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Abstract. This paper aims to develop and investigate the optimal combination of control interventions for a dis-

crete mathematical cholera model. The population is divided into four compartments: susceptible individuals,

symptomatic infected individuals, individuals undergoing treatment, and recovered individuals. The objective

is to identify the most effective strategy for minimizing the incidence of cholera cases, susceptible individuals,

and symptomatic infected individuals. Three specific control strategies are being considered: the implementa-

tion of awareness programs through media and educational channels, the prevention of contact through security

campaigns, and the implementation of specific interventions such as sanitation and water treatment. The envi-

ronmental control strategy aims to reduce the environmental burden of cholera bacteria and minimize the risk of

infection through specific interventions. Pontryagin’s maximum principle in discrete time characterizes the opti-

mal control strategy. Numerical simulations using MATLAB are conducted to demonstrate the effectiveness of the

optimization strategy.
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1. INTRODUCTION

Cholera presents a significant global public health challenge, resulting in the tragic loss of

tens of thousands of lives [1]. The transmission rate of cholera within a community is influenced

by a combination of social and environmental factors. Seasonal fluctuations in contact rates

contribute to a recurring pattern of cholera outbreaks, mirroring observations in specific cholera-

endemic communities [2, 3].

Accurate estimates of Vibrio cholera infection prevalence in endemic populations are cru-

cial, as is a detailed comprehension of the relationship between the bacteria’s dosage and its

virulence[2]. Cholera outbreaks exhibit a cyclical pattern due to seasonal variations in contact

rates, a phenomenon observed in certain cholera-endemic communities[4].

In 2001, researchers expanded Capasso’s model by incorporating the concentration of Vibrio

cholerae in the water supply, representing the environmental aspect, into a foundational SIR

model. They employed a logistic function to model the incidence, capturing the saturation

effect. Additionally, in 2006, Hartley and colleagues built upon Codeco’s model by introducing

a hyperinfectious state of the pathogen, reflecting the highly contagious nature of freshly shed

Vibrio cholerae observed in laboratory settings [4].

To effectively combat the cholera epidemic, interventions should concentrate on reducing

the transmission risk of the highly contagious, short-lived form of toxigenic Vibrio cholerae.

It is also essential to assess the presence of similar highly infectious states in other prevalent

diseases. If identified, these states should be integrated into disease prevention models for com-

prehensive and targeted interventions. Codeco’s model was further modified by Joh et al. in

2009 [5]. By explicitly considering a minimum infectious dose of the pathogen necessary to

cause infection, interventions should prioritize minimizing the risk associated with transmitting

the highly contagious, short-lived form of toxigenic Vibrio cholerae. Furthermore, evaluating

the presence of comparable highly infectious states in other prevalent diseases, accounting for

the minimum infectious dose, is crucial. Incorporating this factor into disease prevention mod-

els will enable more precise and effective targeted interventions [6].
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Awareness initiatives play a crucial role in mitigating the transmission of infectious diseases.

By informing susceptible populations, these programs reduce the likelihood of contact trans-

mission, contributing to disease control. Given the rapid dissemination of outbreak information

through social media and increased global travel, awareness becomes even more vital. It not

only diminishes the probability of transmission but also positively influences the overall dy-

namics of the epidemic, exerting a significant impact on disease spread [7, 8, 9].

In this paper, we investigate the optimal control of the SICR−B model that considers the

concentration of bacteria in the dynamic cholera model. At any given time k ≥ 0, the overall

population Nkis clustered into 4 clusters, namely individuals susceptible to cholera infection at

time k, Sk, individuals infected by cholera displaying symptoms at time k, Ik, individuals under

treatment via center at time k,Ck, (C, for Centers), and individuals declared recovered from

cholera at time k, Rk. On the other hand, for a cluster of bacteria at time k, Bk, we use a control

simulating an awareness program. Pontryagin maximum principle, in discrete time, is used to

characterize the optimal control. The numerical simulation is carried out using MATLAB. The

obtained results confirm the performance of the optimization [10] Figure(1).

2. MODEL FORMULATION

We propose a SICR−B (Susceptible–Infectious–Centres-Recovered-Bacterial) type model

and consider a class of bacterial concentration for the dynamics of cholera. The total population

Nk is divided into four classes: susceptible Sk, infectious Ikwith symptoms, in treatment through

Centres Ck (C, for Centers), and recovered Rk at the time k, for k > 0. Furthermore, we consider

a class Bk that reflects the bacterial concentration at the time k. We assume that there is a positive

recruitment rate A into the susceptible class Sk and a positive natural death rate µ for all time

k under study. Susceptible individuals can become infected with cholera at a rate β2
Bk

κ+Bk
that

is dependent on time k Note that β2 > 0 the ingestion rate of the bacteria through contaminated

sources κ is the half-saturation constant of the bacteria population, and Bk
κ+Bk

is the possibility

of an infected individual having the disease with symptoms, given contact with contaminated

sources[11] The infected individuals can accept to be in treatment through Centres for a period

of time. During this time k they are isolated and subject to proper medication, at a rate α1 The

treatment through Centres can recover at a rate σ The disease-related death rates associated
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with the individuals that are infected and in treatment through Centres are δ1 and µ respectively.

