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Abstract. Persistent homology is a new tool from algebraic topology, showing until nowadays a lot of success

when it comes to application in biology since this latest use metrics only for measuring similarities, Embedding

the geometric details and focusing on the global shape is the key point making the success of persistent homology

as an efficient topological data analysis tool. In this work we will be dealing with the following points to survey

our hypothesis: the flexibility-rigidity index, a classic method used to simulate molecule movements and flexible

behavior, when it comes to atomic rigidity functions. We will also analyze interesting patterns in the binding site of

the beta sheet generated from the pdb file 2JOX. We will be detecting and giving a simple description of different

patterns generated by using javaplex generating barcodes and linear statistical results as a summary statistics.

Keywords: flexibility-rigidity index; persistent homology; COILED SERINE; beta sheet; pdb file 2JOX.

2020 AMS Subject Classification: 55N31, 62R40.

1. INTRODUCTION

Until nowadays a protein is defined to be as the main building component of all cellular tis-

sues in all living organisms, this definition holds thanks to Anfinsen’s dogma [1] but facing a

real challenge regarding the complexity of the folding path of a protein, Analysis of protein
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structure and development of summary statistics to find an accurate structure-function relation-

ship have made an evolutionary steps during last decades thanks to the enormous available data

generated from Xray crystallography, the availability of data gives birth to a new paradigm

wich is ”the complexity of data” and computational topology seems to perfectly answer a lot

of questions [3], We can be sure from the XYZ distribution since all the configurations follow

physical laws, but we need a better way to link between atoms in a macroscopic level in order to

catch up the other aspects of a protein —involving persistent homology in detection and anal-

ysis of protein folding path was investigated using topological feature vector [3] The choice of

persistent homology comes from its capacity of neglecting metric details and capturing void,

cavities and holes at different scales by using a filtration parameter [11] [12] which is the truly

demanded function from the mathematical tools used in the analysis of protein structure and

binding sites. The majority of the mathematical models used to study protein characteristics

such as flexibility, folding and structure are geometrically based ones which level up the com-

plexity of the algorithms, we mention several methods to compute those network metrics such as

VisANT [10], CentiScaPe [2], CentiLib [4] and Visone [5], but all these models and tools can’t

catch up the dynamical nature of the protein which is done perfectly when using the filtration

parameter [5] [17] [18].

In this work we will analyze the topology structure of COILED SERINE, and giving a sub-

stitute of the optimal characteristic distance that can be used in the flexibility-rigidity index

(a classic method used to simulate molecule movements and flexible behavior, when it comes

to atomic rigidity functions). We will also analyze interesting patterns in the binding site of

the beta sheet generated from the pdb file 2JOX and will be detecting and giving a simple de-

scription of different patterns generated by using javaplex generating barcodes and persistent

diagrams as a summary statistics. We will witness through the results, the dynamical nature of

this parameter, the protocol starts with a point cloud, topology gives us the ability to hide the

algebraic invariant which comes out with a final shape, the elements we will be filtering are

called homology groups, two shapes or in a better axiomatic way a main level of the previously

defined (protein) called secondary structure is investigated, in a first sight ”the beta sheet” and
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the ”alpha helix” will be reconstructed, the observations we will be using statistics on to visual-

ize a previously theoretically justified parameter (FRI) are the (x,y) couples indicating the life

time of each homology group, we will reduce dimensions until getting our XY graph.

This paper is organized in four sections: firstly an introduction (see section 1). Secondly, in

section 2 we summarize the mathematical material required, especially the persistent homology

tools. In section 3, we present all details of our topological approach to analyze the COILED

SERINE protein structure. Finally, in section 4 we make some conclusions and discuss some

further possible research issues.

2. MATHEMATICAL BACKGROUND

As mentioned here above, in this section we will summarize the tools that will be used in

our topological view point to approach the structure of a COS-1 cell protein. We will give the

keynotes of the notion of simplicial homology, and give more details about persistent homology.

