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Abstract. Rubella is one of the viruses responsible for rubella disease. If the rubella virus infects a pregnant

woman during the first trimester of pregnancy, it causes CRS (the virus transmits vertically from mother to fetus).

In this paper, we study the rubella disease model with a fractional-order derivative and saturated incidence rate.

Infectious diseases have a history in their transmission dynamics, thus non-local operators such as fractional-order

derivatives play a vital role in modeling the dynamics of such epidemics. First, we analyze the important mathe-

matical features of the proposed model, such as the existence and uniqueness, the non-negativity and boundedness

of solutions. Then, the equilibrium point, basic reproduction number, and stability of the equilibrium points are

also investigated. The model has two equilibrium points, namely the disease-free equilibrium and endemic equi-

librium. The disease-free equilibrium point always exists, while the endemic equilibrium point exists if R0 > 1.

The disease-free equilibrium point is locally asymptotically stable if R0 < 1, while the endemic equilibrium point

is locally asymptotically stable if the Routh-Hurwitz criterion is satisfied. Numerical simulation is done by using

the Grunwald-Letnikov approximation method to confirm the results of analytical calculations.
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1. INTRODUCTION

Rubella virus is one of the viruses that cause a disease known as German measles or three-day

measles [1]. Rubella is characterized by fever and the appearance of a mild rash that resembles

the symptoms of measles [2]. Nearly 50% of people infected with rubella are asymptomatic.

Symptoms typically begin on the face and spread to other parts of the body if a person experi-

ences them [3]. Rubella infection is often considered a mild disease. However, if rubella virus

infects a pregnant woman during the first trimester, it can lead to Congenital Rubella Syndrome

(CRS), leading to significant pregnancy complications, including birth defects in babies, and

in some cases, fetal death[4]. Rubella vaccination can prevent CRS cases. According to the

recommendations of the Centers for Disease Control and Prevention (CDC), children should

receive two doses of the MMR (Measles, Mumps and Rubella) vaccine [5].

Mathematical modeling is a valuable tool for depicting and analyzing dynamic behaviors,

transmission mechanisms, predictive control strategies, and generating simulations of the spread

of infectious diseases over time [6]. Many autors have studied the dynamics and transmission of

rubella disease model see [7, 8, 9]. Tilahun et al. extended the model developed [8] by adding

a protected subpopulations according to [5], individuals who receive two doses of the MMR

vaccine will have active immunity, rendering them immune to the Rubella virus for life, and

they are included in the protected populations [10].

The models developed by previous autors were constructed by using integer-order derivative

approaches, which do not have memory effects for accurate predictions [11]. Fractional order

derivative is a theory of fractional calculus with nonlocal properties, where the next state of the

model depends not only on the current state but also on all previous states [12]. Memory ef-

fect plays a crucial role in disease transmission [13]. Many autors have studied fractional-order

Rubella disease models, see references [14, 15, 16].

Incidence (rate of new infections) plays a very important role in modeling infectious diseases.

Capasso and Serio [17] introduced the non-linear incidence rate is referred to as the saturated

incidence rate, i.e.,
β I

1+ cI
, where β I Measuring the infection of the disease and

1
1+ cI

measur-

ing the inhibiting effect from the behavioral change of the susceptible individuals.
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As far as we know, no studies have been conducted on mathematical models of a fractional-

order rubella disease with saurated incidence rate dynamics under the consideration of vertical

transmission and second vaccine in their model. The remaining parts of this paper is organized

as: In Section 2, we will show the formulation of fractional-order rubella disease model. Section

3 we analyze the important mathematical features of the proposed model, such as the existence

and uniqueness, the non-negativity and boundedness of solutions. In Section 4, equilibrium

point and basic reproduction number. In Section 5, local stability, in Section 6, numerical sim-

ulations. Finally, in Section 7, conclusions about our work.

