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Abstract. In this study, we present a new mathematical model for the n+7 compartment smoking epidemic and

analyze its behavior using optimal control techniques. We examine the system’s basic properties and use Lyapunov

functions and Routh-Hurwitz criteria to perform stability analysis. Our results show that the system is globally and

locally asymptotically stable at the free equilibrium E0 when R0 < 1, and globally and locally asymptotically stable

at the endemic equilibrium E∗ when R0 > 1. We also conduct a sensitivity analysis to identify the model parameters

that significantly impact the reproduction number R0. Our goal is to identify optimal strategies for minimizing the

number of heavy smokers, maximizing the number of sick heavy smokers who receive hospital treatment, and

increasing the number of rich and poor heavy smokers who seek treatment at private and public smoking treatment

centers. We use Pontryagin’s maximum principle in continuous time to characterize the optimal controls, and we

confirm our theoretical findings through numerical simulations conducted using Matlab.
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1. INTRODUCTION

The WHO claims that smoking is a significant contributor to disease and early mortality

among smokers as well as discomfort, pain, and even poor health in those who are exposed to

tobacco smoke. Every year, smoking takes the lives of more than 8 million people globally,

including about 1.2 million passive smokers. According to the WHO, 36.7% of men and 78%

of women used tobacco in 2020, making up 22.3% of the world’s population [1]. Tobacco

production is responsible for the toll it takes on human lives and the irreparable damage it

causes to the planet. The WHO report entitled ”Tobacco: Poisoner of our planet” shows that the

production of tobacco causes more than 8 million deaths annually, the extinction of 600 million

trees, the clearing of 200,000 hectares of land, the depletion of 22 billion tonnes of water, and

the release of 84 million tonnes of C02 [2].

According to Dr. Ruediger Krech, Director of WHO’s Health Promotion Department, to-

bacco products that contain more than 7.5 billion tonnes of toxic substances are the largest

waste product in the world. Tobacco products contain more than 7,000 toxic chemicals that en-

ter our environment, making them the largest waste product on the planet. Additionally, every

year 4,500 billion cigarette filters end up in our oceans, rivers, soils, and beaches [3]. Smoking

harm extends beyond the environment and affects a variety of areas, including the economy,

mental health, and—most seriously—health. In addition to lung and stomach cancer, stroke,

and coronary heart disease, long-term tobacco use also leads to cancer and other chronic dis-

eases. For instance, smoking is linked to several cancers and a higher incidence of respiratory

disorders in children of smokers, as well as 90% of all cases of lung cancer, 75% of bronchitis

and emphysema, and 25% of ischemic heart disease in men over 65. The practice of tradi-

tional smoking is pervasive in many developing nations. According to the IARC (International

Agency for Research on Cancer), tobacco use causes 39% of bladder cancer cases in women

and 53% of cases in men. Additionally, it causes 75% of ductal cancers. It is believed that

chewing tobacco causes about 90% of oral cancer deaths in Southeast Asia. These facts have

solid documentation [4, 14].

A study conducted in Morocco in 2021 evaluated the epidemiological and economic impact

of smoking. The results showed that in 2019, smoking was responsible for 74,000 prevalent
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cases of ischemic heart disease, 4,227 new cases of lung cancer, and 12,800 premature deaths.

The economic cost of smoking in Morocco in 2019 was over 5 billion Dirhams, with direct

medical costs accounting for 60.9%, mortality costs at 33%, and productivity losses due to

morbidity at 6.1% [5].

Numerous studies have focused on the mathematical modeling of smoking to help reduce

the number of small and large smokers in continuous time, as described by differential equa-

tions [6, 7, 8], and in discrete time, as described by differential equations [9, 10]. M. LABZAI,

for example, developed a discrete time study of smoker dynamics and introduced a saturated

incidence rate in article [11], he added two elements that have been overlooked in most stud-

ies. These two components are a group of light smokers who quit smoking and a group of

heavy smokers who died as a result of diseases caused by excessive smoking. In [12] Nur

Emayasanita made use of a mathematical simulation of the smoking epidemic created by Gul

Zaman and colleagues. They suggest the following four best preventative measures: vaccina-

tions, treatment, and rehabilitation. [13] used a derived fractional Caputo operator to work on

a new non-integer time order. [27] is interested in a delayed smoking model with users rep-

resented as value objects, by taking delay into consideration as a bifurcation parameter and

examining the corresponding characteristic transcendental equation, its dynamics are examined

in terms of local stability and Hopf bifurcation. In order to generate smoking effects that are

not seen in deterministic form, [28] is connected to the stochastic smoking model.

We present a mathematical model of the smoking epidemic in this paper for the continu-

ous case, where we are interested in tracing the progression of the number with and without

the disease. We simulate the smoking epidemic in n+7 compartments that don’t treat potential

smokers (P), moderate smokers (A), heavy smokers (D), heavy smokers (Sk) with smoking-

related diseases (k = 1, ...,n), rich heavy smokers who join private smoking treatment centers

(Cpv), poor heavy smokers who join public smoking treatment centers (Cpb), sick smokers who

join hospitals (H), and those who have quit smoking (R). Throughout this research, we exam-

ine the model’s local and global stabilities in order to identify optimal strategies for reducing

the number of heavy smokers while increasing the number of heavy smokers who join private

treatment centers and hospitals to treat these smoking-caused diseases, as well as the number
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of rich and poor heavy smokers who join private and public treatment centers. To accomplish

this goal, we employ optimal control strategies associated with two types of control. The first

is represented by the media and efforts to encourage wealthy heavy smokers to attend private

treatment centers and poor people to attend public treatment centers. The second represents

disease-specific treatment by characterizing the index k (where k=1...n), the effort to encourage

heavy smokers to quit smoking with diseases.

