
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2023, 2023:112

https://doi.org/10.28919/cmbn/8214

ISSN: 2052-2541

A STUDY FOR FRACTIONAL ORDER EPIDEMIC MODEL OF COVID-19
SPREAD WITH VACCINATION

MUHAFZAN∗, ZULAKMAL, AHMAD IQBAL BAQI, BUDI RUDIANTO, EFENDI

Department of Mathematics and Data Science, Faculty of Mathematics and Natural Science, Andalas University,

Padang 25163, Indonesia

Copyright © 2023 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we present a fractional bi-modal SIT R mathematical model to study the Covid-19 spread

in a human population under vaccination influence. The study depends on the stability of the disease-free and

endemic equilibrium. To demonstrate the validity of the results, we give a numerical example. The results show

that the infected and treatment subpopulations decrease if the susceptible subpopulations are vaccinated. Moreover,

the recovered subpopulation increased.
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1. INTRODUCTION

Mathematical models are powerful tools for understanding and controlling infectious disease

transmission. Mathematical models play an important role in quantifying and assessing the effi-

cient control and preventive measures of infectious ailments [1]. It has been proved in multiple
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ways that mathematical modeling is a very flexible and efficient way of researching the dynam-

ics of transmission of infectious ailments. Mathematical analysis and numerical simulations

can be used to create and evaluate convincing control measures

The bi-modal SIT R compartment model is one of among the models of the spread of Covid 19

in the form of non-linear differential equations that are widely discussed [2, 3, 4]. In this model,

the observed human population (N) is divided into five epidemiological sub-compartments de-

noted by individuals who are not yet infected with the virus (S1), individuals who have some

serious diseases or they are of an older age but they are not yet been infected with the virus

(S2), individuals who are infected by the virus and they can transmit it to others (I), individuals

who are under treatment (T ), and individuals who are recovered with medical treatment (R),

as described by the compartment diagram in Figure 1 in literature [5] with the involve various

parameters are described in Table 1 below.

TABLE 1. Parameter with description occuring in the bi-modal SIT R model
Parameter Description

Λ1 Influx rate of class S1

Λ2 Influx rate of class S2

α Rate of death rate of human population

β1 Rate of transmission of subpopulation S1 that infected

β2 Rate of transmission of subpopulation S2 that infected

µ Rate of treatment

ρ Rate of recovery from Covid-19

Based on that Figure and the assumptions in [5], the dynamics model for transmission of

Covid-19 is given by the following nonlinear differential equations system [5]:

Ṡ1 = Λ1−β1IS1−αS1,

Ṡ2 = Λ2−β2IS2−αS2

İ = (β1S1 +β2S2)I− (α +µ)I,

Ṫ = µI− (α +ρ)T,

Ṙ = ρT −αR.

(1)
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with N = S1 + S2 + I +T +R and the initial states S1(0) = S01,S2(0) = S02, I(0) = I0,T (0) =

T0,R(0) = R0.

Along with the development of the fractional-order differential equation, recently the issue

of the development of mathematical models in the form of the fractional-order nonlinear differ-

ential equation has been widely discussed by many researchers, see [6, 7, 8, 9]. In this paper,

we modify the model (1) by including the vaccination parameter with rate δ1 for S1 and rate

δ2 for S2, and replacing the usual derivative into the fractional-order derivative of Caputo type

such that the compartment diagram can be modified as follows:

FIGURE 1. Compartment diagram for bi-modal SIT R model

The transmission model of Covid-19 spread which corresponds to compartment diagram Fig-

ure 1 in the form of the fractional order nonlinear differential equation is given by the following

system:

∆
(γ)S1 = Λ1−β1IS1− (α +δ1)S1,

∆
(γ)S2 = Λ2−β2IS2− (α +δ2)S2

∆
(γ)I = (β1S1 +β2S2)I− (α +µ)I,(2)

∆
(γT = µI− (α +ρ)T,

∆
(γ)R = δ1S1 +δ2S2 +ρT −αR,

where ∆(γ) is the fractional order Caputo derivative operator of order γ with 0 < γ < 1. As a

new bi-modal SIT R model, we study the stability of the disease-free equilibrium and endemic
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equilibrium of the model (2). Moreover, we will study the effect of vaccination to decrease the

total of infected and treatment populations. To the best of the author’s knowledge, this issue has

not been solved yet to date. Therefore the results of this work constitute a novelties at once a

new contribution in the field of fractional-order epidemic dynamic.

The paper is organized as follows: Section 2 considers basic preliminaries about Caputo

fractional derivative and stability of the fractional-order nonlinear system. The main result of

this article is presented in the section 3. Section 4 concludes the paper.

2. BASIC PRELIMINARIES

Here, we provide some primary preliminaries and results regarding the fractional operators.

