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Abstract: Most eco-epidemiological models use a bi-linear functional response, also known as the simple law of mass 

action, to describe the transmission of an infection. The non-linear incidence rate considers the infected individuals' 

crowding effect and prevents the contact rate's unboundedness by choosing suitable parameters. This paper aims to 

construct an Eco-Epidemiological model following the nonlinear incidence rate suggested by Gumel and Moghadas 

2003. The model also offers a reasonable, realistic approach to the ecological systems in the world as we follow the 

Holling type II for the predator-susceptible prey interaction and the simple mass action low for the predator for the 

predator-infected prey interaction as the infected prey would be weak. The time for finding it would be significantly 

more than the time needed to catch the healthy prey. We proved the solutions' positivity and existence and our model's 

boundedness. The equilibrium points are determined with the feasibility conditions for each. Local stability has been 

analysed using Routh Hurwitz, and a Lyapunov function has been constructed to study global stability according to 

La Salle theorem. Different types of bifurcation are observed using Sotomayor’s and Hopf theorems. The numerical 

analysis of the solution was carried out using fourth-order Runge-Kutta. The simulations that we performed using 

MATLAB 2022a supported our theoretical findings. 

Keywords: predator-prey; eco-epidemiological model; nonlinear incidence rate; local stability; global stability; hopf 

bifurcation; transcritical bifurcation. 
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1. INTRODUCTION 

The dynamic relationship between predator and prey is considered one of the most fundamental 

relationships in ecology, as this relationship is one of the top-studied subjects by ecologists. The 

Lotka-Volterra system is the first fundamental prey-predator system; it goes back to the First 

World War [1]. 

The Lotka-Volterra simple mathematical model can be described as the following: 

 

(1) 

𝑑𝑆

𝑑𝑇
= 𝛼𝑆 −𝑚𝑆𝑃 

𝑑𝑃

𝑑𝑇
= 𝜃𝑚𝑆𝑃 − 𝑑𝑃 

 

S: The size of prey population  

P: The size of predator population  

T: Time 

α: Prey’s growth rate 

m: The predation rate  

θ: Conversion factor which denotes the number of newly born predators for each killed prey 

d: Predator’s natural death rate 

The previous system (1) and its variants were extensively studied by many researchers aiming to 

understand the various ways in which predator-prey interactions take place [2]–[5]. However, the 

representation in (1) does not explicitly incorporate the impact of transmittable illnesses on 

predator-prey interdependence. While valuable insights into interaction dynamics have been 

gleaned, the lack of consideration for infectious factors represents a limitation. Infectious diseases 

represent significant determinants shaping populace progression, as Research has shown that low-

magnitude perturbations originating from environmental sources can induce oscillations in 

population levels around an average threshold. In contrast, high-intensity disturbances emanating 

from the surrounding habitat may result in total elimination of the population [6]. The work of [7] 

and [8] studied a predator-prey model where the prey population is subjected to disease, and the 

transmission rate of the infection follows the law of mass action. The study shows that the disease 

in the prey population can induce chaotic interactions. 

To expand upon the classic Lotka-Volterra predator-prey model, various formulations of 

functional responses have been proposed which refine how consumption rates relate to prey 

abundance levels. One such example is the Holling type II functional response, which depicts a 

saturating applicable form as prey becomes more plentiful. Generalized variants of this specific 



  3 

DYNAMICAL ANALYSIS OF AN ECO-EPIDEMIOLOGICAL MODEL 

functional response have also been devised to capture additional nuances [9]–[11]. Accounting for 

non-linearities in the predation relationship through customized functional responses allows for 

more sophisticated representations of harvesting effects than the simple linear assumption of the 

basic Lotka-Volterra equations. Continued exploration of diverse functional responses remains an 

intriguing avenue for developing an increasingly refined understanding of predator-prey 

population dynamics. 

Other studies have also explored the dynamics of a predator-prey system incorporating a disease 

in either the prey or the predator [12]–[14]. Nevertheless, these studies use the bilinear incidence 

rate to describe the transmission of the disease. Nonetheless, the bilinear incidence rate doesn’t 

take into account the crowding effect of the infected individuals. Gumel and Moghadas [15] 

proposed the nonlinear incidence rate, which accounts for how the crowding effect, thereby more 

realistically portraying pathogen transmission dynamics as population densities fluctuate over 

space and time. The added nuance of factoring density effects represents an advantageous 

enhancement over the more straightforward law of mass action formulation for capturing 

important epidemiological subtleties. 