Each infected individual contributes to the increase of the bacterial concentration at rate ℘ On

the other hand, the bacterial concentration can decrease at mortality rate δ2 (See Table1).

2.1. Description of the Model.

• The compartment Sk: Susceptible individuals at time k. These are individuals who are

not infected but are at risk of contracting cholera

• The compartment Ik: Infected individuals at time k. These are individuals who are

currently infected with cholera.

• The compartment Ck: Treatment centers at time k are staffed with trained medical

professionals who can monitor patients’ conditions, administer necessary treatments,

and provide medical care.

• The compartment Rk: Recovered or Removed individuals at time k. These are indi-

viduals who have recovered from cholera or have been effectively removed from the

transmission process due to awareness programs.

• The compartment Bk: Represents the bacteria at time k that caused the infection, in

the case of cholera.

Symbol Parameter

A New population is recruited into the model with a constant rate

µ The natural death rate

β1 transmission rate from human to human

β2 transmission rate from environment to human

α1 ; α2 Recovery rate from cholera

κ Environmental carrying capacity

δ1 The death rate induced by the cholera

δ2 Bacteria death rate

℘ shedding rate of bacteria by infectious population

σ Recovery rate from cholera sequentially
TABLE 1. Cholera model parameters
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2.2. Model Equations. By the addition of the rates at which individuals enter the compart-

ment and also by subtracting the rates at which people leave the compartment, we obtain a

difference equation for the rate at which the individuals of each compartment change over dis-

crete time.

Hence, we present the cholera disease infection model by the following system of difference

equations(See[12]):

Sk+1 = Sk +A−µSk−β1
SkIk

N
−β2

SkBk

κ +Bk
;

Ik+1 = Ik +β1
SkIk

N
− Ik(µ +δ1)− (α1 +α2)Ik +β2

SkBk

κ +Bk
;

Ck+1 =Ck +α1Ik−σCk−µCk;(1)

Rk+1 = Rk +α2Ik +σCk−µRk;

Bk+1 = Bk +℘Ik−δ2Bk;

where S0 � 0,I0 � 0,C0 � 0,R0 � 0,B0 � 0 are the given initial states.

3. THE OPTIMAL CONTROL PROBLEM

Awareness Program through Media and Education (Control: uk): Implementing educa-

tional campaigns through various media channels to raise awareness about cholera prevention

and transmission.

Contact Prevention through Security Campaigns (Control:vk):Conducting security cam-

paigns to prevent direct contact between infected and susceptible individuals, Providing medi-

cal treatment to infected individuals, and offering psychological support. Continuous follow-up

ensures proper recovery and reduces the chances of reinfection. thereby reducing the spread of

the disease.

Pesticides for Cholera Bacteria (Control: wk): Implementing pesticide measures to target

cholera bacteria in affected areas, reducing environmental contamination.

So, the controlled mathematical system is given by the following system of difference equa-

tions:(See [13, 14, 15]).
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FIGURE 1. A compartmental diagram of the SIRC-B model(1)

Sk+1 = Sk +A−µSk−β1
SkIk

N
−β2

SkBk

κ +Bk
−ukSk;

Ik+1 = Ik +β1
SkIk

N
− Ik(µ +δ1)− (α1 +α2)Ik +β2

SkBk

κ +Bk
− vkIk;

Ck+1 =Ck +α1Ik−σCk−µCk + vkIk;(2)

Rk+1 = Rk +α2Ik +σCk−µRk +ukSk;

Bk+1 = Bk +℘Ik−δ2Bk−wkBk;

where S0 � 0,I0 � 0,C0 � 0,R0 � 0,B0 � 0 are the given initial states.

there are three controls uk,vk, and wk the first control can be interpreted as the proportion

to be adopted to awareness programs through media and education. the second control can be

interpreted as the proportion of contact prevention through security campaigns. the third control

can be interpreted as Pesticides for cholera bacteria at time k. The challenge that we face here

is how to minimize the objective functional: (See [15],[20],[21])

