐼𝐻 + 𝜇)𝑆   

𝑑𝑃𝐻

𝑑𝑡
= 𝛿𝑆 − (𝑟2 + 𝜇)𝑃𝐻                    

𝑑𝐼𝐻

𝑑𝑡
=

𝛽2

𝑁𝐻
𝐼𝐻𝑆 − (𝜏 + 𝑑1 + 𝜇)𝐼𝐻      

𝑑𝑇𝐻

𝑑𝑡
= 𝜏𝐼𝐻 − (𝜃 + 𝜇)𝑇𝐻                    }

  
 

  
 

,        (3) 
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with 𝑁𝐻 = 𝑆 + 𝑃𝐻 + 𝐼𝐻 + 𝑇𝐻. All the equilibrium points of System (3) can be obtained by solving 

the following system of equations, 

    
𝑑𝑆

𝑑𝑡
=

𝑑𝑃𝐻

𝑑𝑡
=

𝑑𝐼𝐻

𝑑𝑡
=

𝑑𝑇𝐻

𝑑𝑡
= 0.       

One of the equilibrium points, which is often referred to as the disease-free equilibrium point (𝐸𝐻
0
), 

is obtained when 𝐼𝐻 = 0. The disease-free equilibrium point for the sub-model of the spread of 

HIV/AIDS, i.e., 𝐸𝐻
0 = (𝑆0, 𝑃𝐻

0, 𝐼𝐻
0 , 𝑇𝐻

0) = (
𝛬

𝛼+𝛿+𝜇
,

𝛿𝛬

(𝛼+𝛿+𝜇)(𝑟2+𝜇)
 , 0 , 0). 

The basic reproduction number of System (3) is determined using the next generation matrix. 

Based on System (3) the 𝐹 and 𝑉 matrices are obtained as follows: 

𝐹 = (
𝛽2

𝑁𝐻
0 𝑆

0 0

0 0
), 𝑉 = (

𝜏 + 𝑑1 + 𝜇 0
0 𝑟2 + 𝜇

),  

with 𝑁𝐻
0 = 𝑆0+𝑃𝐻

0 + 𝐼𝐻
0 + 𝑇𝐻

0. 

So that the next-generation matrix is obtained as follows: 

𝐹𝑉−1 = (
𝛽2(𝑟2+𝜇)

(𝑟2+𝜇+𝛿)(𝜏+𝑑1+𝜇)
0

0 0
).   

The basic reproduction number of System (3) is the maximum eigenvalue of the 𝐹𝑉−1.  

So, the basic reproduction number for the sub-model of the spread of HIV/AIDS is 

𝑅𝐻 =
𝛽2(𝑟2+𝜇)

(𝑟2+𝜇+𝛿)(𝜏+𝑑1+𝜇)
 . 

Suppose that 𝐸𝐻
∗ = (𝑆∗, 𝑃𝐻

∗ , 𝐼𝐻
∗ , 𝑇𝐻

∗) is the endemic equilibrium point of System (3), then solving 

System (3) is obtained 

𝑆∗ =
𝛬

𝛽𝐻+𝛼+𝛿+𝜇
 , 𝑃𝐻

∗ =
𝛿𝛬

(𝑟2+𝜇)(𝛽𝐻+𝛼+𝛿+𝜇)
 ,  𝐼𝐻

∗ =
𝛽𝐻𝛬

(𝜏+𝑑1+𝜇)(𝛽𝐻+𝛼+𝛿+𝜇)
 , 𝑇𝐻

∗ =
𝜏

𝜃+𝜇
𝐼𝐻
∗ , 

with 𝛽𝐻 =
𝛽2

𝑁𝐻
𝐼𝐻
∗ . If 𝐼𝐻

∗  is substituted to 𝛽𝐻 =
𝛽2

𝑁𝐻
𝐼𝐻
∗  we get 

𝛽𝐻 =
𝛽2(𝑟2+𝜇)−(𝜏+𝑑1+𝜇)(𝑟2+𝜇+𝛿)

(𝑟2+𝜇)
=

(𝜏+𝑑1+𝜇)(𝑟2+𝜇+𝛿)

(𝑟2+𝜇)
(𝑅𝐻 − 1). 

This shows that if 𝑅𝐻 > 1, then 𝛽𝐻 is positive so that 𝐼𝐻
∗  is also positive. In other words, the 

endemic equilibrium point for the sub-model of the spread of HIV/AIDS exists and is single if 

𝑅𝐻 > 1. The local stability of the disease-free equilibrium point of System (3) was determined by 



10 

JONNER NAINGGOLAN, JOKO HARIANTO, MOCH. FANDI ANSORI 

the linearization approach. The Jacobian Matrix of the System (3) at 𝐸𝐻
0  is  

   𝐽(𝐸𝐻
0) =

(

 
 
−(𝛼 + 𝛿 + 𝜇) 0

𝛽2

𝑁𝐻
0 𝑆

0 0

𝛼 −(𝑟2 + 𝜇) 0 0

0 0 −(𝜏 + 𝑑1 + 𝜇) 0

0 0 𝜏 −(𝜃 + 𝜇)

 

)

 
 
   

It is clear that all the eigenvalues of the matrix 𝐽(𝐸𝐻
0)  are negative. Thus, the disease-free 

equilibrium point 𝐸𝐻
0  is locally asymptotically stable if 𝑅𝐻 < 1. 

