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Abstract: The mortality rate serves as one measure of the health sector as well as a tool for identifying populations 

that should receive specific health and development programs. The mortality rate can be used to determine a nation's 

level of welfare and standard of living. The mortality rate also affects the pricing of insurance premiums, the 

calculation of the benefit reserve for annuity products, actuarial risk management, and pension plans. A model is 

required to predict the mortality rate in the future because it is a random variable that varies over time and is in the 

range of (0,1). The Beta Autoregressive Moving Average (βARMA) model is a development of Beta regression and 

can be used to model and forecast mortality rates. Based on data on Indonesia's annual death rates from 1960 to 2020, 

we constructed a βARMA model for forecasting Indonesia's mortality rate. The best βARMA model was selected 

using Akaike's Information Criterion (AIC) value, and forecasting accuracy was assessed using Root Mean Square 

Error (RMSE). For Indonesia's annual mortality rate data, the best βARMA model produces an RMSE value of 0.0001. 

Keywords: Akaike’s information criterion; beta regression; mortality rate; proportion; root mean square error. 
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1. INTRODUCTION 

The mortality rate quantifies the number of deaths per certain size of the population exposed to 

the death risk [1]. In various fields, such as health, epidemiology, or even national planning, 

mortality rate becomes an important thing to consider. In the health sector, mortality rate plays 

role as an indicator of health development. In other words, the lower mortality rate in a certain 

area implies that the health condition of that area is already good. In epidemiology, the mortality 

rate reflects the changing disease pattern of a country thus helping in better utilization of available 

resources [2]. In national planning, the mortality rate could help to identify target groups for special 

health and development programs [3]. Mortality rate also represents the level of welfare and 

quality of life in a country. Mortality rate also plays role in calculating premium prices (pricing) 

and calculating benefit reserves (valuation) for insurance policies and annuity products, as well as 

play role in actuarial risk management and pension plans. 

Considering the important roles of mortality rate in various aspects, an appropriate model is 

needed to be able to forecast the mortality rate well. Mortality rate is a random variable that 

changes from time to time [4]. Therefore, previous research used a time series model to model and 

forecast mortality rates. One of the first models that have been used to forecast mortality rates is 

Lee-Carter model [5] which is introduced in 1992. However, over time, other time series models 

were also used to forecast mortality rates. For example, a previous study used Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model to forecast mortality rate caused by 

traffic accidents in China [6]. A previous study also compares three time series models which are 

Autoregressive Integrated Moving Average (ARIMA), Beta Autoregressive Moving Average 

(βARMA), and Kumaraswamy Autoregressive Moving Average (KARMA) to forecast Brazilian 

mortality rates due to occupational accidents [7]. 

Several previous studies that discuss mortality rate modelling, usually modeled the number of 

deaths that occur from one period to another. Whereas mortality rate is a proportion of the number 

of deaths during a specified period and the population at risk of dying during that period [8]. This 

means, the increasing or decreasing number of deaths from one period to another, does not 
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necessarily indicate the increasing or decreasing mortality rate. This is because mortality rate also 

depends on the population at risk of dying which changes from time to time. Therefore, in this 

study we modeled and forecasted mortality rate directly instead of the number of deaths from one 

period to another. Different from the number of deaths, mortality rate is a proportion, which has a 

characteristic of values that fall in the interval (0,1). Thus, such a model to accommodate this 

characteristic is required to forecast mortality rate. In the previous study, one of the time series 

models that was used to model and forecast mortality rate is Beta Autoregressive Moving Average 

(βARMA) model [9, 10]. This model was introduced by Rocha & Cribari-Neto in 2009 to be able 

to model a continuous random variable that has values in the interval (0,1) and observed from time 

to time, such as proportion. For those reasons, this study will try to model and forecast Indonesia's 

mortality rate using the βARMA model. 

 

2. BETA AUTOREGRESSIVE MOVING AVERAGE MODEL 

The Beta Autoregressive Moving Average (βARMA) model was introduced by Rocha & 

Cribari-Neto in 2009. This model is a time series model that can be used to model and forecast 

random variables that assume values in the interval (0,1), such as proportion, and the model is 

based on the Beta Regression model [11] which was introduced by Ferrari & Cribari-Neto in 2004. 