The structure of this paper is as follows: in section 1, we introduce the suggested model and

list some fundamental properties. Following that, in Section 2, we examine regional and global

activities, parameter sensitivity issues, and a few numerical simulations. We present the optimal

control problem for the suggested model in Section 3 and provide some findings regarding the

existence of optimal controls. We also use the Portrygian maximum principle to describe this

optimal control. Finally, Section 4 includes a MATLAB-based numerical simulation. Finally,

Section 5 brings the essay to a close.

The population under investigation is divided into n+7 compartments in the continuous model

of P(t),A(t),D(t), Sk(t) for all k = 1, ...,n, Cpv(t) ,Cpb(t),H(t),R(t) disease that is presented in

this section:

2. MATHEMATICAL MODEL FORMULATION AND PROPERTIES OF BASE

2.1. Mathematical model.

The Compartment P: Potential smokers who do not use tobacco or use it only occasionally,

in a hidden way. This compartment is influenced by the rate of recruitment noted in Λ and is

influenced negatively by natural death µ and actual contact with moderate smokers in rate β

as well. It is assumed that actual contact with heavy smokers during specific social occasions,

such as those with parents, school, friends, and ceremonies, can help potential smokers pick up

smoking behavior and turn into heavy smokers.

Ṗ(t) = Λ−β
P(t)A(t)

N
−µP(t)

The Compartment A: is made up of light smokers. It is increased at rate β by potential

smokers who become moderate smokers, and it decreases at rate α,α1, ..,αn by smokers who

become heavy smokers with and without disease, as well as natural death µ .
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Ȧ(t) = β
P(t)A(t)

N
−

n

∑
k=1

αkA(t)− (α +µ)A(t)

The Compartment D: includes heavy smokers who do not have disease; the number of heavy

smokers increases at rate α and decreases at rate γ1 (γ1 is the rate of heavy smokers who enter

private treatment centers) and also decreases by rate γ2 ( γ2 is the rate of heavy smokers join

public treatment centers). Additionally, natural death X causes this compartment to shrink µ .

Ḋ(t) = αA(t)− γ1D(t)− γ2D(t)−µD(t)

The Compartment Sk: represents heavy smokers who have become ill as a result of their

smoking habits, which is known to be the leading cause of death from fatal diseases such as

lung cancer, mouth cancer, and stomach ulcers. Each Sk (with k = 1, ...,n) represents a disease,

such as S1 for lung cancer and S2 for stomach cancer. This compartment expands as the number

of heavy smokers increases at αk (for all k = 1, ...,n)Furthermore, at rate θk. this compartment

decreases due to natural death µ and deaths due to diseases caused by excessive smoking at rate

δ .

Ṡk(t) = αkA(t)−θkSk(t)− (µ +δk)Sk(t)

The Compartement Cpv: contains a large number of heavy smokers who use their wealth

to access private smoking treatment centers, which are often well equipped and offer quality

services. This compartment is increased by the γ1 rate and decreased by the λ1 rate representing

individuals treated in private treatment centers as well as natural death at the µ rate.

˙Cpv(t) = γ1D(t)− (λ1 +µ)Cpv(t)

The Compartement Cpb:contains people who cannot afford to join private centers and repre-

sents the number of heavy smokers who have joined public smoking treatment centers, which

do not always offer advanced treatment and are marked by a lack of poor quality facilities and

services, especially in developing countries. This compartment is increased by the γ2 rate and

decreases at the λ2 rate which represents people who have been treated in public treatment

centers as well as people who died naturally at the µ rate.

˙Cpb(t) = γ2D(t)− (λ2 +µ)Cpb(t)
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The Compartment H: the number of sick heavy smokers who go to the hospital for treatment

of tobacco addiction-related illnesses. It is increased by the θk rate and decreases by the λ3 rate

which represents individuals hospitalized for illness as well as natural death at the µ rate.

Ḣ(t) =
n

∑
k=1

θkSk(t)− (λ3 +µ)H(t)

The Compartment R: includes individuals who have quit smoking permanently. It increases

at λ1 and λ2 rates,, which corresponds to the recruitment of those who received treatment in

tobacco treatment centers, and decreases at the µ rate due to natural deaths.

Ṙ(t) = λ1Cpv(t)+λ2Cpb(t)+λ3H(t)−µR(t).

The population size is represented by N(t), which:

N(t) = P(t)+A(t)+D(t)+Sk(t)+Cpv(t)+Cpb(t)+H(t)+R(t),

and it is assumed to be Constant.

The directions of individuals among compartments are represented by directed arrows in Figure

1 as shown in the following diagram:

FIGURE 1 - Relations between the 7+n compartments P(t),A(t),D(t),Sk(t), Cpv(t),

Cpb(t),H(t),R(t)
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The dynamics of the model is governed by the differential equation system given by:

1



Ṗ(t) = Λ−β
P(t)A(t)

N −µP(t)

Ȧ(t) = β
P(t)A(t)

N −∑
n
k=1 αkA(t)− (α +µ)A(t)

Ḋ(t) = αA(t)− γ1D(t)− γ2D(t)−µD(t)

Ṡk(t) = αkA(t)−θkSk(t)− (µ +δk)Sk(t)

˙Cpv(t) = γ1D(t)− (λ1 +µ)Cpv(t)

˙Cpb(t) = γ2D(t)− (λ2 +µ)Cpb(t)

Ḣ(t) = ∑
n
k=1 θkSk(t)− (λ3 +µ)H(t)

Ṙ(t) = λ1Cpv(t)+λ2Cpb(t)+λ3H(t)−µR(t)

Where P(0)≥ 0, A(0)≥ 0, D(0)≥ 0, Sk(0)≥ 0, CPv(0)≥ 0,CPb(0)≥ 0,H(0)≥ 0, R(0)≥ 0

the given initial states.