2. MODEL FORMULATION

In this paper we consider an epidemiological model adapted from [11], by assuming the dis-

ease spread rate follows a saturated infection rate
βSI

1+ cI
. Based on the behavior of rubella

disease, total population size a given time t, denote by N(t), is divided into six compartment,

namely: Sussceptible S(t), Vaccinated V (t), Protected P(t), Exposed E(t), Infected I(t), Recov-

ered R(t). The susceptible compartment includes a group of individuals who have not yet con-

tracted rubella but are vulnerable to becoming infected. The vaccinated compartment comprises

individuals who have received their first vaccine dose. The protected compartment encompasses

individuals who have received the second doses of the MMR vaccine and possess active immu-

nity, and will remain free from rubella throughout their lives [5]. The exposed compartment

pertains to individuals who are susceptible and come into contact with infected individuals, in-

cluding those who are asymptomatic carriers. The infected compartment comprises individuals

who display symptoms of rubella illness, while the recovered compartment includes those who

have acquired temporary immunity. The proposed model using six compartment are shown in

Figure 1.
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BAB V 

HASIL DAN PEMBAHASAN 

Pada bab ini dilakukan konstruksi model dan analisis dinamik. Selanjutnya, 

diperiksa sifat-sifat solusi (eksistensi solusi, kepositifan dan keterbatasan solusi). 

Analisis dinamik meliputi penentuan titik kesetimbangan model, syarat eksistensi 

titik kesetimbangan model, angka reproduksi dasar dan kestabilan lokal. Pada 

bagian akhir dilakukan simulasi numerik menggunakan pendekatan Gr�̈�nwald-

Letnikov.  

5.1    Konstruksi Model  

Model penyebaran penyakit Rubella dengan transmisi vertikal terdiri dari 

kompartemen 𝑆, 𝑉, 𝑃, 𝐸, 𝐼, dan 𝑅 secara berturut-turut menyatakan subpopulasi 

rentan, tervaksinasi, terlindungi, terpapar, terinfeksi dan sembuh. Alur penyebaran 

penyakit Rubella diilustrasikan sebagai model kompartemen yang ditampilkan 

pada Gambar 5.1. 

 

 

 

 

 

Gambar 5.1 Diagram kompartemen model penyebaran penyakit Rubella 
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FIGURE 1. Diagram of Rubella disease

From the compartment diagram, the proposed model is expressed in a differential equations

is formulated in model (1).

dS
dt

= Λ+ρR+ωV − βSI
1+ cI

− (σ +µ)S,

dV
dt

= σS− (δ +ω +µ)V,

dP
dt

= δV −µP,

dE
dt

=
βSI

1+ cI
− (ϑ +µ)E,

dI
dt

= θ I +ϑE− (γ + ε +µ)I,

dR
dt

= γI− (ρ +µ)R,

(1)

with initial conditions S(0)≥ 0, V (0)≥ 0,P(0)≥ 0,E(0)≥ 0, I(0)≥ 0,and R(0)≥ 0, are pos-

itive. To include the memory effect in model (1), we apply fractional-order derivative CDα
t , to

get the following model.

CDα
t S = Λ+ρR+ωV − βSI

1+ cI
− (σ +µ)S = H1(X),

CDα
t V = σS− (δ +ω +µ)V = H2(X),

CDα
t P = δV −µP = H3(X),

CDα
t E =

βSI
1+ cI

− (ϑ +µ)E = H4(X),

(2)
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CDα
t I = θ I +ϑE− (γ + ε +µ)I = H5(X),

CDα
t R = γI− (ρ +µ)R = H6(X),

with initial conditions S(0) ≥ 0, V (0) ≥ 0, P(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, and R(0) ≥ 0, are

positive.

In this article we study the dynamics of the model (2) with CDα
t is the Caputo operator. Param-

eter description of model (2) could be shown in Tabel 1.

TABLE 1. Parameter value for the numerical simulations

Parameter Description Value Source

Λ Recruitment rate 374.125 [16]

β Contact rate 0.004 [16]

ϑ Exposure rate 0.85 [10]

ε Death rate due to rubella disease 0.08 [10]

γ Recovery rate 0.15 [10]

θ Rate of infected infants 0.55 [10]

ρ Rate of temporary immunity 0.01 [10]

ω Waning rate of first vaccination dose 0.6 [10]

δ Rate of second vaccination dose 1 [10]

µ Natural death rate 0.4 [14]

σ Rate of first vaccination dose 0.3 [15]

c saturation constant 0.001 Assumed

3. EXISTENCE AND UNIQUENESS, NON-NEGATIVITY AND BOUNDEDNESS SOLUTION

Firstly, we need to investigate the properties of solution of the model (2), such as the existence

and uniqueness, non-negativity, and boundedness of the solutions. Hence we need to prove that

model (2) saisfies the Lipschitz condition.