For more details about simplicial homology we refer the reader to [14]. The reference [11]

and [9] are considered, by almost all topological data analysts, elementary and unavoidable to

learn more about persistent homology.

2.1. Simplicial homology. Homology is the branch of algebraic topology making the comput-

ing part of it a true realization, the main application is dimentionality reduction via interesting

tools such as persistent homology.

Definition 1. A p− dimensional simplex (or p− simplex σ p = [e0,e1, ...,ep] is the smallest

convex set in a Euclidean space Rm containing the p+1 points e0, ...,ep:

∆
p = {(t0, ..., tp) ∈ Rp+1 :

p

∑
i=0

ti = 1 and ti ≥ 0 for all i = 0, ..., p}

FIGURE 1. Illustration of p-simplices for p= 0, 1, 2, 3.
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Definition 2. Any simplex spanned by a subset of e0, ...,ep is called face of the p− simplex

from the previous figure, a face of a tetrahedron is a triangle, it can also be the union of

triangles.

Definition 3. A simplicial complex K is a finite set of simplices satisfying the following condi-

tions:

(1) For all simplices A ∈ K with α a face of A, we have α ∈ K.

(2) A,B ∈ K⇒ A,B are properly situated.

FIGURE 2. collection of simplices that do not form a simplicial complex

FIGURE 3. A well defined simplicial complex

Definition 4. A p-chains is a formal sum

c =
Np

∑
i=1

ciσ
p
i

where σ
pi
i are p-simplicies in K and ci ∈ Z.

We define (cp + bp)(σ
p) = cp(σ

p) + bp(σ
p), this induces over the set of p− chains the

structure of a free abelien groupe denoted Cp(K )

Definition 5. The boundary operator is a homomorphism

∂p : Cp(K)→Cp−1(K)
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well defined as level of generator as follows: For any p-simplex, σ = [e0,e1, · · · ,ep], we asso-

ciate the (p−1)-chain

∂σ =
p

∑
i=0

(−1)i[e0,e1, ..., êi, ...,ep]

where êi is omitted.

Thus, we obtain this chain complex

0
i
↪→Cp(K )

∂p−→ Cp−1(K )
∂p−1−→ ...

∂1−→C0(K )
∂0−→ 0

where ↪→ denotes the inclusion map. Elements of Zp(K ) = ker∂p are called the p-cycles, while

those of Bp(K ) = Im∂p+1 are called a boundaries. The following fundamental result states the

any boundary is a cycle. Indeed:

Theorem 1. The boundary of a boundary vanishes, that is,

∂p ◦∂p+1 = 0

so we have Im(∂ )⊂ Ker(∂ )

The p-th simplicial homology group is defined to be the quotient group

Hp(K ) = Zp/Bp.

It measures the obstruction for a cycle to be a boundary. The p− th Betti number is its rank:

βp = rank(Hp).

For any topological space X , one way to define its homology is the following: Firstly one

have to call a p-simplex of X , any continuous map

σ : ∆
p→ X .

Then denote Kp(X) the Z-module spanned by this p-simplicies. By this approach, one may as-

sociate to any topological space X , a simpicial complex K (X), unique up to homoemorphism.

Secondly, one have to define the faces

λp : ∆
p→ ∆

p−1,
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by putting

λp[e0,e1, . . . ,ei, . . . ,ep] = [e0,e1, . . . , êi, . . . ,ep],

where êi is omitted. And finally one have to define the boundaries on ∂pKp(X)→Kp−1(X),

as follows:

∂pσ := σ ◦λp.

Hence the simplicial homology of X , none other than that of Kp(X). Mathematically speaking

Hp(X) := Hp(Kp(X)).

The simplicial homology of topological space is known to be a homotopical invariant, In other

word two homotopic topological spaces, have the same homology. The inverse is known to be

in general false, however it can be used to prove that two topological space are not homotopic,

whenever the have not the same homology. The key contribution of the simplicial homology

is to compute the number of holes of a given dimension for a topological spaces. Connected

components is the case of dimension 0. For example

• for a point: H0(pt) = Z, while Hp(pt) = 0 for p > 0;

• for a sphere: H0(Sn) = Hn(Sn) = Z, while Hp(Sn) = 0 for all other p;

• for a torus: H0(T ) = Z,H1(T ) = Z⊕Z,H2(T ) = Z, while Hp(Sn) = 0 for all other p.