2.2. Basic Properties: To establish that all solutions of the system with positive initial data

will remain positive for all time t > 0 and are bounded, the following theorem and lemma are

introduced.

a) Positivity of the model solutions:

Theoreme 1. If P(0) ≥ 0, A(0) ≥ 0, D(0) ≥ 0, Sk(0) ≥ 0, CPv(0) ≥ 0,CPb(0) ≥ 0,H(0) ≥

0, R(0) ≥ 0. The Solutions P(t),A(t),D(t),Sk(t),Cpv(t),Cpb(t),H(t),R(t) of system (1) are

positive for all t > 0.

Proof: It follows from the first equation of system (1) that:

Ṗ = dP
dt = Λ−β

P(t)A(t)
N −µP(t)

=⇒ dP(t)
dt +β

P(t)A(t)
N +µP(t) = Λ≥ 0
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=⇒ dP(t)
dt +(β A(t)

N +µ)p(t)≥ 0

We multiply the inequality by

exp(
∫ t

0
β

A(s)
N

+µds)

We obtain:
dP(t)

dt exp(
∫ t

0 β
A(s)

N +µds)+(β A(t)
N +µ)exp(

∫ t
0 β

A(s)
N +µds)P(t)≥ 0

so
d
dt
(P(t)exp(

∫ t

0
β

A(s)
N

+µds))≥ 0

Let’s integrate this inequality

P(t)≥ P(0)exp(−
∫ t

0
β

A(s)
N

+µds)

Then P(t) is positive. Similarly for the other equations we find

A(t) = A(0)exp(−
∫ t

0
β

P(s)
N
−

n

∑
k=1

(αk)−µds)≥ 0;

D(t)≥ D(0)e−(γ1+γ2+µ)t ≥ 0;

Sk ≥ Sk(0)e−(θk+µ+δk)t ≥ 0;

Cpv(t)≥Cpv(0)e−(λ1+µ)t ≥ 0;

Cpb(t)≥Cpb(0)e−(λ2+µ)t ≥ 0;

H(t)≥ H(0)e−(λ3+µ)t ≥ 0;

R(t)≥ R(0)e−µt ≥ 0;

b) Invariant region:

Lemma: The feasible region Ω defined by:

Ω = {P(t),A(t),D(t),Sk(t),Cpv(t),Cpb(t),H(t),R(t),P+A+D+Sk+Cpv+Cpb+H+R≤ Λ

µ
}

With the conditions P(0)≥ 0, A(0)≥ 0, D(0)≥ 0, Sk(0)≥ 0, CPv(0)≥ 0,CPb(0)≥ 0,H(0)≥ 0,

R(0)≥ 0.

Proof: We add the system equations (1) we find:

Ṅ =
dN
dt

= Ṗ+ Ȧ+ Ḋ+ Ṡk + ˙Cpv + ˙Cpb + Ḣ + Ṙ

dN
dt
≤ Λ−µN
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We integrate, we get:

N(t)≤ N(0)+Λt +
∫ t

0
−µN(s)ds

According to Gronwall’s lemma we have:

N(t)≤ N(0)exp(−µt)− Λ

µ
(1− exp(−µt))

Where N(0) represents the initial values of the total population. So limsupt−→+∞ N = Λ

µ
. This

implies that the region Ω a positively invariant set for system (1). So we only need to consider

the dynamics of the system on the set Ω. The first four equations of system (1) are independent

of the variables Cpb,Cpv,H and R. Therefore, the dynamics of the system of equations (1) is

equivalent to the dynamics of the system of equations:

2



Ṗ(t) = Λ−β
P(t)A(t)

N −µP(t)

Ȧ(t) = β
P(t)A(t)

N −∑
n
k=1 αkA(t)− (α +µ)A(t)

Ḋ(t) = αA(t)− γ1D(t)− γ2D(t)−µD(t)

Ṡk(t) = αkA(t)−θkSk(t)− (µ +δk)Sk(t)

3. STABILITY AND SENSITIVITY ANALYSIS OF MODEL PARAMETERS

In the next section, we will study system’s stability behavior at equilibrium with and without

tabac.

3.1. Local stability analysis. We analyze the local stability of the equilibrium points E0
eq and

E∗eq

3.1.1. Smoking-Free Equilibrium Point:

Theoreme 2. Equilibrium points without Smoking E0
eq(

Λ

µ
,0,0,0,0,0,0,0) of the system (2) is

asymptotically stable R0 < 1 and is unstable R0 > 1
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Proof: The Jacobian matrix at E0
eq is given by:

J(E0
eq) =


−µ −βΛ

Nµ
0 0

0 βΛ

Nµ
− (∑n

k=1 αk +(µ +α)) 0 0

0 α −(γ1 + γ2 +µ) 0

0 αk 0 −(θk +δk +µ)


The characteristic equation of this matrix is given by det(J(E0

eq)− ζ I4) = 0 , where I4 is an

identity matrix of order 4

det(J(E0
eq)−ζ I4) =−(µ +ζ )[(βΛ

Nµ
− (∑n

k=1 αk +(µ +α))−ζ )(γ1+γ2+µ +ζ )(θk +δk +µ +

ζ )] = 0 so,the eigenvalues of the characteristic equation of J(E0
eq) are:

ζ1 = µ

ζ2 =−(µ +α +
n

∑
k=1

αk)[1−R0]

ζ3 =−(γ1 + γ2 +µ)

ζ4 =−(θk +δk +µ)

where,

R0 =
βΛ

µN((∑n
k=1 αk)+α +µ)

Hence, if R0 < 1, all eigenvalues of the characteristic equation J(E0
eq) are negative real num-

bers. So, we conclude that Equilibrium point without disease E0
eq(

Λ

µ
,0,0,0,0,0,0,0) of system

(2) is asymptotically stable if R0 < 1 and is unstable if R0 > 1.

Remark: The value of R0 determines the possibility of an epidemic occurrence, which can

be calculated using the next generation matrix method as described in [26].