The Caputo fractional derivative of order γ with n−1 < γ < n, n ∈ N for the integrable vector

function h : [0,∞)→ Rn, is defined by

(3) ∆
(γ)h(t) =

1
Γ(n− γ)

t∫
0

(t− τ)n−γ−1
∆
(m)h(τ)dτ

where Γ(.) is the Euler Gamma function [10], and ∆(m)h(.) is the usual m-th derivative of

function h(.) with m ∈ N.

Let us consider the fractional-order nonlinear system involving Caputo derivative

(4) ∆
(γ)h(t) = g(t,h(t)), h(0) = h0,

where h(t) ∈ Rn is the state vector of the system (4), g : [0,∞)×Rn→ Rn. The linear version

of the system (4) can be written as

(5) ∆
(γ)h(t) = A h(t)),

where A is a n by n matrix.

One important thing of the system (4) is stability of equilibrium point. When talking about

stability, one is interested in the behavior of the solutions of (4) for t → ∞. The point h∗ is

said the equilibrium point of the system (4) if g(t,h∗) = 0. Note that the equilibrium point is a

constant solution to the dynamic system (4) [11].

Definition 2.1. [10, 12] Let h∗ is an equilibrium point of the fractional-order system (4).
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(1). h∗ is said to be stable if for ε > 0, there exists a ηε > 0 such that

‖h(t0)−h∗‖< ηε →‖h(t)−h∗‖< ε for t ≥ t0.

(2). h∗ is said to be asymtotically stable if it is stable and limt→∞ h(t) = h∗.

Theorem 2.2. [10, 12] The equilibrium point h∗ of the fractional-order linear system (5) with

0 < γ < 1 is asymptotically stable if

(6) |arg(ri)|>
1
2

γπ,

where ri, i = 1,2, · · · ,n are eigenvalues of the matrix A .

Theorem 2.3. [10, 12] For 0< γ < 1, the equilibrium point h∗ of the system (4) is asymptotically

stable if

(7) |arg(r)|> 1
2

γπ,

for all roots r of the equation

(8) |Jh∗− rI|= 0

where Jh∗ is the Jacobian matrix of system (4) at the equilibrium h∗.

3. ASYMPTOTIC STABILITY OF THE EQUILIBRIA

By following the procedure in [12, 14], it is easy to show that the solution of the model under

consideration is restricted to the feasible region given by

U =
{
(S1,S2, I,T,R) ∈ R5

+ : 0≤ N(t)≤ Λ1 +Λ2

α

}
if the initial conditions S1(0) = S01 ≥ 0, S2(0) = S02 ≥ 0, I(0) = I0 ≥ 0, T (0) ≥ 0, R(0) =

R0 ≥ 0.

It is well-known in epidemiology that the dynamical behavior of the model (2) depends on

the basic reproductive number. By using the next generation method, the basic reproduction

number for the model (2) is given by

R0 =
1

α +µ

(
β1Λ1

α +δ1
+

β2Λ2

α +δ2

)
.(9)
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In order to find the equilibrium point of the model (2), we must solve the following equations:

∆
(γ)S1 = ∆

(γ)S2 = ∆
(γ)I = ∆

(δ )T = ∆
(δ )R = 0.

By assuming I = 0, one finds the disease-free equilibrium of the fractional order Covid-19

model (2), denoted by E 0 = (S0
1,S

0
2, I

0,T 0,R0), is as follows:

S0
1 =

Λ1

α +δ1
, S0

2 =
Λ2

α +δ2
, I0 = 0, T 0 = 0, R0 =

δ1Λ1

µ(α +δ1)
+

δ2Λ2

µ(α +δ2)
.(10)

Moreover, the endemic equilibrium of the fractional order Covid-19 model, denoted by E ∗ =

(S∗1,S
∗
2, I
∗,T ∗,R∗), is as follows:

S1
∗ =

Λ1

β1I∗+α +δ1
,

S2
∗ =

Λ2

β2I∗+α +δ2
,

I∗ =
b+
√

b2 +4bc
2

,(11)

T ∗ =
µI∗

α +ρ
,

R∗ =
δ1S∗1 +δ2S∗2 +ρI∗

α
,

where

b =
Λ1 +Λ2

α +µ
− (α +δ2)β1

β2
− (α +δ1)β2

β1
,

c =
Λ1(α +δ2)

(α +µ)β2
+

Λ2(α +δ1)

(α +µ)β1
− (α +δ1)(α +δ2)

β1β2
.

We will analyze the stability of these two equilibrium points. First of all, the Jacobian matrix

of the vector field corresponding to model (2) is

J =



−(β1I +α +δ1) 0 −β1S1 0 0

0 −(β2I +α +δ2) −β2S2 0 0

−β1I β1I β1S1 +β2S2− (α +µ) 0 0

0 0 µ −(α +ρ) 0

δ1 δ1 0 ρ −α


.(12)

The stability of the disease-free equilibrium E 0 is given in the following theorem.
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Theorem 3.1. If R0 < 1, then the disease-free equilibrium E 0 is asymptotically stable and

becomes unstable when R0 ≥ 1.