2.2. Persistent homology. Theoretically, the term persistence is for the first time introduced

in [10]. It was describing an abstract definition as a natural extension of homology on filtered

simplicial complexes. For applied purposes persistent homology is working as a statistical tool

destined to rebuild the manifold supporting the point cloud already mentioned in the introduc-

tion, the manifold is the hidden space from which data has been extracted. the result making

computing part a true realization is that persistent homology of filtered complex is nothing but

the regular homology of a graded module over a polynomial ring [1]. Another interesting and

explicit description of persistent homology via visualization of barcodes can be found in [9].

We suggest here a concise precise definition via classification theorem:
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Remark 1 (Persistence modules). We apply the ”homology functor” to the filtered chain com-

plexes [11], so we get our ”homology groups” category, which can be viewed as:

0
i
↪→ Hp(K )

∂p−→ Hp−1(K )
∂p−1−→ ...

∂1−→ H0(K )
∂0−→ 0

where ↪→ denotes the inclusion map.

For a finite persistence module C with filed F coefficients

H∗(C;F)∼=⊕ixti.F [x]⊕ (⊕ jxr j .(F [x]/(xS j .F [x]))),

that are the quantification of the filtration parameter over a field. A clear description can be

found in [13].

Definition 6. The p-persistence k-th homology group

H l,p
k = Zl

k/(B
l+p
k ∩Zl

k)

well defined since Bl+p
k and Zl

k are subgroups of Cl+p
k

To visualize efficiently the method one need to use metrics, for that aim let’s define a metric

on our topological space:

Definition 7. The open vietoris-rips complex V Rr(X) is the simplicial complex with vertices the

points of X and p− simplicies the subsets of X with diameter less than r

FIGURE 4. A vietoris Rips illustration



8 ZAKARIA LAMINE, MOHAMMED WADIA MANSOURI, MY ISMAIL MAMOUNI

the lifetime of each homology group, which means the algebraic length of intervals (l, p) to-

gether with the values of k can be summarized and visualized using barcodes, since R is the

perfect set to be describing an interval for analytical purposes, one needs to define homology on

vector spaces to be able to use a field F , this may gives a clear definition ready to be exploited

for applied purposes.

Definition 8. A barcode is a multiset of intervals in R, filling the previous description.

FIGURE 5. illustration of the birth and the death of a data through barcodes

visualization

If our topological space X is a totaly bounded metric, one can write the barcode as:

barcV R
k (X ,F) to separate interleaving components one also needs to calculate distance between

barcodes, this gives the following definition:

Definition 9. Giving the decomposition:

⊕Ix := (b(x),d(x))

of the persistent module, the set of R2 points (b(x),d(x))

is the persistent diagram of the barcode (l, p)

To be able to reattach intervals so the continuous property of the filtration can be filled,

one needs to use a distance on the set of persistence diagrams, one way to do it is by using

Wasserstein distance.
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FIGURE 6. A persistent diagram for two first homologies.

As we can remark from the figure 5 each barcode can be represented by a persistent diagramme.

Definition 10. Giving two diagrams Dgmk(F) and Dgmk(G) the (p,q)-Wasserstein distance is:

W(p,q)(Dgmk(F),Dgmk(G)) = in fM( ∑
x∈Dgmk(K(F))

((|x−M(x)|))p,q)
p
q

where M is a bijection defined on the points of the diagonal.

The data often comes with noise since we sample from an unknown space (a probability

distribution), for that reason an interesting proposition to survey and correct final results when

comes the computing part is the stability theorem.