Theorem 1. Let Ω :=
{
(S,V,P,E, I,R) ∈ R6 : max{|S|, |V |, |P|, |E|, |I|, |R|} ≤ M

}
and

model (2) can be expressed as CDα
t X = ~H(X) where X = (S,V,P,E, I,R) and ~H(X) =
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H1(X),H2(X),H3(X),H4(X),H5(X),H6(X)

)
. ~H(X) satisfies Lipschitz condition, i.e, ∃ L > 0

such that
∣∣~H(X)− ~H(X̄)

∣∣< L
∣∣X− X̄

∣∣, for X , X̄ ∈Ω.

Theorem 2. For each initial value {S0,V0,P0,E0, I0,R0} ∈ R6
+ in Ω, model (2) has a unique

solution in Ω× (0,∞] for all t > 0.

Proof. Let X , X̄ ∈Ω, then

||~H(X)− ~H(X̄)||= |H1(X)−H1(X̄)|+ |H2(X)−H2(X̄)|+ |H3(X)−H3(X̄)|+ |H4(X)−H4(X̄)|

+ |H5(X)−H5(X̄)|+ |H6(X)−H6(X̄)|

≤(2βM(1+ cM)+(2σ +µ)|S− S̄|+(2δ +2ω +µ)|V −V̄ |

+µ|P− P̄|+(2ϑ +µ)|E− Ē|+(2(βM+ γ)+θ + ε +µ)|I− Ī|

+(2ρ +µ)|R− R̄|

≤L||X− X̄ ||

where L = max
{
(2βM(1+ cM)+ (2σ + µ),(2δ + 2ω + µ),µ,(2ϑ + µ),(2(βM + γ)+ θ +

ε +µ),(2ρ +µ). Hence, ~H(X) satisfies Lipschitz’s condition. Based on Lemma 2 in [18], for

each initial value of (S0,V0,P0,E0, I0,R0) ∈ R6
+ in Ω, there is a unique solution in Ω of model

(2) for all t > 0 and the Theorem 1 and 2 are well proven. �

Model (2) describe an epidemiological model in fractional order differential equations.

Therefore, the solution of model (2) must be bounded and non-negative. Based on Theorem

5 in [19], model (2) with α = 1 and locally Lipschitz, then the model (2) satifies the positivity

property.

Theorem 3. For all t > 0 solutions of model (2) are non-negative and uniformly bounded, with

(S(0)≥ 0,V (0)≥ 0,P(0)≥ 0,E(0)≥ 0, I(0)≥ 0,R(0)≥ 0.

Proof.

dS(t)
dt

= Λ+ρR+ωV − β IS(t)
1+ cI

− (σ +µ)S(t),

dS(t)
dt
≥ − βSI

1+ cI
− (σ +µ)S,
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S(t)

≥ −
∫ (

β I(t)
1+ cI(t)

+σ +µ

)
dt,

ln|S(t)| ≥ −
∫ (

β I(t)
1+ cI(t)

+σ +µ

)
dt +C,

S(t)≥ S(0)exp
(
−
∫ (

β I(t)
1+ cI(t)

+σ +µ

)
dt
)
,

In the same process, the non-negativity of the other compartments are proved and we get

the following solutions, V (t) ≥ V (0)exp(−(δ + ω + µ)t), P(t) ≥ P(0)exp(−µt), E(t) ≥

E(0)exp(−(ϑ + µ)t), I(t) ≥ I(0)exp(−(γ + µ + ε)t), R(t) ≥ R(0)exp(−(µ +ρ)t). Since the

value of the exponential function is always positive, then S(t)> 0, V (t)> 0, P(t)> 0, E(t)> 0,

I(t)> 0, R(t)> 0. �

Now, we need to show the boundedness of solution. We denote N(t) as the total population,

then

N(t) = S(t)+V (t)+P(t)+E(t)+ I(t)+R(t)

= Λ−µN− (ε +θ)I

≤ Λ−µN

Based on Lemma 3 in [20], we obtained

N(t)≤ Λ

µ
+

(
N(0)− Λ

µ

)
Eα [−µtα ],

where Eα is the Mittag-Leffler function. Since Eα [−µtα ]to0 as t→ ∞, (see [21] Lemma 5 and