The Beta Regression model itself is a Generalized Linear Model (GLM). 

2.1. Generalized Linear Model 

Generalized Linear Model (GLM) extends standard linear regression models to encompass non-

normal response distributions and possibly nonlinear functions of the mean [12]. GLM has three 

components: 

a. Random Component which specifies the response variable 𝑦  and its probability 

distribution. The observations 𝑦1, … , 𝑦𝑛 are treated as independent. 

b. Linear predictor or systematic component, 𝜂𝑡 , is a linear combination of explanatory 

variables 𝑥1, … , 𝑥𝑘 and linear parameter 𝛽1, … , 𝛽𝑘 which is shown by equation (1). 

 
𝜂𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=1

,   𝑖 = 1, … , 𝑛 (1)  
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c. Link function, which is a function 𝑔(∙) that relates the linear predictor to the mean of the 

random component (𝜂𝑖 = 𝑔(𝜇𝑖)) where 𝜇𝑖 = 𝐸(𝑦𝑖), 𝑖 = 1, … , 𝑛. 𝑔(∙) is a monotonic and 

differentiable function. Thus 𝑔(∙) links 𝜇𝑖 to explanatory variables through the formula: 

 
𝑔(𝜇𝑖) = ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=1

,   𝑖 = 1, … , 𝑛 (2)  

2.2. Beta Regression 

Beta Regression model was introduced by [11] and [13] with the purpose to be able to model a 

special situation where the response variable (𝑦) measured continuously in an interval unit, such 

as 0 < 𝑦 < 1. This model became the solution to the problem faced by linear regression model in 

modeling this special situation, because fitted values that is produced for the response variable 

could be exceeding the upper bound and/or lower bound. 

The Beta Regression assumes that the response variable, 𝑦, follows a beta distribution with the 

parameters 𝑎 and 𝑏. The beta distribution is very flexible in modeling proportion because it has 

a lot of shapes that depend on the values of its parameters. The density function beta is shown by 

the following formula: 

 𝑓(𝑦; 𝑎, 𝑏) =
Γ(𝑎 + 𝑏)

Γ(𝑎)Γ(𝑏)
𝑦𝑎−1(1 − 𝑦)𝑏−1, 0 < 𝑦 < 1, (3)  

where 𝑎 > 0, 𝑏 > 0 and Γ(∙) is a gamma function. The mean and variance of 𝑦 are shown by 

the following equation, 

 𝐸(𝑦) =
𝑎

𝑎 + 𝑏
 (4)  

 𝑉𝑎𝑟(𝑦) =
𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
 (5)  

Then [11] defines a different parameterization of beta density so it contains a precision 

parameter. Let 𝜇 =
𝑎

𝑎+𝑏
 and 𝜑 = 𝑎 + 𝑏, we can rewrite the mean and variance of the response 

variable, 𝑦, as follows, 

 𝐸(𝑦) = 𝜇 (6)  

 𝑉𝑎𝑟(𝑦) =
𝑉(𝜇)

1 + 𝜑
 (7)  
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where 𝑉(𝜇) = 𝜇(1 − 𝜇) , 𝜇  is the mean of the response variable and 𝜑  is the precision 

parameter, which means for a certain value of μ, the larger the value of 𝜑, the smaller the variance 

of y. Thus, we can rewrite the beta density using the new parameter, 

 
𝑓(𝑦; 𝜇, 𝜑) =

Γ(𝜑)

Γ(𝜇𝜑)Γ((1 − 𝜇)𝜑)
𝑦𝜇𝜑−1(1 − 𝑦)(1−𝜇)𝜑−1, 0 < 𝑦 < 1, (8)  

where 0 < 𝜇 < 1 and 𝜑 > 0. 