Theorem 2. Let f ,g : K−→ R be monotone functions. Then

Wp(Dgmk( f ),Dgmk(g))≤ | f −g|p

for a homology dimension k we have:

Wp(Dgmk( f ),Dgmk(g))p ≤ ∑
dim(σ)∈k,k+1

| f (σ)−g(σ)|p

One reason the previous theorem is called stability theorem is the contractibility of the

wasserstein distance, this guarantee theoritically the mapping between data and associated per-

sistent diagrams is a well defined homeomorphism.
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3. TOPOLOGICAL DATA ANALYSIS OF THE PROTEIN

The most popular way TDA is exploited is for clustering purposes through persistent homol-

ogy since this was the immediate extension of applied statistics in TDA, this comes from the

intrinsic property of a point cloud, even said the axiomatic presentation seems to hide greater

strategies [15], the field of application making until nowadays a great success is molecular

biology since this latest doesn’t fit into geometric representations when comes serious investi-

gations or interesting behaviours such as flexibility and folding of proteins, plus the extremely

expensive and complicated computation power needed, an interesting application is the protein

binding analysis [16]. before we present parameters used to generate a suitable filtration one

needs to comprehend in depth the notion of a protein, what is making it such an interesting

concept and how modern models has been shaped through accumulation of interesting results

and surveys, we need to mention that with the evolution in mathematical tools and computa-

tion power a lot of theoretical hypothesis made it to a well defined quantified results, the first

step to protein structure definition and analysis start with a nobel prize in 1972 for his work

on the connection between the amino acid sequence and the biologically active conformation,

CHRISTIAN ANFINSEN gives to this conformation the first and last definition of a protein as

a concept as well as a hypothesis to be investigated, which means all the researches made in

proteins analysis are about questioning between the amino acid sequence and the active con-

formation, we must wait until 1994 when critical assessment of structure prediction becomes a

true valued enterprise, the challenge starts when the relation structure,prediction takes place, the

only way to do the calculations was through quantum mechanics which is not a sustainable way,

for that reason after gathering an interesting amount of data the only way to complete databases

was through dealing with the structure¼prediction question, this demanded a comprehension

of the folding path, then naturally rises the works and results on protein flexibility and rigidity

using mathematical statistical methods rather than experimental geometric ones, we cite [6] [7],

for more enlightenment through an interesting detailed investigation of topologyfunction rela-

tionship paradigm of proteins.

3.0.1. Topological fingerprints of alpha helix and beta sheet. This section is devoted to an

application part, the protocol is statistical inference for observations that are barcodes with the
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aim to derive a comparison answering if the topological method gives the same result as the

geometrical one, we will be using existing data from the freely protein data bank existing on

the net, then we will smoothly be reading results as any statistical study, rearranging data will

take place when barcodes seems noisy and difficult to compute, we will consider the Gaussian

noise to set up our point cloud data set then an accumulated bar lengths to define the topological

method in aim to make visual comparison.

To analyze an alpha helix structure, we download a protein of PDB ID: 1COS which can be

viewed as an alpha helix chain with 30 residues. In the all-atom model, atoms are considered

the same, each atom is associated with the same radius in the distance based filtration. The

stream will be constructed for the point cloud data which is the xyz coordinates of the all atom

representation. The size is not too large to choose a landmark selector, so we will simply build

a Vietoris-Rips stream. We can choose a better filtration but for the limited computation power

we stick with the value of 8. In this case a Vietoris-Rips simpicial complex is largely sufficient

to decipher the topological fingerprints (a small data set) so their is no need to use a landmark

selector, which can be seen in the code shown below.