Proof. Note that, the Jacobian matrix (12) at E 0 =
(

Λ1
α+δ1

, Λ2
α+δ2

,0,0, δ1Λ1
µ(α+δ1)

+ δ2Λ2
µ(α+δ2)

)
is

given by:

JE 0 =



−(α +δ1) 0 − β1Λ1
α+δ1

0 0

0 −(α +δ2) − β2Λ2
α+δ1

0 0

0 0 β1Λ1
α+δ1

+ β2Λ2
α+δ2

− (α +µ) 0 0

0 0 µ −(α +ρ) 0

δ1 δ1 0 ρ −α


.(13)

This implies that the characteristic equation of (13) is

|JE 0− rI|= [−α− r]
[
− (α +ρ)− r

][
− (α +λ1)− r

][
− (α +λ2)− r

]
×(14) [

(β1S0
1 +β2S0

2− (α +µ))− r
]

= 0.

Based on the equation (14) one find that the eigenvalues of JE 0 are

r1 =−α,r2 =−(α +ρ),r3 =−(α +δ1),r4 =−(α +δ2)

and

r5 = β1S0
1 +β2S0

2− (α +µ) =
(

β1Λ1

α +δ1
+

β2Λ2

α +δ2

)
− (α +µ).

One can see that all eigenvalues of (14) satisfy |arg(r j)|> γπ

2 if(
β1Λ1

α +δ1
+

β2Λ2

α +δ2

)
− (α +µ)< 0.(15)

that is

R0 =
1

α +µ

(
β1Λ1

α +δ1
+

β2Λ2

α +δ2

)
< 1.(16)

Moreover, at least one eigenvalue satisfy |arg(r j)| < γπ

2 when R0 > 1. Hence, E 0 is locally

asymptotically stable if R0 < 1 and becomes unstable if R0 > 1. �
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We now consider the stability of the endemic equilibrium E ∗. The Jacobian matrix JE ∗ is

found by subtituting the endemic equilibrium E ∗ into (12). This implies that the eigenvalue of

the matrice JE ∗ is obtained by solving the following characteristic equation

(−α− r)(−(α +ρ)− r)p(r) = 0.(17)

with p(r) is the following third order polynomial

p(r) =
[
r3 +

(
α +µ +β1S∗1 +β2S∗2−

Λ1

S∗1
− Λ2

S∗2

)
r2 +

(
(α +µ)

(
Λ1

S∗1
+

Λ2

S∗2

)
−β1Λ1−β2Λ2

−
Λ1β2S∗2

S∗1
−

Λ2β1S∗1
S∗2

+
Λ2Λ2

S∗1S∗2
−β

2
1 S∗1I∗−β

2
2 S∗2I∗

)
r+
(
(α +µ +β1S∗1 +β2S∗2)

Λ1Λ2

S∗1S∗2
(18)

+
Λ1β 2

2 S∗2I∗

S∗1
+

Λ2β 2
1 S∗1I∗

S∗2

]
.

One can see that the roots of (17) are r1 = −α, r2 = −(α + ρ) and r3,r4,r5 are the roots of

p(r). It is obvious that both r1 and r2 are negative, and thus Theorem 2.3 is satisfied. Since the

algebraic form of solution of the equation (18) is quite complicated, we solve it numerically to

find r3,r4, and r5.

In order to show the validity of the results, let us examine the numerical example in [5],

where Λ1 = 0.2,Λ2 = 0.05,β1 = 0.2,β2 = 0.4,α = 0.5,µ = 0.1,ρ = 0.3. The initial conditions

are S1(0) = 0.45,S2(0) = 0.15, I(0) = 0.1,T (0) = 0.2 and R(0) = 0.1. To execute the model (2),

let δ1 = 0.15,δ2 = 0.08. Base on these parameter values, we find the basic reproduction number

R0 = 0.4589, thus the disease free equiblirium point is E 0 = (0.5,0.1515,0,0,0.8712). Graph

of subpopulation S1,S2, I,T,R for γ = 0.8 is given in the Figure 2.

Furthermore, for the above data let us replace Λ1 = 0.6 and Λ2 = 0.08, then we have the

basic reproduction number R0 = 1.1342, thus the equilibrium is endemic. Graph of subpop-

ulation S1,S2, I,T,R for γ = 0.8 is given in the Figure 3. One can see that the infected and

treatment subpopulations decrease if the subpopulations S1 and S2 are vaccinated. Moreover,

the recovered subpopulation increased.

4. CONCLUSION

We have find the fractional order bi-modal SIT R model for dynamic of Covid-19 spread. A

numerical test that illustrating the result has been presented. The numerical test shows that the
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infected and treatment subpopulations decrease if the subpopulations S1 and S2 are vaccinated.

Moreover, the recovered subpopulation increased. The analysis shows that the bi-modal SIT R

model give the adequate information about spread of Covid-19.

FIGURE 2. Curves of S1,S2, I,T,R for free disease equilibrium with γ = 0.8
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FIGURE 3. Curves of S1,S2, I,T,R for endemic equilibrium with γ = 0.8
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