If 𝑦1, … , 𝑦𝑛 are independent random variables, where every 𝑦𝑡, 𝑡 = 1, … , 𝑛 follows the beta 

density as shown in equation (8) with 𝜇𝑡 as the mean and 𝜑 is an unknown precision parameter, 

the Beta Regression model can be obtained by assuming that the function of mean 𝑦𝑡 can be 

written as the following formula, 

 
𝑔(𝜇𝑡) =  ∑ 𝛽𝑗𝑥𝑡𝑗 = 𝜂𝑡

𝑘

𝑗=1

 (9)  

where 𝜷 = (𝛽1, … , 𝛽𝑘)𝑇 is a vector of unknown regression parameters and 𝑥𝑡1, … , 𝑥𝑡𝑘 are the 

𝑘-th observation covariate where 𝑘 < 𝑛 which is assumed to be known and fixed. Whereas 𝑔(∙) 

is the link function, a monotonic and twice differentiable function that maps (0,1) to ℝ. According 

to [14], several link functions that can be used are: 

a. Logit link function 

𝑔(𝜇) = log (
𝜇

1 − 𝜇 
) 

b. Probit link function 

𝑔(𝜇) = Φ−1(𝜇) 

where Φ(∙) is the standard normal distribution function. 

c. Complementary log-log link function 

𝑔(𝜇) = log{− 𝑙𝑜𝑔(1 − 𝜇)} 

d. Log-log link function 

𝑔(𝜇) = − log{− log(𝜇)} 

2.3. Autoregressive Moving Average 

Autoregressive Moving Average (ARMA) process is a combination of the Autoregressive (AR) 

and Moving Average (MA) processes. According to [15], Autoregressive processes are regression 
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on themselves (past values of the response variable). Whereas Moving Average processes are a 

special case of a general linear process, which is a weighted and finite linear combination of white 

noises (𝑒𝑡) where the weight is not zero. 

An Autoregressive process {𝑌𝑡} with order 𝑝, AR (𝑝), is shown by the following equation, 

 𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝑒𝑡 (10)  

where 𝑒𝑡  is white noise term that is assumed to be independent from 𝑌𝑡−1, … , 𝑌𝑡−𝑝  and  

𝑒𝑡 ~𝑁(0, 𝜎2). On the other side, a Moving Average process with order 𝑞, MA (𝑞), is shown by 

the following equation, 

 𝑌𝑡 = 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞 (11)  

where 𝑒𝑡  are white noise terms and 𝜃𝑖 ≠ 0 . Therefore, An Autoregressive Moving Average 

(ARMA (𝑝, 𝑞)) which is a combination of Autoregressive process and Moving Average process 

can be shown by the following equation, 

 𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞 (12)  

2.4. Beta Autoregressive Moving Average 

[8] and [9] introduced a time series model based on the class of Beta Regression models of [11]. 

The model is called Beta Autoregressive Moving Average (βARMA) which can be used to model 

and forecast response variables that assume values in the interval (0,1), such as proportion. 

Let 𝑦𝑡, 𝑡 = 1, … , 𝑛 , are continuous random variables at period 𝑡  with the values in the 

interval (0,1). Assume the conditional distribution of each 𝑦𝑡, given the previous information set 

ℱ𝑡−1 (the smallest 𝜎-algebra such the variables 𝑦1, … , 𝑦𝑡−1 are measurable), follows the beta 

distribution with the conditional density of 𝑦𝑡 given ℱ𝑡−1 is shown by the following equation, 

 
𝑓(𝑦𝑡|ℱ𝑡−1) =

Γ(𝜑)

Γ(𝜇𝑡𝜑)Γ((1 − 𝜇𝑡)𝜑)
𝑦𝑡

𝜇𝑡𝜑−1(1 − 𝑦𝑡)(1−𝜇𝑡)𝜑−1, 0 < 𝑦𝑡 < 1, (13)  

where the conditional mean is 𝐸(𝑦𝑡|ℱ𝑡−1) = 𝜇𝑡 and the conditional variance is 𝑉𝑎𝑟(𝑦𝑡|ℱ𝑡−1) =

𝑉(𝜇𝑡)

(1+𝜑)
, with 𝑉(𝜇𝑡) = 𝜇𝑡(1 − 𝜇𝑡). We also assume that the covariates 𝒙𝑡, 𝑡 = 1, … , 𝑛, where 𝒙𝑡 =