J(uk;vk;wk) = A1;T IT +A2;T BT +
T−1

∑
k=0

(A1;kIk +A2;kBk +
1
2

A3;kuk
2 +

1
2

A4;kvk
2 +

1
2

A5;kw2
k);(3)

Where the parameters A3;k ≥ 0 ,A4;k ≥ 0 and A5;k ≥ 0 are the cost coefficients. They are selected

to weigh the relative importance of It and ut at time k. T is the final time. We are minimizing

the number of infected individuals during the time steps k = 0 to T −1, and at the final time also
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minimizing the cost of administering the control. In other words, we seek the optimal control

u∗,v∗ and w∗ such that

J(u∗;v∗;w∗) = min
(u,v,w)∈Uab

J(u;v;w);(4)

Where U is the set of admissible controls defined by

Uab = {(uk;vk;wk) : a≤ uk ≤ b;c≤ vk ≤ d;e≤ wk ≤ f ;k = 0,1, ...,T −1} ;(5)

In our approach, we utilize the discrete version of Pontryagin’s Maximum Principle, a funda-

mental concept in optimal control theory( See [16, 17]). The key concept behind this principle

is the introduction of an adjoint function, linking the system of difference equations with the

objective function. This linkage results in the formulation of a function known as the Hamil-

tonian.

This principle transforms the problem of finding the optimal control to maximize the objec-

tive function while adhering to the state difference equation with initial conditions. It seeks to

determine the control strategy that optimizes the Hamiltonian pointwise concerning the control

variable. By doing so, it provides a systematic method to optimize the control measures applied

in the context of our problem. We have the Hamiltonian, Hk at time step k defined by

Hk = A1,kIk +A2,kBk +
1
2

A3,ku2
k +

1
2

A4,kv2
k +

1
2

A5,kw2
k +

5

∑
i=1

λi,k+1 fi,k+1.(6)

where f j,k+1 is the right side of the difference equation of the jth state variable at time step

k+1(See [16],[17]).

Theorem 1.

Given an optimal control u∗k ∈Uab , v∗k ∈Uab and v∗k ∈Uab and the solutions S∗k ,I∗k , C∗k , R∗k

and B∗k of the corresponding state system (2), there exists adjoint functions λ1,kλ2,kλ3,k ,λ4,k and

λ5,ksatisfying:
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λ1,k =
∂Hk

∂Sk
= λ1,k+1(1−µ−β1

Ik

N
−β2

Bk

κ +Bk
−uk)+λ2,k+1(β1

Ik

N
+β2

Bk

κ +Bk
)+λ4,k+1(uk);(7)

λ1,k =
∂Hk

∂Sk
= β1

Ik

N
(λ2,k+1−λ1,k+1)+uk(λ4,k+1−λ1,k+1)+λ1,k+1(1−µ−β2

Bk

κ +Bk
)

+λ2,k+1(β2
Bk

κ +Bk
);

λ2,k =
∂Hk

∂ Ik
= A1,k +β1

Sk

N
(λ2,k+1−λ1,k+1)− vk(λ2,k+1 +λ3,k+1)+α1(λ3,k+1−λ2,k+1)

+α2(λ4,k+1−λ2,k+1)+λ2,k+1(1− (µ +δ1))+λ5,k+1℘;

λ3,k =
∂Hk

∂Ck
= σ(λ3,k+1 +λ4,k+1)+λ3,k+1(1−µ);

λ4,k =
∂Hk

∂Rk
= λ4,k+1(1−µ);

λ5,k =
∂Hk

∂Bk
= A2,k +β2(

Sk(κ +Bk)− (SkBk)

(κ +Bk)
2 (λ2,k+1−λ1,k+1)+λ5,k+1(1−δ2−wk);

With the transversality conditions at time T .

λ1;T = λ3;T = λ4;T 0;λ2;T = A1;T and λ5;k = A2;T

Furthermore, for k = 0,1,2 . . .T −1, the optimal control u∗k ,v∗kand w∗k , is given by

u∗k = min(b,max(a;
λ3;k+1−λ4;k+1

A3,k
Sk));

v∗k = min[d,max(c;
1

A4,k
(λ2,k+1−λ3,k+1)Ik)];(8)

w∗k = min[ f ;max(e,
1

A5,k
λ5,k+1Bk)];

Proof. The Hamiltonian at time step k is given by

Hk = A1,kIk +A2,kBk +
1
2

A3,ku2
k +

1
2

A4,kv2
k +

1
2

A5,tw2
k +λ1,k+1(Sk +A−µSk−β1

SkIk

N
(9)

−β2
SkBk

κ +Bk
−ukSk)+λ2,k+1(Ik +β1

SkIk

N
− Ik(µ +δ1)− (α1 +α2)Ik +β2

SkBk

κ +Bk
− vkIk)

