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Abstract: Rice is the world's primary source of carbohydrates, especially in Asia. Quality rice requires good seed 

breeding. In this research, we classified rice seeds. The experiment using public data consists of five classes. Each 

class contains 2,000 images. The total amount of image data is 10,000. Classification uses mobileNet, which consists 

of 13 depthwise separable convolutions consisting of depthwise (DW) and pointwise (PW) convolutional layers. Each 

DW and PW is followed by batch normalization and Rectified Linear Unit activation. At the end, there is Global 

Average pooling and two dense layers. The trial uses transfer learning with initial weights from imageNet. The first 

to twelfth convolutional layers freeze. That is, they do not train the weights in them. On the 13th or last convolutional 

layer, fine-tuning is carried out. Experimental data is divided into training, validation, and testing. The testing results 

show that accuracy is 99.55%, precision 99.55%, recall 99.08%, and f1-score 99.31%. 

Keywords: transfer learning; mobileNet; classification; rice seeds; convolutional neural network. 
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1. INTRODUCTION 

Rice is a staple food for half the world's population, especially in Asia, Africa, and Latin America. 

Rice comprises approximately 80% starch, 12% water, and 7% protein [1]. Rice has various types. 
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Breeding superior seeds to produce quality rice is necessary. Seeds play an important role in rice 

growth. Seeds carry genetic characteristics for successful plant growth. 

The selection of quality seeds aims to increase rice productivity. Seed breeding can be done by 

selecting sources based on shape, smell, and color. Seed selection based on visual conditions can 

be done if the number is limited. However, if the number of seeds increases, identifying them will 

be increasingly difficult. 

In this study, classification was carried out based on the shape of the rice seed. Similar research 

has been carried out, as shown in Table 1. 

Table 1. Previous research on rice seed classification 

author year data class feature classification method accuracy 

Guzman et al. 2008 52 5  morphology NN 70 

Silva & 

Sonnadara 

2013 450 9 Textures 

Morphology 

color 

NN 92 

Cinar & Koklu 2019 3810 2 morphology LR.MLP,SVM,DT,RF,

NB,kNN 

LR 93.02 

Kiratinaranapuk 

et al. 

2020 50.000 14  Shape, color, 

texture 

LR, LDA, kNN, SVM 

VGG16, VGG19, 

Xception, Inception 

InceptionResNetv2 

SVM 90.61 

 

InceptionResNetV

2 95.15 

Koklu et al. 2021 75.000 5 - ANN, DNN, CNN 

VGG16 

99.87, 99.5, 100 

Tonael et al. 2021 140 2 GLCM kNN, SVM SVM 92.85 

Wu et al. 2021 750 3 - VGG16 95 

Qadri et al. 2021 10800 6 Textures, 

color 

Logistic Model T Tree 97.4 

Jin et al. 2022 1900 10  SVM, LR, RF 

Lenet, Googlenet, 

Resnet 

ResNet 86.08 

Research on corn seed classification has been carried out using machine learning and deep learning 

methods. Guzman uses machine learning (ML) approaches, including classifying rice seeds using 

morphological features with 52 images and five classes—classification using Neural networks. 

Test results show 70% accuracy [2]. Next, Silva and Sonnadara classified nine classes with 450 

images. The research used texture, morphology, and color feature extraction—neural network 

classification. Experimental results show an accuracy of up to 92% [3]. Research by Cinar & Koklu 

they were using ML methods, namely Logistic Regression (LR), Multilayer perceptron (MLP), 
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Support Vector Machine (SVM), Decision Tree (DT, Random Forest (RF), Naïve Bayes (NB), 

and k-Nearest Neighbor (kNN). Testing using 3,810 images divided into two classes of rice seeds. 

Feature extraction using morphology. Test results show the best Linear Regression accuracy at 

93.12% [4]. The following research by Tonael et al. used 140 image data with two classes. 

Extraction of Gray Level Co-occurrence Matrix (GLCM) features and classification using 

comparison of kNN and SVM. The best test results on SVM have an accuracy of 92.85% [5]. 

Furthermore, Qadri et al. used 6 class data with 10,800 images. Extraction features using texture 

and color—classification using a Logistic Model Tree. Test results show 97.4% accuracy [6]. 

Kiratinaranapuk et al. used LR, LDA, kNN, and SVM machine learning with shape, color, and 

texture features—experimental data 50,000 with 14 classes. Classification results show that SVM 

has an accuracy of up to 90.61% [4]. Following research, Jin et al. used SVM, LR, and RF machine 

learning methods [7]. 