3.1.2. Point of equilibrium with smoking.

Theoreme 3. Equilibrium points with smoking E∗eq(P
∗,A∗,D∗,S∗k ,C

∗
pv,C

∗
pb,H

∗,R∗) of system

(2) is asymptotically stable if R0 > 1 and is unstable R0 < 1.
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Proof: The Jacobian matrix at E∗eq is given by:

E∗eq(
Λ

µR0
,

µN(R0−1)
β

,
αµN(R0−1)
β (γ1 + γ2 +µ)

,
αkµN(R0−1)
β (θk +δk +µ)

, γ1µN(R0−1)
β (λ1+µ)(γ1+γ2+µ) ,

γ2µN(R0−1)
β (λ2+µ)(γ1+γ2+µ) ,

∑
n
k=1 θkSk
λ3+µ

,
λ1C∗pv+λ2C∗pbλ3H∗

µ
)

where

R0 =
βΛ

µN((∑n
k=1 αk)+α +µ)

R0 is the basic reproduction number which measures the average number of newly infected

(smoker) individuals generated by a single infected (heavy smoker) individual in a population

of susceptible individuals. Then, the Jacobian matrix at E is given by E∗eq

J(E∗eq) =


−µR0 −(∑n

k=1 αk +(α +µ)) 0 0

µ(R0−1) 0 0 0

0 α −(γ1 + γ2 +µ) 0

0 αk 0 −(θk +δk +µ)


We notice that the characteristic equation ϕ(ζ ) of J(E∗eq)

ϕ(ζ ) = ζ
4 +a1ζ

3 +a2ζ
2 +a3ζ +a4

where,

a1 = γ1 + γ2 +θk +δk +µ(R0 +2),

a2 = (γ1 + γ2 +µ)(θk +δk +µ)+(γ1 + γ2 +2µ)µR0 +
βΛ(R0−1)

NR0
,

a3 = µR0(γ1 + γ2 +µ)(θk +δk +µ)+
(γ1 + γ2 +θk +2µ)βΛ(R0−1)

NR0
,

a4 =
(γ1 + γ2 +µ)(θk +µ)βΛ(R0−1)

NR0
.

applying the Routh-Hurwitz criterion [24, 25],we can determine the stability of the system.

Specifically, the system is locally asymptotically stable if a1 > 0,a2 > 0,a3 > 0,a4 > 0, and

a1a2 > a3a4. Therefore, the equilibrium point E∗eq(P
∗,A∗,D∗,Sk∗,C∗pv,C

∗
pb,H

∗,R∗) of system

(2) is asymptotically stable if R0 > 1.
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4. GLOBAL STABILITY

4.1. global stability without smoking. To prove that system (2) is globally asymptotically

stable, we use the Lyapunov function theory for equilibrium points with and without tobacco.

We show here the global stability of the tobacco-free equilibrium E0
eq.

Theoreme 4. Equilibrium points without smoking E0
eq of system (2) is globally asymptotically

stable if R0 ≤ 1 and is unstable R0 > 1.

Proof: We consider the following Lyapunov function:

V : Γ−→ R

V (P,A,D,Sk) = A

where Γ = {(P,A,D,Sk) ∈ Γ/P > 0,A > 0,D > 0,Sk > 0}.

Then the derivative of the Lyapunov function is given by:

dV
dt

=
dA
dt

= (
βΛ

µN
− (

n

∑
k=1

(αk)+α +µ))A

dV
dt

= (
n

∑
k=1

(αk)+α +µ)(R0−1)A

So,
dV
dt
≤ 0 if R0 ≤ 1 also

dV
dt

= 0 if A = 0.

Using Lasalle’s invariance principle [23], E0
eq is globally asymptotically.

4.2. global stability with smoking.

Theoreme 5. Equilibrium point with smoking E∗eq of system (2) is globally asymptotically stable

if R0 > 1.

Proof: We consider the following Lyapunov function:

V : Γ−→ R

V (P,A) = P−P∗ ln(
P
P∗

)+A−A∗ ln(
A
A∗

)
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where Γ = {(P,A,D,Sk) ∈ Γ/P > 0,A > 0} Then, the derivative of the Lyapunov function is

given by:

dV (P,A)
dt

= (−Λ(P−P∗)
PP∗

− β

N
(A−A∗))(P−P∗)+

β

N
(P−P∗)(A−A∗)

then,
dV (P,A)

dt
=−Λ(P−P∗)2

PP∗
≤ 0

and also,
dV (P,A)

dt
= 0 i f P = P∗.

Using Lasalle’s invariance principle [24], we can show that E∗eq is globally asymptotically stable.

4.3. Sensitivity analysis of R0. Sensitivity analysis can help identify the parameters that have

the most significant impact on the reproduction number R0, considering potential errors in data

collection and assumed parameter values. We use the approach of Chitnis et al [15] to calculate

the normalized forward sensitivity indices of R0 defined as:

γ
R0
n =

∂R0

∂n
∗ n

R0
.

We can note the sensitivity index of R0 with respect to the parameter n, which we can obtain

using the following equation:

R0 =
βΛ

µN((∑n
k=1 αk)+α +µ)

γ
R0
β

= 1

γ
R0
α =− α

(∑n
k=1 αk)+α +µ

γ
R0
∑

n
k=1 αk

=− ∑
n
k=1 αk

(∑n
k=1 αk)+α +µ

γ
R0
µ =− µ

(∑n
k=1 αk)+α +µ

−1.

We note that the basic reproduction number R0 is the most sensitive to changes in β . Indeed,

if β increases, R0 will also increase in the same proportion, and if β decreases, R0 will also

decrease. But µ , ∑
n
k=1 αk, and α will have an inversely proportional relation with R0. Therefore,

an increase in one of them will lead to a decrease in R0.
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4.4. numerical simulations: In this section, we present numerical simulations of model (1)

withdifferent parameter values and initial conditions. The total population is fixed at 17500, by

setting k = {1,2}.