Accordingly, we propose a predator-prey model that includes two key elements:  

1) Holling type II functional response to describe the susceptible prey predation rate. 

2) Nonlinear incidence rate for the infection transmission. 

Accounting for such delays provides a more complete characterization of fundamental ecological 

interactions that inevitably involve consumption history effects. Incorporating time delays into our 

proposed predator-prey model with a nonlinear incidence rate could yield additional insights into 

how delays interact with and amplify the impact of other complexity features in the system. This 

represents a promising direction for future research to generate a highly sophisticated and 

representative theoretical framework,  

The nonlinear incidence rate was studied in [16], where the predator is considered to consume the 

infected prey only, and the predation followed Crowley-Martin-type functional response. 

In this study, we formulate an eco-epidemiological model characterizing the interaction between 

a predator population and a prey population impacted by disease. The proposed model adopts a 

Holling type II functional response to represent the predation dynamics between predators and 

susceptible prey, aiming to realistically capture prey defense behaviors that can impede 

consumption rates. Meanwhile, a simple mass-action scheme governs the predator-infected prey 

interaction, as the infection is presumed to render exposed prey less able to escape or elude capture 
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by predators. We assume disease transmission occurs via direct contact between susceptible and 

infected prey. Specifically, disease spread follows a nonlinear incidence rate first established by 

Gumel and Moghadas in [15] that accounts for inhibitory crowding effects among infected 

individuals. By integrating different functional response assumptions tied to disease state, along 

with density-dependent transmission dynamics, the model aims to offer a more nuanced depiction 

of predator-prey-pathogen interaction compared to mass-action formulations. 

This paper offers a thorough analysis of the dynamics of the eco-epidemiological while still 

considering the crowding effect; such a model can be applied in a wide range of ecosystems where 

fatal diseases appear in the prey population. 

 

2. THE MATHEMATICAL MODEL 

We seek to develop an eco-epidemiological model mainly consisting of a prey and predator. The 

prey specie is divided into two sub-species 1) susceptible prey (S) and 2) infected prey (I). The 

predators are considered to be healthy at all times. 

1. When there is no disease, the prey population follows the logistical growth function with a 

carrying capacity of 𝐾 >  0 and a substantial growth rate constant of 𝛼 >  0. 

2. the prey population consists of two groups; susceptible prey 𝑆(𝑡) and infected prey 𝐼(𝑡). The 

total number of preys at any given time 𝑡, denoted as 𝑋(𝑡), can be expressed as the sum of these 

subgroups: 𝑋(𝑡) = 𝑆(𝑡) + 𝐼(𝑡). Additionally, it is posited that only susceptible prey retains the 

capacity for reproduction, allowing their numbers to rise up to environmental carrying capacity. 

We also presume infected prey to be incapable of recovery, reproduction or resource competition 

during the afflicted stage. These assumptions aim to realistically capture the anticipated functional 

limitations on prey impacted by the disease factor 

3. The disease transmission between susceptible and infected prey is modeled using a nonlinear 

incidence rate formula of the form 
𝛽𝐼𝑆

1+𝐼
. This formulation was originally proposed by Gumel and 

Moghadas in 2003 and has since been widely adopted. In this expression, 𝛽𝐼  represents the 

infection force exerted by infected individuals, while the 
1

1+𝐼
 term accounts for inhibition caused 

by crowding of infected prey. This approach is deemed more realistic than solely relying on a basic 

bilinear rate βSI, as it considers how crowding of infected prey can hamper transmission in addition 

to preventing unlimited contact rates through judicious parameter selection fitting the modeled 



  5 

DYNAMICAL ANALYSIS OF AN ECO-EPIDEMIOLOGICAL MODEL 

system. By integrating density dependence effects, the incidence rate provides a reasonable 

depiction of disease spread dynamics versus simplistic mass action assumptions. 

4. We assumed the predator consumes both the infected and susceptible prey as it is unable of 

identifying the infected prey from healthy. 