Research using machine learning classification requires initializing the features that must be used 

for the classification process. The system can conduct the classification mining process with 

features that must be defined first. Apart from machine learning, there is also deep learning, which 

was used in previous research, including Kiratinaranapuk et al. using VGG16, VGG19 [8], 

Xception [9], Inception [10], InceptionResnetV2. The best accuracy results are up to 95.15% using 

InceptionResnetV2 [4]. Furthermore, research conducted by Koklu et al. used five classes with 

75,000 data. Classification uses NN, Deep Neural Network, and Convolutional Neural Network 

VGG16. Classification results show accuracy of up to 99.87%, 99.5%, and 100%, respectively 

[11]. Research by Jin et al. also uses deep learning classification methods such as LeNet [7], 

GoogleNet [12], and ResNet [13]. Experimental results show that ResNet produces accuracy 

values of up to 86.08% [7]. 

Research using deep learning does not require initializing feature types. The model works in a 

black-box manner that performs input and output without having to understand the type of feature 

used. Generally, deep learning for classification consists of the first layer for feature extraction and 

the second for classification. In this research, we classified corn seeds using the deep learning 

method. 

 

2. RESEARCH METHOD 

This section explains the research stages that must be carried out to obtain rice seed classification 

results. Figure 1 shows the proposed system. 
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Figure 1. Proposed system 

2.1 Dataset  

The dataset uses data from previous research from Moklu et al., which has five rice seeds: arborio, 

basmati, jasmine, karacadag, and ipsala [11]. The amount of data used is 2,000 per class. So, the 

total data is 10,000 images. Next, split the data with a ratio of 80:20 for training vs. testing. The 

training data uses 5-fold cross-validation, which divides the data into training and validation data. 

So, the number of training is 6,400, validation is 1,600, and testing is 2,000 images. 

2.2 MobileNet 

MobileNet is a lightweight version of CNN from Google. The characteristic of mobileNet is that 

it has Deptwise Separable Convolution, which functions to reduce model size and complexity. The 

size model has smaller parameters. Meanwhile, complexity has fewer multiplications and additions 

(multi-adds) [14]–[16]. 

Depthwise Separable Convolution is depthwise convolution plus pointwise convolution: 

1. Depthwise Convolution is a channel-wise kernel×kernel spatial convolution. If the data has 

five channels, it will have five kernel×kernel spatial convolutions. 

2. Meanwhile, pointwise convolution is a 1×1 convolution to change dimensions. 

The mobileNet architecture can be seen in Table 2. Meanwhile, Figure 2 shows the layers after 

convolution and depthwise separable. 

2.3 Transfer learning 

Transfer learning utilizes feature representations from pre-trained models without training a new 

model from scratch. Pre-trained models are usually trained on large datasets that are benchmarks 
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for computer vision. The weights from the model can be reused in other computer vision tasks. 

Pre-trained models can perform new functions for image classification or integrate the training 

process on new models. Pre-trained models save training time and lower generalization errors. 

Transfer learning is suitable when used on small training data. The weights from the pre-trained 

models are used to initialize the new model [17]–[19]. 

                Table 2. MobileNet Architecture 

Layer /stride Filter Shape Input Size  

input_1 (InputLayer)                                                                      [(None, 224, 224, 3)] 0 

conv1 (Conv2D)               (None, 112, 112, 32) 864 

conv_dw_1 

(DepthwiseConv2D)                                                               

(None, 112, 112, 32) 288 

conv_pw_1 (Conv2D)           (None, 112, 112, 64) 2048 

conv_pad_2(ZeroPadding2D)                                                                                                                    (None, 113, 113, 64) 0 

conv_dw_2 

(DepthwiseConv2D)                                                               

(None, 56, 56, 64) 576 

conv_pw_2 (Conv2D)           (None, 56, 56, 128) 8192 

conv_dw_3 

(DepthwiseConv2D)                                                               

(None, 56, 56, 128) 1152 

conv_pw_3 (Conv2D)           (None, 56, 56, 128) 16384 

conv_pad_4(ZeroPadding2D)                                                                                                                    (None, 57, 57, 128) 0 

conv_dw_4 

(DepthwiseConv2D)                                                               

(None, 28, 28, 128) 1152 

conv_pw_4 (Conv2D)           (None, 28, 28, 128) 32768 

conv_dw_5 

(DepthwiseConv2D)                                                               

(None, 28, 28, 256) 2304 

conv_pw_5 (Conv2D)           (None, 28, 28, 256) 65636 

… … … 

conv_dw_13 

(DepthwiseConv2D)                                                              