4.4.1. Smoking-free equilibrium: We use and present some numerical simulations of the

system (1) to illustrate our results, choosing Λ = 1500,µ = 0.04,β = 0.03,γ1 = 0.05,γ2 =

0.05,α = 0.01,α1 = 0.02,α2 = 0.02,δ1 = 0.07,δ2 = 0.07,λ1 = 0.5,λ2 = 0.5,λ3 = 0.7θ1 =

0.05,θ2 = 0.05, and different initial values for each state variable, we have the smoking-free

equilibrium R0 = 0.7143 < 1.

In this instance, according to theorem (4), the smoking-free equilibrium E0 of system (1) is

globally asymptotically stable on Ω. (See figures)

Figure a

Figure b



N+7 COMPARTMENT SMOKING EPIDEMIC MODEL 15

Figure c

Figure d

Figure e
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Figure f

Figure g

Figure h



N+7 COMPARTMENT SMOKING EPIDEMIC MODEL 17

Figure i

From these Figures, using the different values of the initial variables P0,A0,D0,Sk,0,

Cpv,0,Cpb,0,H0 and R0, we obtained the following remarks:

Remarks:

-The number of potential smokers is increasing and approaching that of the population P0 '

3700 (see figure a)

-The number of moderate smokers decreases and converges to zero (see figure b)

-The number of heavy smokers is decreasing and approaching zero (see figure c)

-The number of heavy smokers who suffer from diseases such as lung cancer S1 and liver can-

cer S2 decreases and approaches zero (see figures d and e).

- The number of wealthy heavy smokers who join private smoking treatment centers decreases

from the beginning and converges to 0 (see figure f).

- Similarly, the number of poor heavy smokers who join public smoking treatment centers de-

creases at the beginning and converges to 0 (see figure g).

- The number of sick heavy smokers who reach the hospitals of decreases towards 0 (see figure

h).

-The number of recovered cases increases and then decreases and approaches zero (see figure i)

Therefore, the solution curves toward the equilibrium E0
eq(P0,0,0,0,0,0,0) when R0 < 1. Thus,

model (1) is globally asymptotically stable.

4.4.2. Point of equilibrium with smoking: Also, for Λ = 1500,µ = 0.04,β = 0.09,γ1 =

0.05,γ2 = 0.05,α = 0.02,α1 = 0.02,α2 = 0.02,δ1 = 0.07,δ2 = 0.07,λ1 = 0.5,λ2 = 0.5,λ3 =
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0.7,θ1 = 0.05,θ2 = 0.05,we have equilibrium point with smoking E∗eq, and R0 = 1.9286 > 1 In

this case, according to theorem (5), the equilibrium with smoking E∗ of system (1) is globally

asymptotically stable on Ω.(See Figures)

Figure a

Figure b
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Figure c

Figure d

Figure e

Figure f
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Figure g

Figure h

Figure i
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Remarks:

-The number of potential smokers increases and then decreases towards P∗ ' 1900 (see figure

a).

-The number of moderate smokers increases towards A∗ ' 7200 (see figure b).

-The number of heavy smokers decreases and increases at D∗ ' 1050 (see figures c)

-The number of heavy smokers who suffer from diseases such as lung cancer S1 and liver cancer

S2 decreases and then increases towards S∗1 ' 800 and S∗2 ' 800 respectively (see figures d and

e).

- The number of wealthy heavy smokers who join private smoking treatment centers decreases

in the early stages and converges to C∗pv ' 100 (See figure f)

- Similarly, the number of poor heavy smokers who join public smoking treatment centers

decreases in the early stages and converges toward C∗pb ' 100 (See figure g)

- The number of sick heavy smokers who reach the hospitals decreases towards H∗ ' 100 (see

figure h).

-The number of recovered cases decreases slightly and then increases towards R∗ ' 4300 (see

figure i).

Therefore, the solution curves toward the equilibrium E∗eq(P
∗,A∗,D∗,S∗1,S

∗
2,C
∗
pv,C

∗
pb,H

∗,R∗)

when R0 > 1. Thus, model (1) is globally asymptotically stable.

5. OPTIMAL CONTROL

The control strategy we adopt consists of a media and education awareness program,

treatment, and psychological support with follow-up. Our principal objective in adopting these

strategies is to reduce the number of smokers during the time steps t from 0 to T and also

minimize the cost expenditure in applying the three strategies in In this model, we include

the two controls u(t), and vk(t) such that u(t) consecutively represents the awareness program

through the media and the effort to encourage rich (poor) heavy smokers to turn to private

(public) treatment centers and vk(t) represents the disease-specific treatment by characterizing

by the index k, the effort to encourage heavy smokers diseases to join to hospitals, and the

psychological support with follow-up measures at time t. The controlled mathematical system

is thus given by the following system of differencial equations:
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3



Ṗ(t) = Λ−β
P(t)A(t)

N −µP(t)+ ε

3uD(t)

Ȧ(t) = β
P(t)A(t)

N −∑
n
k=1 αkA(t)− (α +µ)A(t)

Ḋ(t) = αA(t)− γ1D(t)− γ2D(t)−µD(t)− εuD(t)

Ṡk(t) = αkA(t)−θkSk(t)− (µ +δk)Sk(t)−VkSk

˙Cpv(t) = γ1D(t)− (λ1 +µ)Cpv(t)+ ε

3uD(t)

˙Cpb(t) = γ2D(t)− (λ2 +µ)Cpb(t)+ ε

3uD(t)

Ḣ(t) = ∑
n
k=1 θkSk(t)− (λ3 +µ)H(t)+∑

m
k=1VkSk

Ṙ(t) = λ1Cpv(t)+λ2Cpb(t)+λ3H(t)−µR(t).

Where P(0)≥ 0,A(0)≥ 0,D(0)≥ 0,Sk(0)≥ 0,Cpv(0)≥ 0,Cpb(0)≥ 0,H(0)≥ 0 and R(0)≥ 0.