(𝑥𝑡1, … , 𝑥𝑡𝑘)𝑇 are non-random with 𝑘 < 𝑛. 
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In the βARMA model, the systematic component consists not only the linear predictor but there 

is also an additional component, 𝜏𝑡 , which allows Autoregressive Moving Average term to be 

included additively. Therefore, a general model for 𝜇𝑡 is given by the following equation, 

 𝑔(𝜇𝑡) = 𝜂𝑡 = 𝒙𝑡
𝑇𝜷 + 𝜏𝑡 (14)  

where 𝜷 = (𝛽1, … , 𝛽𝑘)𝑇 is the unknown linear parameter. 

To show the representation of 𝜏𝑡 as ARMA component, we need to define an ARMA (𝑝, 𝑞) 

model initially as function of a term 𝜉𝑡, such that 𝜉𝑡 = 𝑔(𝑦𝑡) − 𝒙𝑡
𝑇𝜷, where: 

 
𝜉𝑡 = 𝛼 + ∑ 𝜙𝑖𝜉𝑡−𝑖

𝑝

𝑖=1

− ∑ 𝜃𝑗𝑟𝑡−𝑗

𝑞

𝑗=1

+ 𝑟𝑡 (15)  

𝑟𝑡 denotes a random error which is defined as 𝑟𝑡 = 𝑔(𝜇𝑡) − 𝜂𝑡 and 𝛼 ∈ ℝ is a constant. Then 

we assumed 𝐸(𝑟𝑡|ℱ𝑡−1) = 0 . Note that because 𝜉𝑡−𝑖 ∈ ℱ𝑡−1, 𝑖 > 0  and 𝐸(𝜉𝑡|ℱ𝑡−1) ≈ 𝜏𝑡 , by 

taking conditional expectations with respect to the ℱ𝑡−1 in (15), we obtained the approximate 

model which is shown by, 

 
𝜏𝑡 = 𝛼 + ∑ 𝜙𝑖𝜉𝑡−𝑖

𝑝

𝑖=1

− ∑ 𝜃𝑗𝑟𝑡−𝑗

𝑞

𝑗=1

 (16)  

Because 𝜉𝑡 = 𝑔(𝑦𝑡) − 𝒙𝑡
𝑇𝜷, then equation (16) can be rewrite, 

 
𝜏𝑡 = 𝛼 + ∑ 𝜙𝑖{𝑔(𝑦𝑡−𝑖) − 𝒙𝑡−𝑖

𝑇 𝜷}

𝑝

𝑖=1

− ∑ 𝜃𝑗𝑟𝑡−𝑗

𝑞

𝑗=1

 (17)  

where 𝒙𝑡 ∈ ℝ𝑘 , 𝜷 = (𝛽1, … , 𝛽𝑘)𝑇, 𝑘 < 𝑛,   𝑝, 𝑞 ∈ ℕ, with 𝑝 as the Autoregressive order, 𝑞 as 

the Moving Average order, 𝜙 as the Autoregressive parameter, 𝜃 as the Moving Average and 𝑟𝑡 

is a random error. Since the 𝜏𝑡 = 𝑔(𝜇𝑡) − 𝒙𝑡
𝑇𝜷, the βARMA general model for the mean 𝜇𝑡 is, 

 
𝑔(𝜇𝑡) = 𝛼 + 𝒙𝑡

𝑇𝜷 + ∑ 𝜙𝑖{𝑔(𝑦𝑡−𝑖) − 𝒙𝑡−𝑖
𝑇 𝜷}

𝑝

𝑖=1

− ∑ 𝜃𝑗𝑟𝑡−𝑗

𝑞

𝑗=1

 (18)  

The equation (18) is then called βARMA (𝑝, 𝑞 ). Fitted values and forecasted values that are 

produced by the βARMA model will have the values in the interval (0,1). Parameter estimation 

can be carried out using the Conditional Maximum Likelihood Estimation (see, [15, 16, 17, 18]). 