Corollary 6). We have that N(t) is convergent to
Λ

µ
for t→∞. Therefore, all solutions of model

(2) with non-negative initial conditions are confined to the region Φ, where

Φ :=
{
(S,V,P,E, I,R) ∈ R6 : N(t)≤ Λ

µ

}
4. EQUILIBRIUM POINT AND BASIC REPRODUCTION NUMBER

In this section, we determine the equilibrium point and basic reproduction number. To sim-

plify he model (2), we use the new symbols as φ1 = σ + µ , φ2 = δ +ω + µ , φ3 = ϑ + µ ,

φ4 = γ +ε +µ , φ5 = ρ +µ . There are two equilibrium points, that are disease-free equilibrium

point and endemic equilibrium point.

Disease-free equlibrium point X0 =

(
Λφ2

φ1φ2−σω
,

Λσ

φ1φ2−σω
,

Λσδ

(φ1φ2−σω)µ
,0,0,0

)
, and
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endemic equilibrium point X∗ = (S∗,V ∗,P∗,E∗, I∗,R∗).

where

S∗ =
(φ2φ5Λ+φ2ργI∗)(1+ cI∗)

φ5

(
φ2β I∗+(φ1φ2−σω)(1+ cI∗)

) ,V ∗ = (σφ5Λ+σργI∗)(1+ cI∗)

φ5

(
φ2β I∗+(φ1φ2−σω)(1+ cI∗)

) ,
P∗ =

δσ(φ5Λ+σργI∗)(1+ cI∗)

µφ5

(
φ2β I∗+(φ1φ2−σω)(1+ cI∗)

) ,E∗ = β (φ2φ5Λ+φ2ργI∗)

φ3φ5

(
φ2β I∗+(φ1φ2−σω)(1+ cI∗)

) ,
I∗ =

φ3φ4φ5(φ1φ2−σω)(R0−1)

φ3φ5

(
φ2β + c(φ1φ2−σω)

)
(φ4−θ)−ϑβφ2ργ

,R∗ =
γI∗

φ5

The endemic equilibrium point X∗ exist when φ3φ5
(
φ2β +c(φ1φ2−σω)

)
(φ4−θ)−ϑβφ2ργ >

0 and R0 > 1, where R0 =
βϑΛφ2 +θφ3(φ1φ2−σω)

φ3φ4(φ1φ2−σω)
. The basic reproduction number is ob-

tained by using the next generation matrix method by [22].

5. STABILITY ANALYSIS

The model (2) is a nonlinear autonomus sytem. Local stability of disease-free equilibrium

and endemic equilibrium points are performed by linearizing the nonlinear system.

J(X∗) =



− β I∗

1+ cI∗
−φ1 ω 0 0 − βS∗

(1+ cI∗)2 ρ

σ −φ2 0 0 0 0

0 δ −µ 0 0 0

β I∗

1+ cI∗
0 0 −φ3

βS∗

(1+ cI∗)2 0

0 0 0 ϑ θ −φ4 0

0 0 0 0 γ −φ5



.(3)

Theorem 4. The disease-free equilibrium point of the model (2) is locally asymtotically stable

if R0 < 1.

Proof. To prove the theorem (4) we compute the Jacobian matrix at disease-free equilibrium

point (X0) has the eigenvalues λ1 = −µ < 0,λ2 = −φ5 < 0. Therefore for all values of

α ∈ (0,1], tan−1
(

Im(λ1,2)

Re(λ1,2)

)
= π >

απ

2
, and the other four eigenvalues λi, i = 2,3,4,5,6 are
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determined by two characteristic equations.

(4) (λ 2 +d1λ +d2)(λ
2 + e1λ + e2) = 0

Next, we solve the following equation.

(5) (λ 2 +d1λ +d2) = 0

where

d1 = φ1 +φ2,

d2 = φ1φ2−σω.

Based on Proposition 1 (ii) in [23], the eigenvalues λk,k = 3,4 will satisfy |arg(λk)|= π >
απ

2
,

if d1 > 0 dan d2 > 0.

The other two eigenvalues are determined by the following equation.

(6) (λ 2 + e1λ + e2) = 0

where

e1 = φ3 +φ4−θ ,

e2 = φ3(φ4−θ)−Aϑ .