>> s i z e ( ecos )

ans =

696 3

>> max dimens ion = 3 ;

>> m a x f i l t r a t i o n v a l u e = 8 ;

>> n u m d i v i s i o n s = 1000 ;

>> s t r e a m = a p i . P l ex4 . c r e a t e

V i e t o r i s R i p s S t r e a m ( ecos , max dimension ,

. . . m a x f i l t r a t i o n v a l u e ,

n u m d i v i s i o n s ) ;
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>> n u m s i m p l i c e s = s t r e a m . g e t S i z e ( )

n u m s i m p l i c e s =

3259289

>> p e r s i s t e n c e = a p i . P lex4 . g e t

M o d u l a r S i m p l i c i a l A l g o r i t h m ( max dimension ,

2 ) ;

>> o p t i o n s . f i l e n a m e = ’ c o i s ’ ;

>> o p t i o n s . m a x f i l t r a t i o n v a l u e

= m a x f i l t r a t i o n v a l u e ;

>> o p t i o n s . max dimens ion = max dimens ion

− 1 ;

>> o p t i o n s . s i d e b y s i d e = t r u e ;

>> p l o t b a r c o d e s ( i n t e r v a l s , o p t i o n s ) ;

FIGURE 7. The all-atom representation of an alpha helix
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We obtain the topological representation of our data in the form of a barcode, which can be

called a topological fingerprints.

FIGURE 8. alpha helix related topological fingerprints

The β0 bars reveal the bond length information, the filtration starts by identifying connected

components, growing balls continue until they intersect leaving behind them the bond length

information, starting then by identifying the 1-dimensional holes. physically, for protein mole-

cule, the bond length is between 1 to 2 Å, in order to get an adequate filtration the bond length

is reflected in the distance based filtration.

β1 and β2 are due to the loop, hole and void type of structures (it is difficult to directly decipher

this high dimensional topological information).

To detect more topological details of the helix structure, we utilize the CG with each amino

acid represented by its Cα atom. The simplices are constructed which is helpful for the detec-

tion of the helix structure So the corresponding barcode is simplified. As the last construction a

Vietoris-Rips stream is largely sufficient to decipher the topological features of our data which

is a 18 points in a 3-dimensional space. A part of the Matlab© code is shown below.



14 ZAKARIA LAMINE, MOHAMMED WADIA MANSOURI, MY ISMAIL MAMOUNI

>> l o a d ecos1

>> s i z e ( ecos )

ans =

18 3

>> max dimens ion = 2 ;

>> m a x f i l t r a t i o n v a l u e = 2 3 ;

>> n u m d i v i s i o n s = 1000 ;

>> s t r e a m = a p i . P l ex4 . c r e a t e V i e t o r i s R i p s S t r e a m

( ecos , max dimension , . . .

m a x f i l t r a t i o n v a l u e , n u m d i v i s i o n s ) ;

>> o p t i o n s . f i l e n a m e = ’ c o i i s 2 ’ ;

>> o p t i o n s . m a x f i l t r a t i o n v a l u e =

m a x f i l t r a t i o n v a l u e ;

>> o p t i o n s . max dimens ion = max dimens ion − 1 ;

>> p e r s i s t e n c e = a p i . P lex4 . g e t

M o d u l a r S i m p l i c i a l A l g o r i t h m ( max dimension , 2 ) ;

>> o p t i o n s . s i d e b y s i d e = t r u e ;

>> i n t e r v a l s = p e r s i s t e n c e . c o m p u t e I n t e r v a l s

( s t r e a m ) ;

>> p l o t b a r c o d e s ( i n t e r v a l s , o p t i o n s ) ;
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FIGURE 9. CG representation of an alpha helix generated from a protein of pdb

ID 1COS

FIGURE 10. fingerprint of CG representation of an alpha helix generated from

a protein of pdb ID 1COS

As we’ve already mentioned in the literature, all these barcodes are significant they can hide

a tremendous information about our level of structure or the result of a particular configuration

..., it is up to us to catch the topological meaning of these bars in order to find accurate statistical

tests, for this aim, we will calculate the helix homology, but this time we will be slicing a piece

of 4 Cα atoms from the back bone and study its persistent homology behavior, then one more

Cα atom is added at a time. We repeat the process as the figure shows:
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FIGURE 11. Each 4 carbon atoms represent one dimensional loop

This time it can be seen clearly that each four Cα atoms in the alpha helix form a one-

dimensional loop, corresponding to a β1 bar. By adding more Cα atoms, more loops are created

and more β1 bars are obtained. Finally, 16 residues in the alpha helix produce exactly 4 loops

as seen in Fig. 4.4. In the case of beta sheets things still similar to the alpha helix, in the all-

atom representation, the generated barcode has a complicated pattern due to excessively many

residual atoms The barcode of the CG model, on the other hand, is much simpler with only 7

individual β1 bars. A part of the matlab code is shown below.