5. We presumed that infected prey would be physically weakened by illness, making them easier 

targets. Accordingly, we considered that predators could immediately overtake infected prey, for 

simplicity, we treated the time spent by predators handling or subduing infected individuals as 

essentially negligible. This zero-handling time assumption resulted in the predation equation 

following a Volterra functional response dynamic, consistent with a Holling Type I functional 

response. 

6. The model stipulates that the predators’ consumption of the healthy(susceptible) prey is 

happening according to a Holling type II functional response. 

The eco-epidemiological model: 

 

(2) 

𝑑𝑆

𝑑𝑇
= 𝛼𝑆 (1 −

𝑆

𝑘
) −

𝛽𝑆𝐼

1 + 𝐼
−
𝑚1𝑆𝑃

ℎ + 𝑆
      

𝑑𝐼

𝑑𝑇
=
𝛽𝑆𝐼

1 + 𝐼
− 𝑚2𝐼𝑃 − 𝑑1𝐼                 

𝑑𝑃

𝑑𝑇
=
𝑒1𝑚1𝑆𝑃

ℎ + 𝑆
+ 𝑒2𝑚2𝐼𝑃 − 𝑑2𝑃             

 

 

(3) 𝑆, 𝐼, 𝑃 ≥ 0  

(4) 𝛼, 𝛽,𝑚1, 𝑚2, 𝑑1, 𝑑2, 𝑒1, 𝑒2, ℎ > 0  

𝑺: The size of prey population  

𝑷: The size of predator population  

𝑻: Time 

𝜶: Prey’s growth rate 

𝒎𝟏: The predation rate of the susceptible 

prey 

𝒎𝟐 The predation rate of the infected 

prey 

𝒆𝟏: Conversion factor of the susceptible 

prey 
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𝒆𝟐: Conversion factor of the infected 

prey 

𝒉: Half saturation constant  

𝒅𝟏: Infected natural death rate 

𝒅𝟐: Predator’s natural death rate 

 

3. THE DIMENSIONLESS FORM OF THE MODEL 

In this section we seek to reduce the number of the parameters by obtaining the dimensionless 

form of our model making the analysis simpler  

Let’s assume that: 

(5) 
𝑠𝑘 = 𝑆, 𝑖𝑘 = 𝐼, 𝑝𝑘 = 𝑃, 𝑇 =

𝑡

𝛼
 

 

Substituting into (2): 

 

 

 

(6) 

𝑑𝑠

𝑑𝑡
= 𝑠(1 − 𝑠) −

𝑎2𝑠𝑖

𝑎3 + 𝑖
−
𝑏1𝑠𝑝

𝑐1 + 𝑠
 

𝑑𝑖

𝑑𝑡
=
𝑎2𝑠𝑖

𝑎3 + 𝑖
− 𝑏2𝑖𝑝 − 𝑐2𝑖 

𝑑𝑝

𝑑𝑡
=
𝑒1𝑏1𝑠𝑝

𝑐1 + 𝑠
+ 𝑒2𝑏2𝑖𝑝 − 𝑐3𝑝        

 

Where, 

(7)  𝑎2 =
𝛽

𝛼
> 0, 𝑎3 =

1

𝑘
> 0 , 𝑏1 =

𝑚1

𝛼
> 0, 𝑏2 =

𝑚2𝑘

𝛼
> 0, 𝑐1 =

ℎ

𝑘
> 0 , 𝑐2 =

𝑑1

𝛼
> 0, 𝑐3 =

𝑑2

𝛼
> 0  

 

 

4. POSITIVITY AND BOUNDEDNESS 

In this section we aim to ensure that our model is well-posed by proving its positivity and 

boundness 

Existence and uniqueness of the solution  

Theorem 3.1. All solutions of system (6) corresponding to the initial conditions 

𝑠(0), 𝑖(0), 𝑝(0)  ≥  0  exist and are unique in the period [0, 𝜉]  where  0 <  𝜉 <  ∞  and 

𝑠(𝑡), 𝑖(𝑡), 𝑝(𝑡)  ≥  0. 
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(8) 