A =
βΛφ2

φ1φ2−σω

By using the same conditions as in the previous proof, the eigenvalues λl, l = 5,6. will sat-

isfy |arg(λl)| = π >
απ

2
, if e1 > 0 and e2 = φ3(φ4− θ)−Aϑ > 0, or R0 < 1. According to

Matignon’s condition or Theorem 2 in [24] X0 is locally asymptotically stable. �

Theorem 5. The disease-free equilibrium point of the model (2) is locally asymtotically stable

if R0 > 1.

Proof. Stability of endemic equilibrium point X∗, by computing X∗ in (3), let B =
β I∗

1+ cI∗
and

D =
βS∗

(1+ cI∗)2 , the eigen values of the Jacobian matrix J(X∗) can be written as

(7) (λ +µ)(λ 5 +b1λ
4 +b2λ

3 +b3λ
2 +b4λ +b5)
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where

b1 = B−θ +φ1 +φ2 +φ3 +φ4 +φ5,

b2 = B(−θ +φ2 +φ3 +φ4 +φ5)−Dϑ −σω−θ(φ1 +φ2 +φ3 +φ5)+φ1(φ2 +φ3 +φ4 +φ5)

+φ2(φ3 +φ4 +φ5)+φ3(φ4 +φ5)+φ4φ5,

b3 = Bθ(−φ2−φ3−φ5)+Bφ2(φ3 +φ4 +φ5)+Bφ3(φ4 +φ5)+B(φ4φ5)−Dϑ(φ1 +φ2 +φ5)

+σω(θ −φ3−φ4−φ5)−θ(φ1(φ2 +φ3 +φ5)+φ2(φ3 +φ5)φ3φ5)+φ1φ2(φ3 +φ4 +φ5),

+φ1φ3(φ4 +φ5)+φ4(φ1φ5 +φ2φ3)+φ2φ5(φ3 +φ4)+φ3φ4φ5,

b4 = −Bγρϑ −Bθφ2(φ3 +φ5)−Bθφ3φ5 +Bφ2φ3(φ4 +φ5)+Bφ4φ5(φ2 +φ3)+Dϑ(σω

−φ1φ2−φ1φ5−φ2φ5)+σω(θ(φ3 +φ5)−φ3(φ4 +φ5)−φ4φ5)−θ(φ1φ2(φ3 +φ5)

+φ3φ5(φ1 +φ2))+φ1φ2(φ3φ4 +φ3φ5 +φ4φ5)+φ3φ4φ5(φ1 +φ2),

b5 = −B(φ2(γρϑ +θφ3φ5)−φ3φ4φ5)+Dϑφ5(σω−φ1φ2)+σωφ3φ5(θ −φ4)

−φ1φ2φ3φ5(θ −φ4).

According to the Routh-Hurwitz criterion [25], we find that if, only if, the coeficients bk > 0

for k = 1,2,3,4,5, b1b2−b3 > 0,b1b2b3−b2
1b4−b2

3 > 0, and (b1b2−b3)(b3b4−b2b5)−(b5−

b1b4)
2 > 0, then all roots of equations (7) have negative real parts. When α ∈ (0,1] the endemic

aquilibrium point is locally asymptotically stable if all roots of equation (7) satisfy |arg(λk)|>
απ

2
. �

6. NUMERICAL SIMULATIONS

In this section, we will present some numerical simulation results of the model (2) using the

Grunwald-Letnikov scheme developed by Scherer [26]. Based on Grunwald Letnikov’s explicit,

the numerical equation form of model (2) is

Dα
t S(tn+1) = hα

(
Λ+ρRn +ωVn−

βSnIn

1+ cIn

)
+

n+1

∑
k=1

(−1)k
(

α

k

)
Sn+1−k +

(n+1)−α

Γ(1−α)
S0,

Dα
t V (tn+1) = hα(σSn− (δ +ω +µ)Vn)+

n+1

∑
k=1

(−1)k
(

α

k

)
Vn+1−k +

(n+1)−α

Γ(1−α)
V0,

(8)
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Dα
t P(tn+1) = hα(δVn−µPn)+