Next, global stability analysis of the endemic equilibrium point 𝐸𝐻
∗  was performed using 

the Lyapunov method. The Lyapunov function used to determine the global stability of 𝐸𝐻
∗   is 

defined as follows [28]: 

𝐿(𝑆, 𝑉𝐶 , 𝐼𝐶) =
1

2
((𝑆 − 𝑆∗) + (𝑃𝐻 − 𝑃𝐻

∗) + (𝐼𝐻 − 𝐼𝐻
∗ ) + (𝑇𝐻 − 𝑇𝐻

∗))
2
. 

The Lyapunov function L is a continuously differentiable function and is always positive and zero 

only at the endemic equilibrium point 𝐸𝐻
∗ . If the Lyapunov function L is derived with respect to t, 

then it is obtained 

𝑑𝐿

𝑑𝑡
= ((𝑆 − 𝑆∗) + (𝑃𝐻 − 𝑃𝐻

∗) + (𝐼𝐻 − 𝐼𝐻
∗ ) + (𝑇𝐻 − 𝑇𝐻

∗)) × (
𝑑𝑆

𝑑𝑡
+
𝑑𝑃𝐻

𝑑𝑡
+
𝑑𝐼𝐻

𝑑𝑡
+
𝑇𝐻

𝑑𝑡
)  

     = (𝑁𝐻 −
𝛬−𝛼𝑆∗−𝑟2𝑃𝐻

∗−𝑑1𝐼𝐻
∗ −𝜃𝑇𝐻

∗

𝜇
) (𝛬 − 𝛼𝑆 − 𝑟2𝑃𝐻 − 𝑑1𝐼𝐻 − 𝜃𝑇𝐻 − 𝜇𝑁𝐻)   

      ≤ (𝑁𝐻 −
𝛬

𝜇
) (𝛬− 𝜇𝑁𝐻) ≤ −

(𝛬−𝜇𝑁𝐻)
2

𝜇
≤ 0  

Since 𝑅𝐻 > 1, there is a unique endemic equilibrium point 𝐸𝐻
∗ , and the Lyapunov function L is 

obtained with 
𝑑𝐿

𝑑𝑡
< 0. Thus it can be concluded that the endemic equilibrium point 𝐸𝐻

∗  is globally 

asymptotically stable. 

2.3 Model of COVID-19 Co-infection with HIV/AIDS  

The co-infection model for COVID-19 and HIV/AIDS is as follows: 

All equilibrium points of System (1) can be obtained by solving the following system of equations 

𝑑𝑆

𝑑𝑡
=

𝑑𝑉𝐶

𝑑𝑡
=

𝑑𝑃𝐻

𝑑𝑡
=

𝑑𝐼𝐶

𝑑𝑡
=

𝑑𝐼𝐻

𝑑𝑡
=

𝑑𝐶

𝑑𝑡
=

𝑑𝑇𝐻

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0.     

The disease-free equilibrium point of System (4) is 𝐸𝐶𝐻
0 = (𝑆0, 𝑉𝐶

0, 𝑃𝐻
0, 0,0,0,0, 𝑅0) with, 

𝑆0 =
𝛬

𝛼+𝛿+𝜇
, 𝑉𝐶

0 =
𝛼𝛬

(𝛼+𝛿+𝜇)(𝑟1+𝜇)
, 𝑃𝐻

0 =
𝛿𝛬

(𝛼+𝛿+𝜇)(𝑟2+𝜇)
 , 𝑅0 =

𝑟1𝑉𝐶
0+𝑟2𝑃𝐻

0

𝜇
 . 
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The basic reproduction number of System (1) is determined using the next-generation matrix. 

Based on System (1), the F and V matrices are obtained as follows:   

 𝐹 = (

𝛽1

𝑁0
𝑆0 0 0

0
𝛽2

𝑁0
𝑆0 0

0 0 0

),  𝑉 = (
𝜓 + 𝑑2 + 𝜇 0 0

0 𝜏 + 𝑑1 + 𝜇 0
0 0 𝜎 + 𝑑3 + 𝜇

)    

with 𝑁0 = 𝑆0 + 𝑉𝐶
0 + 𝑃𝐻

0 + 𝐼𝐶
0 + 𝐼𝐻

0 + 𝑇𝐻
0 + 𝑅0. So that the next-generation matrix is obtained as 

follows: 

   𝐹𝑉−1 =

(

 
 

𝛽1𝑆
0

(𝜓+𝑑2+𝜇)𝑁0
0 0

0
𝛽2𝑆

0

(𝜏+𝑑1+𝜇)𝑁0
0

0 0 0)

 
 

  

The basic reproduction number of System (1) is the maximum eigenvalue of the 𝐹𝑉−1. So, the 

basic reproduction number for the co-infection model of COVID-19 and HIV/AIDS is 

ℜ𝐶𝐻 = max {
𝛽1𝑆

0

(𝜓+𝑑2+𝜇)𝑁0
,

𝛽2𝑆
0

(𝜏+𝑑1+𝜇)𝑁0
}. 