𝑠(0) = 𝑠0 ≥ 0 

𝑖(0) = 𝑖0 ≥ 0 

𝑝(0) = 𝑝0 ≥ 0  

𝑡 ≥ 0 

From (6) we write: 

 

(9) 

𝑑𝑠

𝑑𝑡
= 𝑠(1 − 𝑠) −

𝑎2𝑠𝑖

𝑎3+𝑖
−
𝑏1𝑠𝑝

𝑐1+𝑠
= 𝑔1(𝑥)  

𝑑𝑖

𝑑𝑡
=

𝑎2𝑠𝑖

𝑎3+𝑖
− 𝑏2𝑖𝑝 − 𝑐2𝑖 = 𝑔2(𝑥)  

𝑑𝑝

𝑑𝑡
=
𝑒1𝑏1𝑠𝑝

𝑐1+𝑠
+ 𝑒2𝑏2𝑖𝑝 − 𝑐3𝑝 = 𝑔3(𝑥)  

 

 

The phase space for the system (9) is 

 𝑅+
3 = {(𝑠, 𝑖, 𝑝) ∈  𝑅3 ∶  𝑠 ≥  0, 𝑖 ≥  0, 𝑝 ≥  0} Obviously, the functions 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥) 

are continuos functions and their partial derivatives exist and are also continuous on the phase 

space 𝑅3 ;therefor these functions are Lipschitzian on 𝑅+
3  and so, the system (9) with the non-

negative initial condition (8) has a unique solution on [0, 𝜖 ], where 0 <  𝜖 <  ∞ [17]. 

Integrating (9) with respect to initial conditions, we get 

 

(10) 
𝑠(𝑡) = 𝑠(0)𝑒∫ 𝑓1(𝑠(𝑥),𝑖(𝑥),𝑝(𝑥).𝑑𝑥

𝑡
0 ≥ 0 

𝑖(𝑡) = 𝑖(0)𝑒∫ 𝑓2(𝑠(𝑥),𝑖(𝑥),𝑝(𝑥).𝑑𝑥
𝑡
0 ≥ 0 

𝑝(𝑡) = 𝑝(0)𝑒∫ 𝑓3(𝑠(𝑥),𝑖(𝑥),𝑝(𝑥).𝑑𝑥
𝑡
0 ≥ 0 

 

Where from (8) we have 

𝑠(0) = 𝑠0 ≥ 0 

𝑖(0) = 𝑖0 ≥ 0 

𝑝(0) = 𝑝0 ≥ 0  

𝑡 ≥ 0 

Which proves the theorem. 

Uniformly boundedness 

The boundedness suggests that our eco-epidemiological model is biologically well-behaved. The 

boundedness of the system (6) is guaranteed by theorem 3.2. 

Theorem 3.2. All the solutions of the system (6) which starts in 𝑅+
3  are uniformly bounded. 
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Proof:  for the proof of this theorem, we study two different cases for the initial value of 𝑠   

Case1: 

Let 𝑠(0) ≤ 1 and we claim 𝑠(𝑡) ≤ 1 

We prove by contradiction; let’s assume 𝑠(𝑡) ≥ 1, 𝑡ℎ𝑒𝑛 ∃ 𝑡1, 𝑡2 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑠(𝑡1) =

1 𝑎𝑛𝑑 𝑠(𝑡2) > 1 𝑡ℎ𝑒𝑛 ∀𝑡 ∈ (𝑡1, 𝑡2] 𝑤𝑒 𝑠𝑎𝑦 𝑠(𝑡) > 1 𝑖𝑠 𝑡𝑟𝑢𝑒 

from (10) we can write, 

 𝑠(𝑡) = 𝑠(0)𝑒∫ 𝑓1(𝑠(𝑥),𝑖(𝑥),𝑝(𝑥)).𝑑𝑥
𝑡
0 = 𝑠(0) [𝑒

∫ 𝑓1(𝑠(𝑥),𝑖(𝑥),𝑝(𝑥)).𝑑𝑥
𝑡1
0 +∫ 𝑓1(𝑠(𝑥),𝑖(𝑥),𝑝(𝑥)).𝑑𝑥

𝑡
𝑡1 ] 