The optimal control problem for minimizing the objective function is given by:

J(u,vk) = B1D(T )+B2

m

∑
k=1

Sk(T )+
∫ T−1

0
(B1D(t)+B2

m

∑
k=1

Sk(t)+
B3u2

2
+

∑
m
k=1Ckv2

k
2

)dt

where B1(t) ≥ 0,B2(t) ≥ 0, B3(t) ≥ 0,Ck(t) ≥ 0 are selected to assess the relative importance

of the cost of awareness programs, treatment programs, and follow-up counseling, respectively.

The goal is to find an optimal control u∗ and v∗k such that:

J(u∗,v∗k) = min
u,vk∈Uad

J(u,vk)

where Uad is the set of admissible controls defined by:

Uad = {(u(t),vk(t)),0≤ u(t)≤ 1,0≤ vk(t)≤ 1, for all t ∈ [0,T ] and k = 1, ..,n}.

5.1. Existence of optimal controls: The existence of optimal controls can be obtained by

using the result of Fleming and Rishel [16] (see Corollary 4.1).
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Theoreme 6. We consider the control problem with the system (2). There exists an optimal

control u∗,v∗k ∈Uad , with k = 1, ..,n such as:

J(u∗,v∗k) = min
u,vk∈Uad

J(u,vk)

If the following conditions are met:

(1) The set of controls and state variables is not empty.

(2) The set of controls Uad is convex and closed.

(3) The right-hand side of the system is bounded by a linear function in the state variables

and control variables. and control variables.

(4) Lagrange L(P,A,D,Sk,Cpv,Cpb,H,R,u,vk) for k = 1, ..,n of the objective function is

convex on Uad and there are constants a1,a2 ≥ 0 et η > 1 such as:

L(P,A,D,Sk,Cpv,Cpb,H,R,u,vk)≥ a1 +a2(|u|2, |vk|2)
η

2

Proof:

(1) To show that the set of control and state variable is not empty, we use a simple version

of an existence result in the simple version of existence result ([17] theorem 7.1.1).

Let Ṗ = FP(t,P,A,D,Sk,Cpv,Cpb,H,R),

Ȧ = FA(t,P,A,D,Sk,Cpv,Cpb,H,R),

Ḋ = FD(t,P,A,D,Sk,Cpv,Cpb,H,R),

Ṡk = FSk(t,P,A,D,Sk,Cpv,Cpb,H,R),

˙Cpv = FCpv(t,P,A,D,Sk,Cpv,Cpb,H,R)

˙Cpb = FCpb(t,P,A,D,Sk,Cpv,Cpb,H,R)

Ḣ = FH(t,P,A,D,Sk,Cpv,Cpb,H,R)

et Ṙ = FR(t,P,A,D,Sk,Cpv,Cpb,H,R)

where FP,FA,FD,FSkFCpv ,FCpb ,FH ,FR form the right-hand side of the system

of equations. Let u(t) = q1, vk(t) = pk, for some constants, and since

all parameters are constants and (P,A,D,Sk,Cpv,Cpb,H,R) are continuous, then

FP,FA,FD,FSkFCpv,FCpb,FH ,FR are also continuous.
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Moreover the partial derivatives FP
∂P ,

FP
∂A ,

FP
∂D ,

FP
∂Sk

, FP
∂Cpv

, FP
∂Cpb

, FP
∂H , FP

∂R ,
FA
∂P ,

FA
∂A ,

FA
∂D ,

FA
∂Sk

, FA
∂Cpv

, FA
∂Cpb

, FA
∂H , FA

∂R ,
FD
∂P ,

FD
∂A ,

FD
∂D ,

FD
∂Sk

, FD
∂Cpv

, FD
∂Cpb

, FD
∂H , FD

∂R ,
FSk
∂P ,

FSk
∂A ,

FSk
∂D ,

FSk
∂Sk

,
FSk

∂Cpv
,

FSk
∂Cpb

,

FSk
∂H ,

FSk
∂R ,

FCpb
∂P ,

FCpb
∂A ,

FCpb
∂D ,

FCpb
∂Sk

,
FCpb
∂Cpv

,
FCpb
∂Cpb

,
FCpb
∂H ,

FCpb
∂R ,

FCpv
∂P ,

FCpv
∂A ,

FCpv
∂D ,

FCpv
∂Sk

,
FCpv
∂Cpv

,
FCpv
∂Cpb

,
FCpv
∂H ,

FCpv
∂R , FH

∂P ,
FH
∂A ,

FH
∂D ,

FH
∂Sk

, FH
∂Cpv

, FH
∂Cpb

, FH
∂H , FH

∂R ,
FR
∂P ,

FR
∂A ,

FR
∂D ,

FR
∂Sk

, FR
∂Cpv

, FR
∂Cpb

, FR
∂H , FR

∂R , are all con-

tinuous.

So there exists a unique solution (P,A,D,Sk,Cpv,Cpb,H,R) satisfying the initial condi-

tions. Then the set of controls and state variables is nonempty.

(2) By definition, Uad is closed. For all controls u,vk,∈Uad with k = 1, ..,n and λ ∈ [0,1],

then λu+(1−λ )vk ≥ 0. Moreover, we notice that λu≤ λ and (1−λ )vk ≤ (1−λ ) so

λu+(1−λ )vk ≤ λ +(1−λ ) = 1

therefore

0≤ λu+(1−λ )vk ≤ 1

thus Uad is convex.

(3) From the system of differential equations, we have:

dN
dt
≤ Λ−µN

then

limsup
t−→+∞

N(t) =
Λ

µ
.

Therefore, all solutions of model (2) are bounded. So there are positive constants

B1,B2,B3,B4 B5 B6 B7 and B8 such that:

∀t ∈ [0,T ], P(t) ≤ B1, A(t) ≤ B2, D(t) ≤ B3, Sk(t) ≤ B4 for all k = 1, ...,n,

Cpv(t)≤ B5,Cpb(t)≤ B6,H(t)≤ B7,R(t)≤ B8.
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We consider:

(3)



FP = Ṗ(t)≤ Λ+ ε

3uD

FA = Ȧ(t)≤ β

N P(t)

FD = Ḋ(t)≤ αA(t)− εuB3

FSk = Ṡk(t)≤ αkA(t)− vkSk

FCpv = ˙Cpv(t)≤ γ1D(t)+ ε

3uD

FCpb = ˙Cpb(t)≤ γ2D(t)+ ε

3uD

FH = Ḣ(t)≤ ∑
n
k=1 θkSk(t)+∑

n
k=1 vkSk(t)

FR = Ṙ(t)≤ λ1Cpv(t)+λ2Cpb(t)+λ3H(t).