FIGURE 12. An all-atom representation of the beta sheet structure generated

from PDB 2JOX
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>> l o a d f i n b e t a

>> max dimens ion = 2 ;

>> m a x f i l t r a t i o n v a l u e = 5 ;

>> n u m d i v i s i o n s =1000

n u m d i v i s i o n s =

1000

>> s t r e a m = a p i . P l ex4 . c r e a t e

V i e t o r i s R i p s S t r e a m ( b e t i 0 0 1 ,

max dimension , . . .

m a x f i l t r a t i o n v a l u e , n u m d i v i s i o n s ) ;

>> n u m s i m p l i c e s = s t r e a m . g e t S i z e ( )

n u m s i m p l i c e s =

149776

>> p e r s i s t e n c e = a p i . P lex4 . g e t

M o d u l a r S i m p l i c i a l A l g o r i t h m ( max dimension ,

2 ) ;

>> i n t e r v a l s = p e r s i s t e n c e . c o m p u t e I n t e r v a l s

( s t r e a m ) ;

>> o p t i o n s . f i l e n a m e = ’1 be t ’ ;

>> o p t i o n s . m a x f i l t r a t i o n v a l u e =

m a x f i l t r a t i o n v a l u e ;

>> o p t i o n s . max dimens ion = max dimens ion

− 1 ;

>> o p t i o n s . s i d e b y s i d e = t r u e ;

>> p l o t b a r c o d e s ( i n t e r v a l s , o p t i o n s ) ;
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FIGURE 13. Topological fingerprint of the all-atom representation of the beta

sheet structure generated from PDB 2JOX

For the Coarse grained model we consider only the alpha carbon atoms, to catch up the

structure of the backbone we will be constructing a Vietoris-Rips stream.
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FIGURE 14. Backbone of the beta sheet structure generated from PDB 2JOX

>> l o a d b e t y

>> s i z e ( b e t i 0 1 )

ans =

24 3

>> max dimens ion = 2 ;

>> m a x f i l t r a t i o n v a l u e = 2 0 ;

>> n u m d i v i s i o n s =1000

n u m d i v i s i o n s =

1000

>> s t r e a m = a p i . P l ex4 .

c r e a t e V i e t o r i s R i p s S t r e a m

( b e t i 0 1 , max dimension , . . .

m a x f i l t r a t i o n v a l u e , n u m d i v i s i o n s ) ;

>> n u m s i m p l i c e s = s t r e a m . g e t S i z e ( )
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n u m s i m p l i c e s =

410

>> p e r s i s t e n c e = a p i . P lex4 . g e t

M o d u l a r S i m p l i c i a l A l g o r i t h m ( max dimension , 2 ) ;

>> i n t e r v a l s = p e r s i s t e n c e . c o m p u t e I n t e r v a l s

( s t r e a m ) ;

>> o p t i o n s . f i l e n a m e = ’ be t ’ ;

>> o p t i o n s . m a x f i l t r a t i o n v a l u e =

m a x f i l t r a t i o n v a l u e ;

>> o p t i o n s . max dimens ion = max dimens ion − 1 ;

>> o p t i o n s . s i d e b y s i d e = t r u e ;

>> p l o t b a r c o d e s ( i n t e r v a l s , o p t i o n s ) ;

FIGURE 15. barcode for the coarse grained model for beta sheet generated from

the protein of pdb ID 2JOX

First, as the filtration begins, adjoined Cα atoms in the same strand form 1-simplex. After

that, adjacent Cα atoms in two different strands connect with each other as the filtration contin-

ues, which leads to one-dimensional circles and β1 bars. The further filtration terminates all the

β1 bars. There is no β1 bar in the CG representation of beta sheet structures.