(11) 𝑠(𝑡) = 𝑠(𝑡1) [𝑒
∫ 𝑓1(𝑠(𝑥),𝑖(𝑥),𝑝(𝑥)).𝑑𝑥
𝑡
𝑡1 ]  

We have 𝑠(𝑡1) = 1 then (11) becomes: 

(12) 
𝑠(𝑡) = 𝑒

∫ 𝑓1(𝑠(𝑥),𝑖(𝑥),𝑝(𝑥).𝑑𝑥
𝑡
𝑡1  

 

but 𝑠(𝑡) > 1 as in our assumption and 

(13) 𝑓1(𝑠(𝑡), 𝑖(𝑡), 𝑝(𝑡)) = 𝑠(𝑡)(1 − 𝑠(𝑡)) −
𝑎2𝑠(𝑡)𝑖(𝑡)

𝑎3+𝑖(𝑡)
−
𝑏1𝑠(𝑡)𝑝(𝑡)

𝑐1+𝑠
< 0   

Going back to (12) we find 𝑠(𝑡) < 1, contradiction. 

Case 2:  

Let 𝑠(0) > 1 and we claim lim
𝑡→∞

𝑠𝑢𝑝 𝑠(𝑡) ≤ 1 

Suppose it is not true then 𝑠(𝑡) > 1 and ∀ 𝑡 > 0 and so 𝑓1(𝑡) < 0 

From 𝑙1 we have: 

(14) 𝑑𝑠

𝑑𝑡
= 𝑠(1 − 𝑠) −

𝑎2𝑠𝑖

𝑎3 + 𝑖
−
𝑏1𝑠𝑝

𝑐1 + 𝑠
     

𝑠𝑖𝑛𝑐𝑒 𝑠(𝑡) > 1 then, 

(15) 𝑑𝑠

𝑑𝑡
< 𝑠(1 − 𝑠) < 0  

 

Integrating (15) and making 𝑡 → ∞ we get 𝑠(𝑡) < 1 when 𝑡 → ∞ contradiction. Hence,  

lim
𝑡→∞

𝑠𝑢𝑝 𝑠(𝑡) ≤ 1 

Now to show that the population sizes of 𝑠, 𝑖, 𝑝 are bounded, it is enough to prove the uniformly 

boundness of the total population size Γ =  𝑠 +  𝑖 +  𝑝 for all 𝑡 ≥ 0. 

(16) 
Γ’ =  𝑠’ +  𝑖’ +  𝑝’  𝑤ℎ𝑒𝑟𝑒 ′ =

𝑑

𝑑𝑡
 

 

From (16): 
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 Γ′ = 𝑠(1 − 𝑠) −
𝑏1𝑠𝑝

𝑐1+𝑠
(1 − 𝑒1) − 𝑏2𝑖𝑝(1 − 𝑒2) − 𝑐2𝑖 − 𝑐3𝑝 ≤ 𝑠(1 − 𝑠) − 𝑐2𝑖 − 𝑐3𝑝 

we take 𝜚 = min{𝑐2, 𝑐3} 

Γ′ + 𝜚Γ ≤ 𝑠(1 − 𝑠) − 𝑐2𝑖 − 𝑐3𝑝 + 𝜚(𝑠 + 𝑖 + 𝑝) ≤ 𝑠(1 − 𝑠)(𝑎1𝑠 − 1) − 𝑐2𝑖 − 𝑐3𝑝 +

𝜚(𝑠 + 𝑖 + 𝑝) ≤ 𝑠[(1 − 𝑠) + 𝜚] − (𝑐2 − 𝜚)𝑖 − (𝑐3 − 𝜚)𝑝 ≤ 𝑠[(1 − 𝑠) + 𝜚] ≤ −𝑠
2 + 𝑠(1 + 𝜚) ≤

1 + 𝜚 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑠 ≤ 1  

Γ′ + 𝜚Γ ≤ 1 + 𝜚 = 𝜃 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

Γ′ + 𝜚Γ ≤ 𝜃 ⟹ Γ′ ≤ 𝜃 − 𝜚Γ  

following the help of the theory of differential inequality [18], we obtain 

(17) 0 < Γ < Γ(0)𝑒−𝜚𝑡 −
𝜃

𝜚
𝑒−𝜚𝑡 +

𝜃

𝜚
 

 