The local stability of the disease-free equilibrium point of System (1) is determined using the 

Jacobian matrix at 𝐸𝐶𝐻
0  as follows 

𝐽(𝐸𝐶𝐻
0 ) =

(

 
 
 
 
 
 

−(𝛼 + 𝛿 + 𝜇) 0 0 𝐽14 𝐽15 𝐽16 0 0

𝛼 −(𝑟1 + 𝜇) 0 0 𝐽25 𝐽26 0 0

𝛿 0 −(𝑟2 + 𝜇) 𝐽34 0 𝐽36 0 0
0 0 0 𝐽44 0 𝐽46 0 0
0 0 0 0 𝐽55 𝐽56 0 0
0 0 0 0 0 𝐽66 𝜃 0

0 0 0 0 𝜏 𝜎 −(𝜃 + 𝜇) 0
0 𝑟1 𝑟2 𝜓 0 0 0 −𝜇

 

)

 
 
 
 
 
 

 

So that the characteristic equation is obtained as follows 

(𝜆 + 𝜇)(𝜆 + 𝑟1 + 𝜇)(𝜆 + 𝑟2 + 𝜇)(𝜆 + 𝛼 + 𝛿 + 𝜇)(𝜆 − 𝐽44)(𝜆
3 + 𝑎2𝜆

2 + 𝑎1𝜆 + 𝑎0) = 0, 

with 

𝐽14 =
𝛽1𝑆

0

𝑁0
 , 𝐽15 =

𝛽2𝑆
0

𝑁0
 , 𝐽16 =

(𝛽1𝛾1+𝛽2𝛾2)𝑆
0

𝑁0
 , 𝐽25 =

𝜑𝛽2𝑉
0

𝑁0
 , 𝐽25 =

𝛾2𝛽2𝑉
0

𝑁0
, 𝐽34 =

𝜔𝛽1𝑃
0

𝑁0
 ,  

𝐽36 =
𝜔𝛽1𝛾1𝑃

0

𝑁0
 , 𝐽44 = (𝑅𝐶𝐻 − 1) −

𝜔𝛽1𝑃
0

𝑁0
 , 𝐽46 =

𝛽1𝛾1𝑆
0

𝑁0
+
𝜔𝛽1𝛾1𝑃

0

𝑁0
 , 𝐽55 =

𝛽2𝑆
0

𝑁0
− (𝜏 + 𝑑1 + 𝜇),  

𝐽56 =
𝛽1𝛾1𝑆

0

𝑁0
+
𝜑𝛽1𝛾1𝑉

0

𝑁0
, 𝐽66 = −(𝜏 + 𝑑3 + 𝜇).  
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Clearly that all eigenvalues of 𝐽(𝐸𝐶𝐻
0 ) are negative if 𝐽44 < 0. It means that if 𝑅𝐶𝐻 < 1, then the 

endemic equilibrium point 𝐸𝐶𝐻
0  is locally asymptotically stable.  

 

3. AN OPTIMAL CONTROL OF MODEL OF THE SPREAD OF COVID-19 CO-INFECTION 

WITH HIV/AIDS AND NUMERICAL SIMULATION 

In the dynamic model of co-infection spread involving both COVID-19 and HIV/AIDS, various 

controls are implemented. By utilizing the system of equations (1) and applying controls u1, u2, u3, 

and u4, we arrive at the following set of equations. 