As mentioned in the literature. We assume that the four levels are well defining the full structure

of the main building component (protein) and we let our protocol catch up the results.
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3.0.2. Parameters used to generate a suitable filtration. Proteins possess an intrinsic flexibil-

ity that allows them to function through molecular interactions within the cell, among cells and

even between organisms. Many models have been proposed such as the molecular non-linear

dynamic (MND) and flexibility-rigidity index (FRI) to analyze protein flexibility [8], the fun-

damental assumption of these methods is that. MND and FRI not only offer protein flexibility

analysis, but also provide correlation matrix based filtration for the persistent homology anal-

ysis of proteins, An easy example defining the distance matrices for persistent homology uses

can be found in [9]. One of the techniques that are utilized in the present flexibility analysis

is Molecular non-linear dynamics: we denote the coordinates of atoms in the molecule studied

as r1, r2, . . . ,ri, . . . ,rN , where ri ∈ R3 is the position vector of the jth atom. The Euclidean dis-

tance between ith and jth atom ri j can be calculated. We can easily construct our topological

connectivity matrix serving as the input point cloud for our ”barcode statistical inference” with

monotonically decreasing radial basis functions. The general form is:

ci j = ωi jΦ(ri j,ηi j)

where ωi j is associated with atomic types, ηi j is the atomic-type related characteristic distance

and Φ(ri j,ηi j) is a radial basis correlation kernel.

A generalized exponential kernel has the form Φ(r,η) = e−(r/η)k
, k > 0. And the Lorentz

type of kernels is: Φ(r,η) = 1
1+(r/η)ν , ν > 0.

The parameters k, ν , and η are adjustable. We usually search over a certain reasonable range

of parameters to find the best fitting result by comparing with experimental B-factors [6]. It is

assumed that each particle in a protein can be viewed as a non-linear oscillator and its dynamics

can be represented by a non-linear equation. The interactions between particles are represented

by the correlation matrix (ci j). Therefore, for the whole protein of N particles, we set a non-

linear dynamical system as:

du
dt

= F(u)+Eu

Where u = (u1,u2, ...,ui, ...,uN)
T is an array of state functions for N non-linear oscillators (T

denotes the transpose),

u j = (u j1,u j2, ...,u ji, ...,u jN)



22 ZAKARIA LAMINE, MOHAMMED WADIA MANSOURI, MY ISMAIL MAMOUNI

is an n-dimensional non-linear function for the jth oscillator, F(u) = (F(u1),F(u2), ...,F(uN)
T

is an array of non-linear functions of N oscillators, and

E = εC
⊗

Γ

Here, ε is the overall coupling strength, C =Ci ji, j=1,2,...,N is an NN correlation matrix, and Γ is

an n×n linking matrix.

The transverse stability of the MND system gradually increases during the protein folding from

disorder conformations to their well-defined natural structure.

3.1. persistent homology analysis of the characteristic distance. We consider a folding

protein that constitutes N particles and has the spatio-temporal complexity of R3N ∗R+. We

Assume that our system can be described as a set of N nonlinear oscillators of dimension RnN ∗

R+, where n is the dimensionality of a single nonlinear oscillator. One of the keys to MND

model is the characteristic distance η to weight the distance effect in the geometry to topology

mapping [6] [7], as shown in equations. Φ(r,η) = e−(r/η)k
and Φ(r,η) = 1

1+(r/η)ν . Persistent

homology can provide a quantitative prediction of optimal characteristic distances in MND and

FRI. The optimal characteristic distance varies from protein to protein. An adequate filtration

process is the essence of persistent homology analysis, for that a filtration matrix based on a

modification of the correlation matrix of MND is proposed:

Mi j =

 1−Φ(ri j,ηi j) if i 6= j

0 if i = j.