Where Γ(0) denotes the initial value of total population. 

now when 𝑡 → ∞  in (17) we get Γ <
𝜃

𝜚
 

(18) Γ <
1 + 𝜚

𝜚
  

Which indicates that the total population size Γ(𝑡) takes of the function 𝑓 that starts with the 

initial value Γ(0) at the initial time 𝑡 =  0 is bounded by the value 
1+𝜚

𝜚
 as the time t grows to 

infinity. Thus, from (17) and (18) it can be concluded that Γ(𝑡) is bounded as 

(19) 0 ≤   Γ(𝑡) ≤
1 + 𝜚

𝜚
  .   

As in (19), we can confirm that 
1+𝜚

𝜚
 is an upper bound of Γ(𝑡). Therefore, the feasible solution 

for our system (6) stays in the positively invariant region Ω, where Ω={𝑠, 𝑖, 𝑝) ∈ 𝑅+
3 : Γ ≤

1+𝜚

𝜚
+

𝜉      ∀𝜉 > 0. Thus, our system in (6) is biologically meaningful and mathematically well-posed 

in the domain Ω. Examining the population fluctuations within the designated theoretical 

parameters demonstrates the model's properties in that conceptual space proving the theorem. 

This verification substantiates the theoretical proposition. In essence, one may consolidate the 

key consequence of this proposition as the model maintains finite values for all (𝑡 ≥ 0). 

 

5. EQUILIBRIUM ANALYSIS 

The system (6) has the following equilibrium states: 

1) The trivial equilibrium point 𝐸0(0,0,0)  



10 

TALEB GABER, RATNA HERDIANA, WIDOWATI 

2) The axial equilibrium point 𝐸1(1,0,0),  

3) The susceptible prey-free equilibrium point (𝐸2(0,
𝑐3

𝑒2𝑏2
, −

𝑐2

𝑏2
) 

4) The disease-free equilibrium point 𝐸3(�̅�, 0, �̅� ) 

�̅� =
𝑐3𝑐1

(𝑏1𝑒1−𝑐3)
  

�̅� =
𝑐1𝑒1(𝑒1𝑏1−𝑐3(1+𝑐1))

(𝑏1𝑒1−𝑐3)2
   

5) The predator-free equilibrium points (p-free equilibrium points) 𝐸4(𝑠
∗, 𝑖∗, 0) 

Where 𝑠∗ =
𝑐2

𝑎2
(𝑎3 + 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(𝑣2𝑧

2 + 𝑣1𝑧 + 𝑣0)) 

𝑖∗ 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑜𝑜𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒  𝑐𝑢𝑏𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(𝑣2𝑧
2 + 𝑣1𝑧 + 𝑣0) 

 

𝑣2 = 𝑐2 

𝑣1 = 𝑎2
2 − 𝑎2 + 2c2a3 

𝑣0 = 𝑎3
2𝑐2 − 𝑎3 ∗ 𝑎2 

6) Interior equilibrium points �̃�(�̃�, 𝑖̃, 𝑝) 

�̃� = −𝑐1
(𝑒2𝑏2𝑋−𝑐3)

𝑒2𝑏2𝑋+(𝑒1𝑏1−𝑐3)
  

𝑖̃ = 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑜𝑜𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(𝑢3𝑍
3 + 𝑢2𝑍

2 + 𝑢1𝑍 + 𝑢0)  

𝑝 = −
(𝑒2𝑏2(𝑎3𝑐2𝑋+𝑐1𝑎2𝑋+𝑐2𝑋

2)+𝑐2𝑏1𝑒1(𝑎3+𝑋)−𝑐3(𝑎3𝑐2+𝑎2𝑐1+𝑐2𝑋))

𝑏2(𝑒2𝑏2𝑋+(𝑒1𝑏1−𝑐3))(𝑎3+𝑋)
  

 

𝑋 = 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(𝑢3𝑍
3 + 𝑢2𝑍

2 + 𝑢1𝑍 + 𝑢0)  