But most of the time the solution of the system of equations does not have a closed form. 
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Hence, it has to be numerically obtained by maximizing the conditional log-likelihood function 

using a nonlinear optimization algorithm, such as a quasi-Newton algorithm [19] like Broyden, 

Fletcher, Goldfarb, and Shanno (BFGS) method [20]. Figure 1 shows the flowchart of the 

construction of the βARMA model. 

 

FIGURE 1. Flowchart of the construction of the βARMA model 

2.5. Forecasting using the βARMA Model 

In order to forecast using the βARMA model, we need to find the appropriate βARMA model 

for the given information. In other words, we need to find the order of the βARMA model that will 

produce the best model for the given dataset. After obtaining the best βARMA model, we then can 

perform the forecasting to obtain forecasted values for the next several periods. Therefore, in this 

study we follow some steps to implement the βARMA model to produce the forecast. Figure 2 

shows the steps in terms of a flowchart. 

 

FIGURE 2. Flowchart of implementing the βARMA model 
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The first step is model identification. In this step, we perform model identification by analyzing 

the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots. This will 

help us to determine the order of the βARMA model. Even though the orders obtained from this 

step will not always give us the best model, it gives us some clues about the appropriate orders. 

The second step is to construct several βARMA models with different orders. We estimate the 

parameters of each model using the Conditional Maximum Likelihood Estimation method. After 

we obtain the estimated parameters of each model, we then can proceed to the next step, which is 

model selection. 

In the model selection step, we performed the model selection by choosing the model that 

produces the smallest Akaike’s Information Criterion (AIC) value [21, 22]. The chosen model will 

be our best βARMA model. We will use the best βARMA to perform forecasting for the next 

several periods. 

The next step is forecasting. Forecasting for the ℎ-step ahead, ℎ = 1, 2, …, can be computed 

as 

 
𝜇̂𝑛+ℎ = 𝑔−1 (𝛼̂ + 𝒙𝑛+ℎ

𝑇 𝜷̂ + ∑ 𝜙̂𝑖{𝑔(𝑦𝑛+ℎ−𝑖) − 𝒙𝑛+ℎ−𝑖
𝑇 𝜷̂}

𝑝

𝑖=1

+ ∑ 𝜃𝑗 𝑟̂𝑛+ℎ−𝑗

𝑞

𝑗=1

) (19)  

where, 

 𝑔(𝑦𝑡) = {
 𝑔(𝜇𝑡̂), 𝑗𝑖𝑘𝑎  𝑡 > 𝑛

𝑔(𝑦𝑡), 𝑗𝑖𝑘𝑎  𝑡 ≤ 𝑛
  and  𝑟𝑡̂ = {

0, 𝑗𝑖𝑘𝑎  𝑡 > 𝑛

 𝑔(𝑦𝑡) − 𝑔(𝜇𝑡̂), 𝑗𝑖𝑘𝑎  𝑡 ≤ 𝑛
 

 

  

𝛼̂, 𝜷̂, 𝝓̂, 𝜽̂, 𝜑̂  respectively are the Conditional Maximum Likelihood Estimator of 

𝛼, 𝜷, 𝝓, 𝜽, 𝜑,  𝜇̂𝑡 is the estimated value of 𝜇𝑡, and  𝑟𝑡̂ is the estimated value of 𝑟𝑡. 

Finally, after obtaining the forecasted value for the next several periods, we then can calculate 

the forecasting accuracy. In this study, we calculate the forecasting accuracy using the Root Mean 

Square Error (RMSE) criterion [23, 24]. The best way to choose the best forecasting model is by 

finding a model with the smallest RMSE [25]. 
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3. MAIN RESULTS 

3.1. Data 

In this study, we used Indonesia’s annual mortality rate data (Crude Death Rate) from the year 

1960 through 2020 which can be obtained from https://data.worldbank.org [26].From this data, 

we removed the last 6 observations which then we used as validation for the forecasting values 

produced by the model. We applied the Beta Autoregressive Moving Average (βARMA) model 

to the data and used the model to forecast the mortality rate for the next six periods. The βARMA 

model is a time series model developed from the Beta Regression model. The RStudio with R 

programming language is used to conduct the analysis. 