(None, 7, 7, 1024) 9216       

conv_pw_13 (Conv2D)          (None, 7, 7, 1024) 1048576   

global_average_pooling2d 

(GlobalAveragePooling2D)                                            

(None, 1024) 

 

0 

dense (Dense)                (None, 1024) 1049600    

dense_1 (Dense)              (None, 5) 5125 

Total params: 4,283,589 (16.34 MB) 

Trainable params: 1,054,725 (4.02 MB) 

Non-trainable params: 3,228,864 (12.32 MB) 

 
 

 

Figure 2. Batch Normalization 

and Rectified Linear Unit after 

each convolutional layer 
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Transfer learning is usually followed by fine-tuning, which functions to improve model 

performance. If you retrain the entire model, overfitting will likely occur. This solution can be 

provided by retraining the model using a low learning rate. Fine-tuning is usually done on the 

bottom layer of the model. However, if the model fails to identify it, it can fine-tune the low-level 

features of the convolutional layer [20]–[22]. The stages of transfer learning are shown in Figure 

3. 

 

Figure 3. Transfer Learning steps [23] 

The stages of transfer learning are as follows: 

1. Obtain pre-trained models. The transfer learning process begins by getting a model that has 

undergone previous training. Pre-trained models generally take imageNet weights. 

2. Create a base model. This section uses a base model, for example, mobileNet. The base model 

is only used in the final output layer for the new role. Therefore, remove the old final output 

layer. Then, add a final output layer that is compatible with the problem. 

3. Freeze layers so they don't change during training. Freeze the low feature layer in the initial 

convolutional layers. The weights do not need to be re-initiated. Learning has been carried out 

previously on the pre-trained model used. 

4. Add new trainable layers. The next step is adding a new trainable layer, bringing the old features 

to the new dataset. The new trainable layer is essential because the model is pre-trained without 

a final output layer. 

5. Train the new layers on the dataset. The pre-trained model is different from the classification 

model that will be used. Generally, a pre-trained model such as ImageNet has 1,000 outputs, 

while the classification model that will be used consists of five classes. So, the model must be 

trained with a new output layer. Therefore, usually, a new dense layer is added. The new dense 

layer units correspond to the number of output classes. 

6. Improve the model via fine-tuning. Fine-tuning performs unfreezing on certain parts of the base 

model. Usually, the convolutional layer produces high features in the final layers with a shallow 

learning rate. A low learning rate aims to improve performance and prevent overfitting. 

Figure 4 shows the transfer learning process and fine-tuning on certain parts of the mobileNet. 
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Figure 4. Transfer learning and fine-tuning  

 

In this research, transfer learning was carried out by freezing the entire depthwise separable 

convolutional layer. Meanwhile, fine-tuning carries out training on classified rice seed data. The 

classification aims to identify images in five groups of rice types. 

 

3. MAIN RESULTS 

3.1 Testing environment 

Windows 11 Pro 64-bit Operating System, Processor Intel(R) Core (TM) i5-10210U CPU @ 

1.60GHz (8 CPUs), ~2.1GHz, Python Programming Language with Tensorflow library, Keras, 

Numpy, OpenCV, Scikitlearn, Matplotlib, and Pandas implemented using Google Colab Pro. 

Additionally, initialize the hyperparameter values as max-epoch = 100, batch-size = 10, learning 

rate = 0.0003, and moment = 0.9. 

3.2 Result 

The experiment began with a training and validation process with 5-fold cross-validation [24]–

[26]. The accuracy results of the training and validation process are shown in Figure 5. 
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(a) (b) (c) 

  

 

(d) (e)  

Figure 5. (a) – (e) Results of training accuracy and data validation in 5-fold cross-validation 

(fold-1 until fold-5) 

Figure 5 shows the success of the training and validation process. The validation results show 

that there is no overfitting in the data. The experimental results show that fold-1 leads to the best 

validation accuracy results. Apart from accuracy, performance is measured using precision, recall, 

and f1-score. Figure 6 shows the performance of each measure. 

 

Figure 6. Performance Measures of training and validation result 
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Figure 6 shows the performance measures (accuracy, precision, recall, and f1-score) of 5-fold 

cross-validation. The average precision, recall, and f1-score performance is almost 100%. 

Furthermore, the measurement performance using cross-validation is shown in Tables 3a to 3e to 

make it more transparent. 