𝑢3 = 𝑏2
2𝑒2
2𝑐2  

𝑢2 = −((−𝑒1𝑐1
2 + ((𝑎2 − 1)𝑒1 − 𝑎2𝑒2)𝑐1 − 𝑎3𝑐2𝑒2)𝑏2 − 2𝑐2 ∗ (𝑏1𝑒1 − 𝑐3)) 𝑏2𝑒2  

𝑢1 = 𝑎3𝑐1𝑒1𝑒2𝑏2
2(𝑐1 + 1) + (−𝑏1𝑐1𝑒1

2`(𝑎2 − 1) + (−𝑐3𝑐1
2 + ((𝑎2 − 1)𝑐3 + 𝑎2𝑏1𝑒2)𝑐1 +

2𝑎3𝑏1𝑐2𝑒2)𝑒1 − 2𝑐3𝑒2 ∗ (𝑎2𝑐1 + 𝑎3𝑐2)) 𝑏2 + 𝑐2(𝑏1𝑒1 − 𝑐3)
2  

𝑢0 = (𝑐2𝑐3
2 + 𝑒1((𝑏1𝑒1 − 𝑐3)(𝑏1𝑐2 + 𝑏2𝑐1) − 𝑐3𝑏2𝑐1

2)) 𝑎3 − 𝑎2𝑐1𝑐3(𝑏1𝑒1 − 𝑐3)  

Feasibility 

Obviously, the equilibria 𝐸0, 𝐸1 are feasible while 𝐸2 is not feasible so there will be no need to 

further analyze it, 𝐸3 is feasible under the conditions 𝑐3(1 + 𝑐1) < 𝑏1𝑒1 
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To determine the feasibility of 𝐸4 we can say that the predator-free equilibrium points (p-free 

equilibrium points) 𝐸4(𝑠
∗, 𝑖∗, 0)exists if and only if there is a solution where 𝑠∗, 𝑖∗ > 0 and 

𝑝∗ = 0 to the following algebraic nonlinear system: 

 

(20) 

𝑠(1 − 𝑠) −
𝑎2𝑠𝑖

𝑎3+𝑖
−
𝑏1𝑠𝑝

𝑐1+𝑠
= 0  

𝑎2𝑠𝑖

𝑎3+𝑖
− 𝑏2𝑖𝑝 − 𝑐2𝑖 = 0  

𝑒1𝑏1𝑠𝑝

𝑐1+𝑠
+ 𝑒2𝑏2𝑖𝑝 − 𝑐3𝑝 = 0  

 

Substituting 𝑠 = 𝑠∗, 𝑖 = 𝑖∗ 𝑎𝑛𝑑 𝑝 = 0  to the system (20) we get  

 

(21) 

𝑠∗(1 − 𝑠∗) −
𝑎2𝑠

∗𝑖∗

𝑎3 + 𝑖∗
= 0 

𝑎2𝑠
∗𝑖∗

𝑎3 + 𝑖∗
− 𝑐2𝑖

∗ = 0 

 

By summing the equations in (21) we get, 

(22) 𝑠∗(1 − 𝑠∗) − 𝑐2𝑖
∗ = 0  

(23) 𝑖∗ =
𝑠∗(1 − 𝑠∗)

𝑐2
 

 

But 𝑖∗ > 0 then from (23) we can write: 

(24) 𝑠∗(1 − 𝑠∗)

𝑐2
> 0 

 

(25) 𝑠∗(1 − 𝑠∗) > 0  

Which leads to 

(26) 0 < 𝑠∗ < 1  

Therefor 𝐸4 is feasible under the condition 

0 < 𝑠∗ < 1 &0 < 𝑖∗ <
1

4𝑐2
  

For the interior equilibrium point  �̃�(�̃�, 𝑖̃, 𝑝) is feasible if and only if there is a solution where 

�̃�, 𝑖̃, 𝑝 > 0 to the following algebraic nonlinear system: 

�̃�(1 − �̃�) −
𝑎2�̃��̃�

𝑎3+�̃�
−
𝑏1�̃��̃�

𝑐1+�̃�
= 0 … (𝑟1)  

𝑎2�̃��̃�

𝑎3+�̃�
− 𝑏2𝑖̃𝑝 − 𝑐2𝑖̃ = 0   … (𝑟2)  

𝑒1𝑏1�̃��̃�

𝑐1+�̃�
+ 𝑒2𝑏2𝑖̃𝑝 − 𝑐3𝑝 = 0   … (𝑟3)  