𝑑𝑆

𝑑𝑡
= Λ − (𝛼 + 𝛿 + (1 − 𝑢1)𝛽𝐶 + (1 − 𝑢2)𝛽𝐻 + 𝜇)𝑆                                                     

𝑑𝑉𝐶

𝑑𝑡
= 𝛼𝑆 − (𝑟1 + 𝜑(1 − 𝑢2)𝛽𝐻 + 𝜇)𝑉𝐶                                                                              

𝑑𝑃𝐻

𝑑𝑡
= 𝛿𝑆 − (𝑟2 + 𝜔(1 − 𝑢1)𝛽𝐶 + 𝜇)𝑃𝐻                                                                            

𝑑𝐼𝐶

𝑑𝑡
= (1 − 𝑢1)𝛽𝐶𝑆 + 𝜔(1 − 𝑢1)𝛽𝐶𝑃𝐻 − ((1 + 𝑢3)𝜓 + 𝜉(1 − 𝑢2)𝛽𝐻 + 𝑑2 + 𝜇)𝐼𝐶

𝑑𝐼𝐻

𝑑𝑡
= (1 − 𝑢2)𝛽𝐻𝑆 + 𝜑(1 − 𝑢2)𝛽𝐻𝑉𝐶 − (𝜏 + 𝜌(1 − 𝑢1)𝛽𝐶 + 𝑑1 + 𝜇)𝐼𝐻                

𝑑𝐶

𝑑𝑡
= 𝜉(1 − 𝑢2)𝛽𝐻𝐼𝐶 + 𝜌(1 − 𝑢1)𝛽𝐶𝐼𝐻 + 𝜃𝑇𝐻 − ((1 + 𝑢4)𝜎 + 𝑑3 + 𝜇)𝐶                

𝑑𝑇𝐻

𝑑𝑡
= 𝜏𝐼𝐻 + (1 + 𝑢4)𝜎𝐶 − (𝜃 + 𝜇)𝑇𝐻                                                                               

𝑑𝑅

𝑑𝑡
= 𝑟1𝑉𝐶 + 𝑟2𝑃𝐻 + (1 + 𝑢3)𝜓𝐼𝐶 − 𝜇𝑅                                                                             }

 
 
 
 
 
 

 
 
 
 
 
 

  (4)  

One of these controls is the preventive measure with counseling, denoted as u1, aimed at averting 

COVID-19 infection in susceptible individuals. Another preventive measure with counseling, 

denoted as u2, targets individuals from vulnerable subpopulations to prevent HIV/AIDS infection. 

Furthermore, control u3 focuses on treating individuals infected with COVID-19, with efforts 

directed towards expediting their recovery. Additionally, control u4 is implemented to address the 

treatment of individuals who are co-infected with both COVID-19 and HIV/AIDS, aiming to 

accelerate their recovery from COVID-19. 

The goal of optimal control and prevention is to minimize the cost of handling and reduce the 

spread of COVID-19, HIV/AIDS and COVID-19 and HIV/AIDS co-infection. The functional 

objective of the control review of prevention and treatment of the system is  

𝐽 = 𝑚𝑖𝑛𝑢 ∫ (𝐴1𝐼𝐶(𝑡) + 𝐴2𝐼𝐻(𝑡) + 𝐴3𝐶(𝑡) + 𝐴4𝑢1
2(𝑡) + 𝐴5𝑢2

2(𝑡) + 𝐴6𝑢3
2(𝑡) + 𝐴7𝑢4

2(𝑡))
𝑡𝑓
𝑡0

𝑑𝑡.  

                        (5) 
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Based on equations (4) and (5) the Hamiltonian equation [29] is formed: 

    𝐻 = 𝐴1𝐼𝐶(𝑡) + 𝐴2𝐼𝐻(𝑡) + 𝐴3𝐶(𝑡) + 𝐴4𝑢1
2(𝑡) + 𝐴5𝑢2

2(𝑡) + 𝐴6𝑢3
2(𝑡) + 𝐴7𝑢4

2(𝑡) 

           +1(Λ − (𝛼 + 𝛿 + (1 − 𝑢1)𝛽𝐶 + (1 − 𝑢2)𝛽𝐻 + 𝜇)𝑆) 

         +2(𝛼𝑆 − (𝑟1 + 𝜑(1 − 𝑢2)𝛽𝐻 + 𝜇)𝑉𝐶) 

           +3(𝛿𝑆 − (𝑟2 + 𝜔(1 − 𝑢1)𝛽𝐶 + 𝜇)𝑃𝐻) 

         +4((1 − 𝑢1)𝛽𝐶𝑆 + 𝜔(1 − 𝑢1)𝛽𝐶𝑃𝐻 − ((1 + 𝑢3)𝜓 + 𝜉(1 − 𝑢2)𝛽𝐻 + 𝑑2 + 𝜇)𝐼𝐶) 

         +5((1 − 𝑢2)𝛽𝐻𝑆 + 𝜑(1 − 𝑢2)𝛽𝐻𝑉𝐶 − (𝜏 + 𝜌(1 − 𝑢1)𝛽𝑐 + 𝑑1 + 𝜇)𝐼𝐻) 

           +6(𝜉(1 − 𝑢2)𝛽𝐻𝐼𝐶 + 𝜌(1 − 𝑢1)𝛽𝐶𝐼𝐻 + 𝜃𝑇𝐻 − ((1 + 𝑢4)𝜎 + 𝑑3 + 𝜇)𝐶) 

         +7(𝜏𝐼𝐻 + (1 + 𝑢4)𝜎𝐶 − (𝜃 + 𝜇)𝑇𝐻 ) 

         +8(𝑟1𝑉𝐶 + 𝑟2𝑃𝐻 + (1 + 𝑢3)𝜓𝐼𝐶 − 𝜇𝑅)              (6) 

Teorema  

Based on the system of state equations (4), objective functional equations (5), and the Hamiltonian 

function (6), the co-state function system and optimal control are obtained as follows. 