+λ3,k+1(Ck +α1Ik−σCk−µCk + vkIk)+λ4,k+1(Rk +α2Ik +σCk−µRk +ukSk)

+λ5,k+1(Bk +℘Ik−δ2Bk−wkBk);

λ1;k =
∂Hk

∂Sk
;λ1;T = 0;
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λ2;k =
∂Hk

∂ Ik
;λ2;T = A1,T ;

λ3;k =
∂Hk

∂Ck
;λ3;T = 0;

λ4;k =
∂Hk

∂Rk
;λ4;T = 0;

λ5;k =
∂Hk

∂Bk
;λ5;T = A2,T ;

For, k = 0,1 . . .T − 1 the optimal control u∗k ,v∗k and w∗k can be solved from the optimality

condition,
∂Hk

∂uk
= 0;

∂Hk

∂vk
= 0;

∂Hk

∂wk
= 0;

That is:

∂Hk
∂uk

= A3,kuk +Sk(λ4,k+1−λ4,k+1) = 0;

uk =
1

A3,k
(λ1,k+1−λ4,k+1)Sk;

∂Hk
∂vk

= 0 = A4,kvk−λ2,k+1Ik +λ3,k+1Ik = A4,kvk + Ik(λ3,k+1−λ2,k+1) = 0;

vk =
1

A4,k
(λ2,k+1−λ3,k+1)Ik;

∂Hk
∂wk

= A5,kwk−λ5,k+1Bk = 0;

wk =
1

A5,k
λ5,k+1Bk;

By the bounds in Uab of the controls, it is easy to obtain u∗k ,v∗k and w∗k in the form of (8)

4. NUMERICAL SIMULATION

In this section, we present the numerical results obtained from solving a two-point boundary

value problem within the formulated optimality system. The problem is characterized by dis-

tinct conditions at the initial and final time steps and involves state equations, adjoint equations,

and control specifications. The state variables are initialized with initial conditions, and the

adjoint variables are finalized with terminal conditions. Our approach to solving this optimality

system is iterative. During each iteration, we progress by solving the state equations forward in

time and then addressing the adjoint equations backward in time. The process begins with an

initial guess for the controls, which are refined using control characterization before proceed-

ing to the next iteration. This iterative cycle continues until consecutive iterations converge,

guaranteeing, ensuring a gradual enhancement and optimization of control strategies.
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FIGURE 2. Here are the simulation results depicting the number of susceptible

and infectious individuals and the concentration of bacteria without control.

FIGURE 3. Shows the simulation results of the Susceptible individuals the in-

fectious individuals and the concentration of bacteria with control uk only.
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FIGURE 4. Shows the simulation results of the Susceptible individuals the in-

fectious individuals and the concentration of bacteria with control vk only.

FIGURE 5. Shows the simulation results of the Susceptible individuals the in-

fectious individuals and the concentration of bacteria with control wk only.
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FIGURE 6. Shows the simulation results of the Susceptible individuals the in-

fectious individuals and the concentration of bacteria with control uk and vk only.

FIGURE 7. Shows the simulation results of the Susceptible individuals the in-

fectious individuals and the concentration of bacteria with control uk and wk

only.



DISCRETE-TIME CHOLERA MODEL 13

FIGURE 8. Shows the simulation results of the Susceptible individuals the in-

fectious individuals and the concentration of bacteria with control vk and wk only.

FIGURE 9. Shows the simulation results of the Susceptible individuals the in-

fectious individuals and the concentration of bacteria with control uk, vk and wk.
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The initial conditions and parameters of the SICR−B Model

Parameter Initial conditions Reference

N 60 assumed

S(0) 6 assumed

I(0) 3 assumed

B(0) 1 assumed

R(0) 6 assumed

Values of model parameters of the SICR−B Model

Parameter Value Reference

A 10 per day [18]

µ 0.15 assumed

β2 0.75 assumed

α1 0.21 assumed

α2 0.31 assumed

κ 0.1 assumed

δ1 0.25 assumed

δ2 0.25/week [19]

℘ 0.1 assumed

σ 0.2 assumed

κ 0.1 assumed
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5. CONCLUSION

In this study, we have applied optimal control techniques within the field, concentrating par-

ticularly on the SICR-B model for cholera outbreaks. Our control parameter measures the

number of susceptible and infectious individuals, as well as the concentration of bacteria.

Through numerical simulations using MATLAB, our findings demonstrate that the proposed

control strategy notably diminishes the number of individuals infected with cholera, concur-

rently minimizing the associated costs.
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