So we can write system (3) in matrix form:

F(t,P,A,D,Sk,Cpv,Cpb,H,R)≤ Λ̄+AX(t)+BU(t)

Where,

F(t,P,A,D,Sk,Cpv,Cpb,H,R) = [FP,FA,FD,FSkFCpv ,FCpb,FH ,FR]
T

Λ̄ = [Λ 0 0 0 0 0 0 0]T

X(t) = [P(t) A(t) D(t) Sk(t)Cpv(t)Cpb(t) H(t) R(t)]

U(t) = [u,vk]
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A =



0 0 0 0 0 0 0 0
β

N 0 0 0 0 0 0 0

0 α 0 0 0 0 0 0

0 αk 0 0 0 0 0 0

0 0 γ1 0 0 0 0 0

0 0 γ2 0 0 0 0 0

0 0 0 ∑
n
k=1 θk 0 0 0 0

0 0 0 0 λ1 λ2 λ3 0



B =



ε

3D 0

0 0

− ε

3D 0

0 −Sk

ε

3D 0
ε

3D 0

0 ∑k=1 Sk

0 0


It gives a linear function of the control vector and the state variable vector, so it is

possible to write:

||F(t,P,A,H,T r,T p,Q)|| ≤ ||Λ̄||+ ||A||||X(t)||+ ||B||||U(t)||

≤ ϕ +φ(||X(t)||+ ||U(t)||),

Where ϕ = ||Λ̄|| et φ = max(||A||, ||B||).

Therefore we see the right side is augmented by a sum of state vectors and control

vectors. So condition 3 is satisfied.

(4) It is clear that Lagrange L(P,A,D,Sk,Cpv,Cpb,H,R,u,vk) of the objective function is

convex on Uad , it remains to see that there are constants a1,a2 ≥ 0 et δ > 1 such as:

L(P,A,D,Sk,Cpv,Cpb,H,R,u,vk) = B1D(T ) + B2 ∑
m
k=1 Sk(T ) + B3u2

2 +
∑

n
k=1 Ckv2

k
2 ≥

a1 +a2(|u|2, |vk|2)
η

2 .
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The state variables are bounded, that is: a1 = 2supt∈[0,T ]{B1D(t)+B2 ∑
m
k=1 Sk(t)},

a2 = inft∈[0,T ]{
B3(t)

2 +
∑

n
k=1 Ck(t)

2 and η = 2.

Therefore it follows that

L(P,A,D,Sk,Cpv,Cpb,H,R,u,vk)≥ a1 +a2(|u|2, |vk|2)
η

2 .

5.2. Characterization of optimal controls. In this subsection, we apply the Pontryagin’s

maximum principle [18, 19, 20, 21, 22].We introduce the adjoint function to relate the system

of differential equations to the resulting in the formation of a Hamiltonian function.

This principle converts the problem of finding the control to optimize the objective function

with the initial condition, to finding the control to optimize Hamiltonian point by point.

Now we have the Hamiltonian H at time t defined by:

Ĥ(t) = B1D(T )+B2

n

∑
k=1

Sk(T )+
B3u2

2
+

∑
n
k=1Ckv2

k
2

+
8

∑
i=1

λi fi

Where fi is the right-hand side of the system of differential equations of the i th state variable.

Theoreme 7. given optimal controls U∗ = (u∗, et v∗k) and the solutions

P∗,A∗,D∗,S∗k ,C
∗
pv,C

∗
pb,H

∗,R∗ of the corresponding state system, there are adjoint func-

tions ξ1,ξ2,ξ3,ξ4,ξ5,ξ6,ξ7,ξ8 are satisfied these conditions:

∀k = 1, ...,n



ξ̇1 = (ξ2−ξ1)
βA
N −ξ1µ

ξ̇2 = (ξ2−ξ1)
βP
N −ξ2(∑

n
k=1 αk +α +µ)+ξ3α +ξ4αk

ξ̇3 = B1 +ξ1
ε

3u−ξ3(γ1 + γ2 +µ + εu)+ξ5(γ1 +
ε

3u)+ξ6(γ2 +
ε

3u)

ξ̇4 = B2−ξ4(θk +δk +µ + vk)+ξ7(θk + vk)

ξ̇5 = −ξ5(λ1 +µ)+ξ8λ1

ξ̇6 = −ξ6(λ2 +µ)+ξ8λ2

ξ̇7 = −ξ7(λ3 +µ)+ξ8λ3

ξ̇8 = −ξ8µ

With the conditions of transversality to time T:
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ξ1(T ) = 0

ξ2(T ) = 0

ξ3(T ) = B1

ξ4(T ) = B2

ξ5(T ) = 0

ξ6(T ) = 0

ξ7(T ) = 0

ξ8(T ) = 0

In addition, for t ∈ [0,T ], the optimal controls are given by:

u∗ = min(1,max(0,
(3ξ3−ξ6−ξ1−−ξ5)εD

3B3
))

v∗k = min(1,max(0,
(ξ4−ξ7)Sk

Ck
))

Proof:

The Hamiltonian at time t is given by:

Ĥ(t) = B1A(t)+A2D(t)+ B1u2
1

2 +
B2u2

2
2 + B3v2

2 +ξ1(Λ−β
P(t)A(t)

N −µP(t))

+ ξ2(β
P(t)A(t)

N −∑
n
k=1 αkA(t)− (α +µ)A(t)−u1A(t))