3.2. Time Series Plot and Model Identification 

Figure 3 shows the time series plot of Indonesia’s annual mortality rate data from the year 1960 

through 2020. From the figure, we could see that Indonesia’s mortality rate tends to decrease each 

year. We also provided the ACF and PACF plots of Indonesia’s annual mortality rate data in Fig. 

4. We could see that the ACF plot shows a gradually decreasing value, whereas the PACF plot 

shows the value cut off after lag one. This tells us that there is an Autoregressive characteristic in 

Indonesia’s annual mortality rate data with the order of one. 

 

FIGURE 3. Time Series Plot of Indonesia’s Annual Mortality Rate from 1960 through 2020 

https://data.worldbank.org/
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FIGURE 4. (a) ACF plot and (b) PACF plot of Indonesia’s Annual Mortality Rate Data 

3.3. The Best βARMA Model 

To find the best βARMA model, we constructed all βARMA models with the order less than or 

equal to 4. This means we constructed all possible βARMA models with the order of 𝑝 ∈ 0, … ,4 

and 𝑞 ∈ 0, … ,4. We used the βARMA model’s script that was made by [27]. All of the considered 

βARMA models and their AIC values are shown in Table 1. After constructing the models, based 

on the model selection criterion, we chose the model that produced the smallest AIC value as our 

best βARMA model. Therefore, we obtain βARMA (4,4) as our best βARMA model.  

TABLE 1. Considered βARMA models  

Model AIC Model AIC 

βARMA(0,1) -497.8532 βARMA(2,3) -1057.901 

βARMA(0,2) -500.84 βARMA(2,4) -1036.205 

βARMA(0,3) -502.3266 βARMA(3,0) -1134.625 

βARMA(0,4) -494.5602 βARMA(3,1) -1150.252 

βARMA(1,0) -904.6842 βARMA(3,2) -1154.27 

βARMA(1,1) -939.1526 βARMA(3,3) -1161.317 

βARMA(1,2) -936.1933 βARMA(3,4) -1138.121 

βARMA(1,3) -923.0501 βARMA(4,0) -1162.515 

βARMA(1,4) -906.8183 βARMA(4,1) -1160.515 

βARMA(2,0) -1046.522 βARMA(4,2) -1158.515 

βARMA(2,1) -1073.214 βARMA(4,3) -1165.263 

βARMA(2,2) -1075.76 βARMA(4,4) -1171.602 
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Table 2 shows the estimated parameters of βARMA (4,4). We could see that there are two 

parameters which are the parameter 𝜃2 and 𝜃3 with the Pr(> |𝑧|) or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 greater than the 

significance level of 0.05, thus, these two parameters are not significant. Therefore, we considered 

a new βARMA model, which is βARMA (4,4) without the parameter 𝜃2 and 𝜃3. The estimated 

parameters of the final βARMA (4,4) model are shown in Table 3. Table 3 shows that all the 

Pr(> |𝑧|)  or 𝑝 − 𝑣𝑎𝑙𝑢𝑒  of the parameters are very small, which means all parameters are 

significant. 

 

TABLE 2. Estimated Parameters of βARMA (4,4) Model 

Parameter Estimate Standard Error 𝒛 value 𝐏𝐫(> |𝒛|) 

𝛼 −2.8000 × 10−3 0.0000 70.6264 0.0000 

𝜙1 3.6479 3.5000 × 10−3 1039.0909 0.0000 

𝜙2 −5.0986 9.9000 × 10−3 513.3043 0.0000 

𝜙3 3.2363 9.6000 × 10−3 336.6918 0.0000 

𝜙4 −7.8620 × 10−1 3.2000 × 10−3 247.2305 0.0000 

𝜃1 −5.4890 × 10−1 7.2000 × 10−3 75.9135 0.0000 

𝜃2 8.5000 × 10−3 6.7000 × 10−3 1.2737 0.2028 

𝜃3 −9.7000 × 10−3 6.8000 × 10−3 1.4122 0.1579 

𝜃4 −7.6080 × 10−1 6.6000 × 10−3 114.8237 0.0000 

𝜑 1.2647 × 109 2.5044 × 108 5.0497 0.0000 

Log-likelihood 595.801 

AIC −1171.602 

TABLE 3. Estimated Parameters of Final βARMA (4,4) Model without Parameter 𝜃2 and 𝜃3 