𝜆1
′ = (𝜆1 − 𝜆2)𝛼 + (𝜆1 − 𝜆3)𝛿 + (𝜆1 − 𝜆4)(1 − 𝑢1)𝛽𝐶 + (𝜆1 − 𝜆5)(1 − 𝑢2)𝛽𝐻 + 𝜆1𝜇 

𝜆2
′ = (𝜆2 − 𝜆5)𝜑(1 − 𝑢2)𝛽𝐻 + (𝜆2 − 𝜆8)𝑟1 + 𝜆2𝜇 

𝜆3
′ = (𝜆3 − 𝜆4)𝜔(1 − 𝑢1)𝛽𝐶 + (𝜆3 − 𝜆8)𝑟2 ++𝜆3𝜇 

𝜆4
′ = −𝐴1 + (𝜆1 − 𝜆4)(1 − 𝑢1)

𝛽𝐶𝑆

𝑁
+ (𝜆3 − 𝜆4)𝜔(1 − 𝑢1)

𝛽𝐶𝑃𝐻
𝑁

+ (𝜆4 − 𝜆8)(1 + 𝑢3)𝜓 

     +(𝜆4 − 𝜆6)𝜉(1 − 𝑢2)𝛽𝐻 + (𝜆5 − 𝜆6)𝜌(1 − 𝑢1)
𝛽1𝐼𝐻

𝑁
+ 𝜆4(𝑑2 + 𝜇) 

𝜆5
′ = −𝐴2 + (𝜆1 − 𝜆5(1 − 𝑢2))

𝛽𝐻𝑆

𝑁
+ (𝜆2 − 𝜆5)𝜔(1 − 𝑢2)

𝛽𝐻𝑉𝐶
𝑁

+ (𝜆4 − 𝜆6)(1 + 𝑢3)
𝛽2𝐼𝐶
𝑁

 

     +(𝜆5 − 𝜆7)𝜏 + (𝜆5 − 𝜆6)𝜌(1 − 𝑢1)𝛽𝐶 + 𝜆5(𝑑1 + 𝜇) 

𝜆6
′ = −𝐴3 + (𝜆6 − 𝜆7)(1 + 𝑢4)𝜎 + 𝜆6(𝑑3 + 𝜇) 

𝜆7
′ = (𝜆7 − 𝜆6)𝜃 + 𝜆7𝜇 

𝜆8
′ = 𝜆8𝜇,  

with the condition of transversality 𝜆𝑖(𝑡𝑓) = 0, i = 1, 2, 3, 4, 5, 6, 7, 8, and optimal control 

𝑢1
∗ =

(𝜆4−𝜆1)𝛽𝐶𝑆+(𝜆4−𝜆3)𝜔𝛽𝐶𝑃𝐻+(𝜆6−𝜆5)𝜌𝛽𝐶𝐼𝐻

2𝐴4
  

𝑢2
∗ =

(𝜆5−𝜆1)𝛽𝐻𝑆+(𝜆5−𝜆2)𝜑𝛽𝐻𝑉𝐶+(𝜆6−𝜆4)𝜉𝛽𝐻𝐼𝐶

2𝐴5
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𝑢3
∗ =

(𝜆4−𝜆8)𝜓𝐼𝐶

2𝐴6
  

𝑢4
∗ =

(𝜆6−𝜆7)𝜎𝐶

2𝐴7
 . 

Proof 

By using the Pontryagin's Maximum Principle [29], the partial time derivative of each co-state is 

the negative of the partial time derivative of the corresponding state Hamiltonian. It is obtained as 

follows: 

𝜆1
′ = −

𝜕𝐻

𝜕𝑆
  

     = (𝜆1 − 𝜆2)𝛼 + (𝜆1 − 𝜆3)𝛿 + (𝜆1 − 𝜆4)(1 − 𝑢1)𝛽𝐶 + (𝜆1 − 𝜆5)(1 − 𝑢2)𝛽𝐻 + 𝜆1𝜇 

𝜆2
′ = −

𝜕𝐻

𝜕𝑉𝐶
  = (𝜆2 − 𝜆5)𝜑(1 − 𝑢2)𝛽𝐻 + (𝜆2 − 𝜆8)𝑟1 + 𝜆2𝜇 

𝜆3
′ = −

𝜕𝐻

𝜕𝑃𝐻
 = (𝜆3 − 𝜆4)𝜔(1 − 𝑢1)𝛽𝐶 + (𝜆3 − 𝜆8)𝑟2 ++𝜆3𝜇 

𝜆4
′ = −

𝜕𝐻

𝜕𝐼𝐶
 = −𝐴1 + (𝜆1 − 𝜆4)(1 − 𝑢1)

𝛽𝐶𝑆

𝑁
+ (𝜆3 − 𝜆4)𝜔(1 − 𝑢1)

𝛽𝐶𝑃𝐻

𝑁
+ (𝜆4 − 𝜆8)(1 + 𝑢3)𝜓 

            +(𝜆4 − 𝜆6)𝜉(1 − 𝑢2)𝛽𝐻 + (𝜆5 − 𝜆6)𝜌(1 − 𝑢1)
𝛽𝐶𝐼𝐻

𝑁
+ 𝜆4(𝑑2 + 𝜇) 