 

Table 3a. Performance measures of 

validation data fold-1 

 precision recall f1-score support 

arborio 1.0 0.99 1.0 320 

basmati 0.99 1.0 0.99 320 

ipsala 1.0 1.0 1.0 320 

jasmine 1.0 0.99 0.99 320 

karacadag 0.99 1.0 1.0 320 

     

accuracy   1.0 1600 

average 1.0 1.0 1.0 1600 
 

Table 3b. Performance measures of  

validation data fold-2 

  precision recall f1-score support 

 arborio 0.98 1.0 0.99 320 

 basmati 0.98 0.99 0.99 320 

 ipsala 1.0 1.0 1.0 320 

 jasmine 1.0 0.99 0.99 320 

 karacadag 0.99 0.97 0.98 320 

      

 accuracy   0.99 1600 

 average 0.99 0.99 0.99 1600 
 

  

Table 3c. Performance measures of 

validation data fold-3 

 precision recall f1-score support 

arborio 0.99 0.98 0.99 320 

basmati 0.98 0.99 0.99 320 

ipsala 1.0 1.0 1.0 320 

jasmine 1.0 0.99 0.99 320 

karacadag 0.98 0.99 0.98 320 

     

accuracy   0.99 1600 

average 0.99 0.99 0.99 1600 
 

Table 3d. Performance measures  

of validation data fold-4 

  precision recall f1-score support 

 arborio 0.98 0.99 0.99 320 

 basmati 0.99 0.99 0.99 320 

 ipsala 1.0 1.0 1.0 320 

 jasmine 0.99 1.0 1.0 320 

 karacadag 0.99 0.97 0.98 320 

      

 accuracy   0.99 1600 

 average 0.99 0.99 0.99 1600 
 

  

Table 3e. Performance measures of 

validation data fold-5 

 precision recall f1-score support 

arborio 0.99 0.99 0.99 320 

basmati 0.98 1.0 0.99 320 

ipsala 1.0 1.0 1.0 320 

jasmine 1.0 0.99 1.0 320 

karacadag 0.98 0.98 0.98 320 

     

accuracy   0.99 1600 

average 0.99 0.99 0.99 1600  
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The results of measuring the performance of the five folds show that fold-1 produces the best 

performance regarding the accuracy of each fold, as shown in Figure 7. 

 

Figure 7. Accuracy of each fold cross-validation (CV) 

For training, because the system uses Colab Pro, it can learn relatively quickly, around two to three 

minutes, as shown in Table 4. The fastest training time for fold-5 is 2 minutes 43 sec. Meanwhile, 

the longest training time on fold-4 is 3 minutes and 39 seconds. 

Table 4. Time of training data 

fold Training Time 

1 0:03:20.426846 

2 0:03:03.998708 

3 0:02:44.535499 

4 0:03:39.649333 

5 0:02:43.564186 

The next stage is testing data 20%. Testing uses the best model obtained in fold-1 during the 

training and validation process. The test results are shown in Figure 8, which is the confusion 

matrix of the testing results. 

 

Figure 8. Confusion matrix of testing data 
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The test results showed only nine identification errors out of 2,000 testing images. The 

misidentified image is found in Arborio, Basmati, and Karacadag seed types. Those identified 

incorrectly were in the Basmati and Arborio classes. From Figure 8, precision Recall, f1-score can 

be calculated as shown in Table 4. Visualization of the test results is shown in Figure 9. The x-

axis is the predicted label, while the y-axis is the actual label. Figure 9 shows the results of random 

testing.  

Table 4. Testing Result of Rice Seeds Classification 

Seed type Precision Recall F1-score Accuracy 

Karacadag 0.9875 1 0.993710692 
= 

1991

2000
 

 

= 0.9955 

Jasmine 1 0.990099 0.995024876 

Ipsala 1 1 1 

Basmati 0.995 1 0.997493734 

Arborio 0.995 0.96368 0.979089791 

Average 0.9955 0.990756 0.993063819 

The results of performance measurement testing data are accuracy 99.55%, precision 99.55%, 

recall 99.08%, f1-score 99.31% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. (a) false identification; (b) valid identification 

   

(a) 

   

 (b)  
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4. CONCLUSION  

In this research, we have classified rice seeds. Due to system limitations, the experimental data 

used was only 10,000 images divided into five classes. The use of transfer learning is beneficial 

for implementations with limited data. Transfer learning (TL) uses a model based on imageNet. 

The TL process freezes all depthwise separable convolutional layers. Fine-tuning carries out 

training on a dataset for image classification of 5 types of rice seeds. 

The dataset is divided into training, validation, and testing. Training and testing data have a ratio 

of 80:20. Meanwhile, training and validation use 5-fold cross-validation. The training and 

validation results show the best model at fold-1. Meanwhile, the test showed performance of more 

than 99%. 
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