Parameter Estimate Standard Error 𝒛 value 𝐏𝐫(> |𝒛|) 

𝛼 −2.7000 × 10−3 0.0000 76.7530 0.0000 

𝜙1 3.6606 3.5000 × 10−3 1043.0349 0.0000 

𝜙2 −5.1288 1.0000 × 10−2 513.9448 0.0000 

𝜙3 3.2589 9.7000 × 10−3 336.5534 0.0000 

𝜙4 −7.9120 × 10−1 3.2000 × 10−3 246.9305 0.0000 

𝜃1 −4.8640 × 10−1 5.4000 × 10−3 89.4436 0.0000 

𝜃4 −8.1110 × 10−1 5.1000 × 10−3 157.7763 0.0000 

𝜑 1.2647 × 109 2.5044 × 108 5.0497 0.0000 

Log-likelihood 595.801 

AIC −1171.602 
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From the analysis that has been done, we can conclude that the best βARMA model based on 

the smallest AIC value for Indonesia’s annual mortality rate data is shown by the following 

equation: 

 𝑔(𝜇̂) = 𝛼̂ + 𝜙̂1𝑔(𝑦𝑡−1) + 𝜙̂2𝑔(𝑦𝑡−2) + 𝜙̂3𝑔(𝑦𝑡−3) + 𝜙̂4𝑔(𝑦𝑡−4)

+ 𝜃1𝑟𝑡−1 + 𝜃4𝑟𝑡−4 

(20)  

where (𝛼̂, 𝜙̂1, 𝜙̂2, 𝜙̂3, 𝜙̂4, 𝜃1, 𝜃4) are the estimated parameters that are shown in Table 3. We also 

provided the plot of the fitted final βARMA (4,4) model for Indonesia’s annual mortality rate data 

as shown in Fig. 5. 

 

FIGURE 5. Fitted Final βARMA (4,4) model vs. Observed Data 

 

3.4. Forecasting Indonesia’s Annual Mortality Rate 

Using the best βARMA model that we have obtained, we then perform the forecasting for six 

periods ahead. The produced forecast is then compared to the six observations that have been 

separated from the data before. Table 4 shows the comparison between forecasted values and 

observed values. We also calculated the out-of-sample forecasting accuracy using the RMSE 

criterion and we obtained the RMSE value of 0.0001, which is quite small. Therefore we concluded 

that the final βARMA (4,4) model which is the βARMA(4,4) model without parameter 𝜃2 and 𝜃3 

could perform well and produce a fairly good result based on the small RMSE value. We also 

provided the plot of observed values and forecasted values of Indonesia’s annual mortality rate 

which is shown in Fig.6. 
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FIGURE 6. Observed Values vs. Forecasted Values of The Final βARMA (4,4) Model for 

Indonesia’s Annual Mortality Rate From 2010 through 2020 

 

4. CONCLUSIONS 

The mortality rate is a time series that has the values in the interval (0,1), thus it requires a time 

series model that could represent the changes in mortality rate from time to time. βARMA(p,q) 

model is one of the time series models that can be used to model mortality rates. This model is 

based on the class Beta Regression models. Parameter estimation could be carried out using the 

Conditional Maximum Likelihood Estimation method because in the estimation process the 

conditional density given the information of previous periods is required. Model selection could 

be done by choosing the model that produces the smallest AIC value. The best βARMA model is 

TABLE 4. Observed Values and Forecasted Values of The Final βARMA (4,4) Model 

Year Observed Values 
Forecasted values of Final βARMA 

(4,4) Model 

2015 0.006419 0.006413 

2016 0.006418 0.006398 

2017 0.006433 0.006388 

2018 0.006465 0.006381 

2019 0.006510 0.006373 

2020 0.006567 0.006362 

RMSE 0.000108 
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then used to forecast the mortality rate in the future. The accuracy of forecasting is measured using 

the RMSE criterion. 
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