𝜆5
′ = −

𝜕𝐻

𝜕𝐼𝐻
= −𝐴2 + (𝜆1 − 𝜆5(1 − 𝑢2))

𝛽𝐻𝑆

𝑁
+ (𝜆2 − 𝜆5)𝜔(1 − 𝑢2)

𝛽𝐻𝑉𝐶

𝑁
  

            +(𝜆5 − 𝜆7)𝜏 + (𝜆5 − 𝜆6)𝜌(1 − 𝑢1)𝛽𝐶 + 𝜆5(𝑑1 + 𝜇) 

𝜆6
′ = −

𝜕𝐻

𝜕𝐶
 = −𝐴3 + (𝜆6 − 𝜆7)(1 + 𝑢4)𝜎 + 𝜆6(𝑑3 + 𝜇) 

𝜆7
′ = −

𝜕𝐻

𝜕𝑇𝐻
 = (𝜆7 − 𝜆6)𝜃 + 𝜆7𝜇 

𝜆8
′ = −

𝜕𝐻

𝜕𝑅
  = 𝜆8𝜇, 

with transversality condition, i(tf) = 0, i = 1, 2, 3, 4, 5, 6, 7, 8. 

While the optimal control conditions, 
𝜕𝐻

𝜕𝑢1
=

𝜕𝐻

𝜕𝑢2
=

𝜕𝐻

𝜕𝑢3
=

𝜕𝐻

𝜕𝑢4
= 0, obtained 

𝑢1
∗ =

(𝜆4
∗−𝜆1

∗ )𝛽𝐶𝑆+(𝜆4
∗−𝜆3

∗ )𝜔𝛽𝐶𝑃𝐻+(𝜆6
∗−𝜆5

∗ )𝜌𝛽𝐶𝐼𝐻

2𝐴4
  

𝑢2
∗ =

(𝜆5
∗−𝜆1

∗ )𝛽𝐻𝑆+(𝜆5
∗−𝜆2

∗ )𝜑𝛽𝐻𝑉𝐶+(𝜆6
∗−𝜆4

∗ )𝜉𝛽𝐻𝐼𝐶

2𝐴5
  

𝑢3
∗ =

(𝜆4
∗−𝜆8

∗ )𝜓𝐼𝐶

2𝐴6
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𝑢4
∗ =

(𝜆6
∗−𝜆7

∗ )𝜎𝐶

2𝐴7
.         

Each optimal control can be stated according to its limitations as follows: 

𝑢1
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {

(𝜆4
∗−𝜆1

∗ )𝛽𝐶𝑆+(𝜆4
∗−𝜆3

∗ )𝜔𝛽𝐶𝑃𝐻+(𝜆6
∗−𝜆5

∗ )𝜌𝛽𝐶𝐼𝐻

2𝐴4
, 1}}  

𝑢2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {

(𝜆5
∗−𝜆1

∗ )𝛽𝐻𝑆+(𝜆5
∗−𝜆2

∗ )𝜑𝛽𝐻𝑉𝐶+(𝜆6
∗−𝜆4

∗ )𝜉𝛽𝐻𝐼𝐶

2𝐴5
, 1}}  

𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {

(𝜆4
∗−𝜆8

∗ )𝜓𝐼𝐶

2𝐴6
, 1}}  

𝑢4
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {

(𝜆6
∗−𝜆7

∗ )𝜎𝐶

2𝐴7
, 1}}.            

3.1 The Model’s Solution with and Without Control 

Several simulations are performed using parameters’ value in Table 1 and initial conditions of 

each subpopulation based on Indonesian data on March 14, 2022: S(0) = 208,265,720, VC(0) = 

151,693,762, PH(0) = 254,300, IC(0) = 312,958, IH(0) = 328,581, C(0) = 67, TH(0) = 60, R(0) = 

5,434,729. First, we present the time series of the model’s solution in Figure 2. The susceptible 

and vaccinated subpopulations are declining, meanwhile the recovered subpopulation grows until 

reaching the steady state. On the other hand, the infected subpopulations of COVID-19, HIV/AIDS, 

and co-infection grows at first until reaching their peak and then declines resulting zero infection 

cases. 

 

Figure 2. Plot of each subpopulation over time. 
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To determine the influence of optimal prevention and treatment intervention controls on the 

dynamics of COVID-19 co-infection with HIV/AIDS, the following controls are considered: 

Prevention control with counseling to prevent COVID-19 infection (u1). Prevention control with 

counseling to prevent HIV/AIDS infection (u2). Treatment control for individuals infected with 

COVID-19 (u3). Treatment control for individuals co-infected with both COVID-19 and 

HIV/AIDS (u4). Control u1 prevents subpopulation S from entering IC, prevents subpopulation PH 

from entering IC, and prevents subpopulation IH from entering C. Control u2 prevents 

subpopulation S from entering IH, prevents subpopulation VC from entering IH, and prevents 

subpopulation IC from entering C. Control u3 increases the transition of subpopulation IC to R, and 

control u4 increases the transition of subpopulation C to TH. 