+ ξ3(αA(t)− γ1D(t)− γ2D(t)−µD(t)−u2D(t))

+ ξ4(αkA(t)−θkSk(t)− (µ +δk)Sk(t))+ξ5(γ2D(t)− (λ2 +µ)Cpb(t))

+ ξ6(γ2D(t)− (λ2 +µ)Cpb(t))+ξ7(∑
n
k=1 θkSk(t)− (λ3 +µ)H(t))

+ ξ8(λ1Cpv(t)+λ2Cpb(t)+λ3H(t)−µR(t)+u1A(t)+u2D(t)− vR(t))
for t ∈ [0,T ], the adjoint equations and the transversality conditions can be obtained using
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Pontryagin’s maximum principle in [17], such that:



ξ̇1 = ∂ Ĥ
∂P , ξ1(T ) = 0

ξ̇2 = ∂ Ĥ
∂A , ξ2(T ) = 0

ξ̇3 = ∂ Ĥ
∂D , ξ3(T ) = B1

ξ̇4 = ∂ Ĥ
∂Sk

, ξ4(T ) = B2

ξ̇5 = ∂ Ĥ
∂Cpv

, ξ5(T ) = 0

ξ̇6 = ∂ Ĥ
∂Cpb

, ξ6(T ) = 0

ξ̇7 = ∂ Ĥ
∂H , ξ7(T ) = 0

ξ̇8 = ∂ Ĥ
∂R , ξ8(T ) = 0

for t ∈ [0,T ] optimal controls u∗,v∗k can be solved from the optimality condition:

∂ Ĥ
∂u

= 0

∂ Ĥ
∂vk

= 0

∂ Ĥ
∂u

= B3u−ξ1
ε

3
D−ξ3εD+ξ5

ε

3
D+ξ6

ε

3
D = 0

∂ Ĥ
∂vk

=Civk−ξ4Sk +ξ7Sk = 0

u(t) =
(3ξ3−ξ6−ξ5−ξ1)εD

3B3

vk(t) =
(ξ4−ξ7)Sk

Ck

By the boundedness in Uadof the controls, it is easy to obtain u∗,v∗k .
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6. SIMULATION

The proposed optimal control strategy is obtained by solving the optimal system which

consists of nine differential equations, we take k = 1,2, and boundary conditions. optimality

system can be solved using an iterative method. Using an initial estimate for the control

variables u(t), and vk(t) with k = 1,2, the state variables,P,A,D,S1,S2, Cpv,Cpb,H, and R are

resolved forward and the adjoint variables ζi pour i = 1,2,3,4,5,6,7,8,9 are solved backward

at time steps t = 0 and t = T . If the new values of the state and adjoint variables are different

from the previous values, the new values are used to update u(t) et vk(t) for k = 1,2, and the

process is repeated until the system. The numerical solution of model (1) is executed using

Matlab with the following parameter values and of parameters and the initial values of the state

variable in table1.

Table 1: The parameters used for the model (1)

Figure a
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Figure b

Figure c

Figure d
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Figure e

Figure f

Figure g
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Figure h

Figure i

Under Strategy A, we aim to increase the number of heavy smokers who reach smoking treat-

ment centers and prevent them from becoming addicted to smoking. To achieve this, we apply

the control u, which involves implementing awareness programs, education, and information

campaigns for potential and moderate smokers to highlight the risks of smoking to their health

and finances. We also encourage heavy smokers to join public and private treatment centers.

Figure (a) shows a significant increase in the number of potential smokers with control, while

Figure (b) shows a significant decrease in the number of moderate smokers. Figure (c) shows

that the number of heavy smokers decreases from 39.8222 (without control u) to almost 2.7126

(with control u) at the end of the proposed control strategy. Figure (d) shows that the number

of wealthy heavy smokers joining private treatment centers increases from 53.7600 (without
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control u) to 488.2629 (with control u), while Figure (e) shows that the number of poor heavy

smokers joining public treatment centers increases to 488.2625.

Under Strategy B, we aim to encourage sick heavy smokers to join tobacco treatment hos-

pitals and relevant disease tracking programs. We choose two diseases, lung cancer and liver

cancer, to test the theoretical results. We use the controls v1 and v2, where v1 is for heavy

smokers S1 who suffer from lung cancer and v2 is for heavy smokers S2 who suffer from liver

cancer. Figure (f) shows that the number of heavy smokers who carry the disease (1) ”lung

cancer” decreases from 83.68572 (without control v1) to 45.5111 (with control v1) at the end of

the proposed strategy. Similarly, Figure (g) shows that the number of heavy smokers who carry

the disease (2) ”liver cancer” decreases from 69.73809 (without control v2) to 45.5111 (with

control v2) at the end of the proposed strategy.

For Strategy C, we aim to prevent smoking addiction, encourage aftercare treatment, and raise

awareness. To achieve this objective, we use three controls: u, v1, and v2. Control u promotes

awareness among potential and moderate smokers, encouraging heavy smokers to join public

and private aftercare treatment centers, while controls v1 and v2 encourage sick heavy smokers

to join treatment hospitals with follow-up. Figure (h) illustrates the increase in heavy smokers

joining hospitals when all three controls are applied, and Figure (i) shows a clear increase in

smoking cessation from nearly 9000 (without controls) to almost 11300 (with all three controls).

Consequently, the previously stated objective was successfully achieved.

Note: Based on Figure (i), it is evident that a combination of the three controls is more

effective than a single control.

7. CONCLUSION

In the conclusion section, the continuous modeling of smokers was presented to minimize

the number of heavy smokers and those suffering from smoking-related diseases. The stability

analysis for the equilibrium points with and without smoking was also performed. Two controls

were introduced: one involved an awareness program through education and media, treatment

and psychological support with follow-up, while the second control involved encouragement

and treatment. Optimum controls were characterized using the results of the control theory, and

the numerical simulation confirmed the effectiveness of the proposed control strategies.
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