Where 0 6 Φ(ri j,ηi j) 6 1 is defined previously .with using the exponential kernel with parame-

ter K = 2. When characteristic length varies, the formation of simplicial complex or topological

connectivity changes too. To illustrate this point, a protein of pdb ID 1COS is used as an exam-

ple. The related persistent connectivity patterns in term of β1 are depicted in Fig. 4.9.
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FIGURE 16. Comparison of β1 behaviors in different filtration

Comparison of β1 behaviors in different filtration settings for protein 1COS Cα point cloud

data. Distance based filtration is shown in the first barcod representation in figure 4.12. The

correlation matrix based filtration with exponential kernel (κ = 2) is used in the second, the

third and the fourth. The η is chosen to be
A

deg, 6Å and 16Å in the second, third and fourth

barcode representations, respectively. The β1 bar patterns are very similar but have different

persistent values. The β1 bar pattern in the seconde differs much from the rest due to a small

characteristic distance η = 2Å global behavior is captured in all cases and the local connectivity

is not overemphasized, this shows the efficacy of the correlation matrix based filtration, how-

ever some missing bars shows the underestimation of certain protein.

To quantitatively analyze protein connectivity and predict optimal characteristic distance, a

physical model based on persistent homology analysis is proposed. We define accumulation

bar lengths A j as the summation of lengths of all the bars for β j, :

A j = ∑
i=1

PG(L
β j
i )

where PG is the Gaussian probability measure and Lβ j
i is the length of the ith bar of the jth

Betti number. We vary the value of η from 1Å to 21Å, for protein 1COS and compare the

accumulated bar length A1 with the CC values obtained with FRI over the same range of η :

CC =
∑

n
i=1((Bi)

e− (B)e)((Bi)
t− (B)t)

[∑n
i=1((Bi)e− (B)e)2 ∑

n
i=1(((Bi)t− (B)t)2)]

1
2

Where Bt
i, i = 1,2, ...,N are a set of predicted B-factors by using the proposed method and

Be
i , i = 1,2, . . . ,N are a set of experimental B-factors extracted from the PDB file.
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FIGURE 17. The comparison between the correlation coefficient from the B-

factor prediction by FRI (left chart) and accumulated bar length from persistent

homology modeling (right chart) under various η value

PDB ID PDB ID PDB ID PDB ID PDB ID PDB ID

1BX7 1DF4 2JOX 1COS 1DGV 7UG5

1GK7 1NKD 2OL9 3MD4 1DBP 7UI2

4AXY 1NOT 3Q2X IHJE 1DK8 7UJ2

TABLE 1. Proteins used in persistent homology analysis of optimal characteris-

tic distance

Protein data bank labels for 30 Complexes of coiled serine.

The two approaches share the same general trend in their behavior as η is increased. Both CC

and A1 reach their maximum around η = 12Å. The further increase of η leads to the decrease

of both CC and A1. An optimal η in FRI model offers a best prediction of protein flexibility.

In the correlation matrix filtration η impacts the birth and death of each given k-complex. For

example, a pair of 2-complexes that do not coexist at a given cutoff distance in the distance

based filtration might coexist at an appropriate η value in the correlation matrix based filtration.

Once this achieved, the simplicies coexist, and the only component left is a 3-dimensional loop
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describing the largest value of CC which means the end of the flexible behavior, the length of

this loop is exactly the characteristic length of our molecule Since the same kernel and the same

η are used in the FRI model and the persistent homology model (i.e., accumulation bar length).

4. CONCLUSION AND DISCUSSION

This work is showing an easy application of persistent homology, with the main focus of

presenting a road map to get familiarized with the axiomatic idea, yet with a spectacular result,

it was out of the scope of this proposition to theoretically justify the use of statistical tests on the

set of barcodes, but the application shows clearly that the method can surpass a simple statistical

approach, and instead of conducting a molecular dynamic simulation it is easier to use existing

information from models to construct a quantified sequence of barcodes then to look for its

convergence limit, we can find interesting productions in the literature but none exploited fully

persistent homology far from being a statistical tool, an interesting attempt by using dynamical

distances was made by Peter Bubenik and collaborators [16] , but couldnt theoretically justify

barcodes as a statistical observation, instead it gives birth to a new functional tool wich is

persistent landscapes,
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