The solutions for state, co-state, and the optimal prevention and treatment controls were 

obtained using the Pontryagin's Maximum Principle [29]. The spread of subpopulations with 

intervention controls and without controls can be seen in Figure 3. 
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Figure 3. Dynamics of PH, IC, IH, C, TH, and R subpopulations with and without control. 

Based on Figure 3(a), with control u1, the number of individuals in the PH subpopulation 

decreases, while without control, the number of individuals in the PH subpopulation increases from 

the initial time until t = 92 days. In Figure 3(b), it is evident that without control, the number of 

individuals in the IC subpopulation increases, whereas with control u1 and/or u2, the number of 

individuals in the IC subpopulation decreases from the initial time until t = 92 days. Action with 

control u1 is more effective in reducing the number of individuals in the IC subpopulation compared 

to control u2. In Figure 3(c), the number of individuals in the IH subpopulation increases 

continuously without control from the initial time until t = 92 days, while with control u1, the 

increase is gradual, but with control u2, it already decreases. In Figure 3(d), the number of 

individuals in the C subpopulation increases without control; with treatment controls u3 and u4, the 

increase is still gradual, while with prevention controls u1 and u2, it follows a monotonic trend, and 

with combined prevention and treatment controls, it decreases from the initial time until t = 92 

days.  

In Figure 3(e), it can be observed that the number of individuals in the TH subpopulation 

increases without control and with control u4. In actions with u2 control, the increase is gradual 

from the initial time until t = 30 days and from t = 30 days until t = 92 days; it follows a monotonic 

trend. However, with combined controls u2 and u4, it decreases slowly from the initial time until t 

= 92 days. In Figure 3(f), the number of individuals in the R subpopulation increases from the 

 

(e) 

 

(f) 
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initial time until t = 92 days. The combined use of controls u1, u2, and u3 is more effective than 

using them individually. Additionally, prevention controls u1 and u2 are more effective in 

increasing the number of individuals in the R subpopulation from the initial time until t = 92 days 

compared to treatment control u3. 

3.2 Sensitivity Analysis 

To evaluate which parameter of the model has the most proportional impact on the disease 

spread, it is important to calculate the elasticity index of the basic reproduction number which is 

defined as follows 

Υ𝑞 =
𝜕𝑅0
𝜕𝑞

×
𝑞

𝑅0
 

where 𝑞  is the parameter and 𝑅0  is the basic reproduction number. The advantage of the 

elasticity index calculation is that we can find another way to control the disease spread by paying 

attention to the most sensitive parameter.  

           

    (a)       (b)       (c) 

 

           

  (d)          (e)          (f) 

Figure 4. (a-c) Elasticity index of 𝑅𝐶, 𝑅𝐻, and ℜ𝐶𝐻. (d-f) The sensitivity of parameters 𝛽1 and 

𝛽2 on the dynamics of the infected subpopulations 𝐼𝐶, 𝐼𝐻, and 𝐶. 



19 

SPREAD OF COVID-19 CO-INFECTION WITH HIV/AIDS 

The elasticity index of the COVID-19 basic reproduction number 𝑅𝐶, the HIV/AIDS reproduction 

number 𝑅𝐻, and the co-infection ℜ𝐶𝐻 is given in Figure 4a-c. In the case of 𝑅𝐶, it is found that 

parameter 𝛽1 and followed by 𝑑2 are the most sensitive. In the case of 𝑅𝐻, the parameter 𝛽2 is 

the most sensitive and it is followed by 𝑟2. Thus, to gain maximal result in controlling the COVID-

19 spread, we should reduce the contact rate 𝛽1, for example by social distancing; while to gain 

maximal result in reducing the HIV/AIDS spread, we should reduce the contact rate 𝛽2 , for 

example by using condoms when doing sex. In the co-infection case, the simulation shows that the 

parameters 𝛽2 and 𝜏 are the most sensitive. Thus, in order to reduce the co-infection spread, we 

should pay attention to the reducing the contact rate of HIV/AIDS patients or increasing the their 

treatment rate. In Figure 4d-f, we have the sensitivity of parameter 𝛽1 on the dynamics of the 

infected COVID-19 𝐼𝐶 , and the sensitivity of parameter 𝛽2  on the dynamics of the infected 

HIV/AIDS 𝐼𝐻 and co-infected 𝐶. The result is similar to the elasticity index analysis, that higher 

contact rate will produce higher numbers of the infected subpopulations. 

          

   (a)        (b)        (c) 

 

    

       (d)        (e) 

Figure 5. Contour plots of 𝑅𝐶 as a function of the contact rate 𝛽1 and other parameters. 
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Consider the basic reproduction numbers as a function of the model’s parameters. First, we view 

𝑅𝐶 =
𝛽1(𝑟1+𝜇)

(𝑟1+𝜇+𝛼)(𝜓+𝑑2+𝜇)
  as a function of 𝛽1  and other parameters. We want to know the 

simultaneous influence of contact rate 𝛽1 with other parameters on the COVID-19 spread. To do 

this, we plot the contour of 𝑅𝐶, and the result is given in Figure 5. All the figures conclude that 

higher contact rate influences the disease to spread. To control the spread, the parameters 𝛼, 𝑑2, 

𝜇, and 𝜓 should have higher value, or 𝑟1 should have very small value. 