n+1

∑
k=1

(−1)k
(

α

k

)
Pn+1−k +

(n+1)−α

Γ(1−α)
P0,

Dα
t E(tn+1) = hα

(
βSnIn

1+ cIn
+(ϑ +µ)En

)
+

n+1

∑
k=1

(−1)k
(

α

k

)
En+1−k +

(n+1)−α

Γ(1−α)
E0,

Dα
t I(tn+1) = hα(θ In +ϑE− (γ + ε +µ)In)+

n+1

∑
k=1

(−1)k
(

α

k

)
In+1−k +

(n+1)−α

Γ(1−α)
I0,

Dα
t R(tn+1) = hα(γIn− (ρ +µ)Rn)+

n+1

∑
k=1

(−1)k
(

α

k

)
Rn+1−k +

(n+1)−α

Γ(1−α)
R0.

6.1. Equilibrium Points Simulation

Using the parameter values in Table 1 except β = 0, we get R0 = 0.873015 < 1,

the basic reproduction number shows that the endemic equilibrium point does not ex-

ist. By implementing parameter values in Table 1, and the initial value are set

to be N1(0) = (360,90,135,125,95,130), N2(0) = (400,205,180,280,195,220),N3(0) =

(380,105,150,95,105,170). We obtained X0 = (613.31,91.99,229.99,0,0,0) and we get the

eigenvalues λi, i = 1,2,3,4,5,6 are λi = (−0.4, −0.41,−2.13,−0.57,−1.29,−0.03). The sim-

ulation results are represented in Figure 2.
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FIGURE 2. Phase potrait SVP and EIR using parameter in Table 1 with α = 0.9

for R0 < 1

Based on the Figure 2, we can observed that from the different initial values, the solution

orbit in the S,V,P phase potrait and E, I,R phase potrait, converge towards X0. Therefore the

infection does not exist and the rubella virus will not appear in the future.

To show the influence of memory effects, a simulation is conducted with parameter values
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in Tabel 1 and for some values of α (α = 0.4,0.6,0.8,0.9,1). The simulation results are repre-

sented in Figure 3.
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FIGURE 3. Plots for R0 < 1 corresponding to different values of α =

0.4,0.6,0.8,0.9,1

We can observe from the Figure 3 that the curves of each compartment have the same trend

when α is changed. However, A higher alpha value leads to faster convergence of the solution

curves. That is to say the value of α has a crucial effect on the dynamics of the system.

Next, simulation using the parameter values in Table 1 and we get R0 = 3.522 > 1. The basic

reproduction number shows that the spread of Rubella disease always exists. Then implement-

ing the parameter values in system (8), we get X∗ = (108.8,16.33,40.80,254,2701,988.3). To

show the stability of the equilibrium point, this simulation produces successive Routh-Hurwitz

criterion values b1 = 7.358 > 0,b1b2− b3 = 112.4 > 0,b1b2b3− b2
1b4− b2

3 = 1528 > 0, and

(b1b2−b3)(b3b4−b2b5)−(b5−b1b4)
2 = 6694> 0. Therefore, the endemic equilibrium points

are locally asymptotically stable. The simulation results are represented by Figure 4.
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FIGURE 4. Phase potrait SVP and EIR using parameter in Table 1 with α = 0.9

for R0 > 1

To show the influence of memory effects, a simulation is conducted with parameter values in

Tabel 1 and for some values of α (α = 0.6,0.8,0.9,1). The simulation results are represented

in Figure 5.
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FIGURE 5. Plots for R0 > 1 corresponding to different values of α =

0.6,0.8,0.9,1
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7. CONCLUSIONS

We introduce the fractional-order rubella disease model with vertical transmission, consists

of six compartmens: susceptible (S), vaccinated (V ), protected (P), exposed (E), infected (I),

and recovered (R). The incidence rate used is the saturated incidence rate. The properties of

the model’s solutions, including the existence and uniqueness of solutions, have been estab-

lished. The model’s solutions are consistently positive and bounded within the domain Φ. The

disease-free equilibrium point always exists and is locally asymptotically stable if R0 < 1 and

satisfies the Routh-Hurwitz criteria. Conversely, if R0 > 1, the endemic equilibrium point exists

and is locally asymptotically stable if it satisfies the Routh-Hurwitz criterion. The numerical

simulations conducted demonstrate results consistent with the dynamic analysis, with solution

curves convergent to the equilibrium point.
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