Second, consider 𝑅𝐻 =
𝛽2(𝑟2+𝜇)

(𝑟2+𝜇+𝛿)(𝜏+𝑑1+𝜇)
 as a function of contact rate 𝛽2 and other parameters. 

Similar as before, the contour plot of 𝑅𝐻 is plotted, and we present it in Figure 6. The result is 

similar to the case of COVID-19 spread, that higher value of contact rate will make HIV/AIDS to 

spread. In order to control the disease’s spread, we should have higher value of parameters 𝑑1, 𝛿, 

𝜇, and 𝜏, or very small value of 𝑟2. 

       

    (a)       (b)        (c) 

    

       (d)        (e) 

Figure 6. Contour plots of 𝑅𝐻 as a function of the contact rate 𝛽2 and other parameters. 
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The last, suppose ℜ𝐶𝐻 = max {
𝛽1𝑆

0

(𝜓+𝑑2+𝜇)𝑁0
,

𝛽2𝑆
0

(𝜏+𝑑1+𝜇)𝑁0
} as a function of two parameters. Its 

contour plot is given in Figure 7. We have an interesting result that at some parameter-space the 

contour plot produces a discontinuous display. It is resulted from the maximum operator. By Figure 

6a, it is obtained that the influence of HIV/AIDS contact rate (𝛽2) is larger than COVID-19 contact 

rate (𝛽1 ). In Figure 7b, the smaller value of 𝛽2  and the higher value of 𝑑2  will decrease 

simultaneously the coinfection disease. 

    

       (a)            (b) 

Figure 7. Contour plot of ℜ𝐶𝐻 as a function of 𝛽2 with 𝛽1 and 𝑑2. 

 

4. CONCLUSION 

The model studied in this research is an extension of Teklu's study (2023) [24], incorporating 

vaccination parameters and investigating prevention controls u1, u2, and treatment controls u3 and 

u4. Based on the model analysis, non-endemic equilibrium points and endemic equilibrium points 

are obtained for each sub-model: COVID-19, HIV/AIDS, and COVID-19 co-infection with 

HIV/AIDS. To assess whether the number of infected individuals is increasing or decreasing in the 

COVID-19, HIV/AIDS, and co-infection sub-models, the basic reproduction number for each sub-

model is determined. The local stability of the non-endemic equilibrium points in each sub-model, 

i.e., COVID-19 sub-model (𝐸𝐶
0), HIV/AIDS submodel (𝐸𝐻

0), and COVID-19 co-infection with 

HIV/AIDS sub-model (𝐸𝐶𝐻
0 ), is analyzed based on the eigenvalues of the Jacobian matrix. The 

global stability of the endemic equilibrium points in each submodel, i.e., COVID-19 submodel 

(𝐸𝐶
∗), HIV/AIDS sub-model (𝐸𝐻

∗ ), and COVID-19 co-infection with HIV/AIDS sub-model (𝐸𝐶𝐻
∗ ) 
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is assessed using the Lyapunov method. Sensitivity analysis reveals critical parameters strongly 

influencing the reduction or increase in the spread of COVID-19-HIV/AIDS co-infection. 

Based on the study of optimal controls in the model of COVID-19 co-infection with HIV/AIDS, 

the system of differential equations for the co-state of the disease co-infection model is obtained. 

The optimal prevention control u1 is more efficient in reducing the number of individuals infected 

with COVID-19 compared to treatment controls u3 and u4. Moreover, the optimal prevention 

control u2 is more efficient in controlling the spread of HIV/AIDS compared to without control.  

Another way to control the spread of COVID-19 and HIV/AIDS co-infection is by analyzing 

the sensitivity of the basic reproduction number. Following the elasticity index analysis, it is found 

that parameter 𝛽1 is the most sensitive to be controlled in the case of COVID-19 infection only. 

Thus, to gain maximal result in controlling the COVID-19 spread, we should reduce the contact 

rate 𝛽1, for example by social distancing. In the case of HIV/AIDS infection only, the parameter 

𝛽2 is the most sensitive. And to gain maximal result in reducing the HIV/AIDS spread, we should 

reduce the contact rate 𝛽2, for example by using condoms when doing sex. In the co-infection 

case, the simulation shows that the parameters 𝛽2 and 𝜏 are the most sensitive. Thus, in order to 

reduce the co-infection’s spread, we should pay attention to the reducing the contact rate of 

HIV/AIDS patients or increasing their treatment rate. Based on the study model in this study, it 

can be developed on the spread of HIV/AIDS co-infection with tuberculosis, malaria, influenza 

and other infectious diseases. Analysis models can be used with other methods, namely: fractional 

or stochastic. 
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