From 𝑟3we get 
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(27) 𝑖̃ =
1

𝑒2𝑏2
(𝑐3 −

𝑒1𝑏1�̃�

𝑐1 + �̃�
)  

When 𝑖̃ > 0, if  𝑐3 < 𝑏1𝑒1 then 

(28) �̃� <
𝑐1𝑐3

(𝑒1𝑏1 − 𝑐3)
  

If 𝑐3 > 𝑏1𝑒1 then 

(29) �̃� >
𝑐1𝑐3

(𝑒1𝑏1 − 𝑐3)
  

From 𝑟2 we get 

(30) 𝑝 =
𝑎2�̃�

𝑏2(𝑎3 + 𝑖̃)
−
𝑐2
𝑏2
   

𝑤ℎ𝑒𝑛 𝑝 > 0 𝑡ℎ𝑒𝑛  

(31) 𝑖̃ <
𝑎2�̃� − 𝑎3𝑐2

𝑐2
  

Since 
𝑎2�̃�−𝑎3𝑐2

𝑐2
> 𝑖̃ > 0 then, 

(32) �̃� >
𝑎3𝑐2
𝑎2

  

Therefor  �̃� is feasible under the either the conditions 
𝑎3𝑐2

𝑎2
< �̃� < 1 𝑤ℎ𝑒𝑛 𝑐3 > 𝑏1𝑒1 & 0 < 𝑖̃ <

𝑎2�̃�−𝑎3𝑐2

𝑐2
 or  

𝑎3𝑐2

𝑎2
< �̃� <

𝑐1𝑐3

(𝑒1𝑏1−𝑐3)
 𝑤ℎ𝑒𝑛 𝑐3 < 𝑏1𝑒1 & 0 < 𝑖̃ <

𝑎2�̃�−𝑎3𝑐2

𝑐2
. 

 

6. LOCAL STABILITY ANALYSIS 

In this section we shall discuss the local stability of the equilibrium points we determined in the 

previous section. We will use the notation LAS instead of the term locally asymptotically stable. 

The Jacobean matrix for the system (6), 

𝐽 = (

𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,1 𝑎3,2 𝑎3,3

) 

𝑎1,1 = 1 − 2𝑠 −
𝑎2𝑖

𝑎3 + 𝑖
−
𝑏1𝑝

𝑐1 + 𝑠
+

𝑏1𝑠𝑝

(𝑐1 + 𝑠)2
 

𝑎1,2 = −
𝑎2𝑠

𝑎3+𝑖
+

𝑎2𝑠𝑖

(𝑎3+𝑖)2
  

𝑎1,3 = −
𝑏1𝑠

𝑐1+𝑠
 , 𝑎2,1 =

𝑎2𝑖

𝑎3+𝑖
  

𝑎2,2 =
𝑎2𝑠

𝑎3+𝑖
−

𝑎2𝑠𝑖

(𝑎3+𝑖)2
− 𝑏2𝑝 − 𝑐2, 𝑎2,3 = −𝑏2𝑖  
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𝑎3,1 =
𝑒1𝑏1𝑝

𝑐1+𝑠
(1 −

𝑠

𝑐1+𝑠
), 𝑎3,2 = 𝑒2𝑏2𝑝  

𝑎3,3 =
𝑒1𝑏1𝑠

𝑐1+𝑠
+ 𝑒2𝑏2𝑖 − 𝑐3  

Now we analyze around each equilibrium point, 

 Around 𝐸0(0,0,0) 

𝐽0 = (
1 0 0
0 −𝑐2 0
0 0 −𝑐3

), and the eigenvalues are 𝜆1 = 1, 𝜆2 = −𝑐2,  𝜆3 = −𝑐3 𝜆1 > 0 ⟹ 𝐸0 is 

unstable. 

Around 𝐸1(1,0,0) 

𝐽1 =

(

 
 

−1 −
𝑎2

𝑎3
−

𝑏1

𝑐1+1

0
𝑎2

𝑎3
−𝑐2 0

0 0
𝑒1𝑏1

𝑐1+1
− 𝑐3

)

 
 

, and the eigenvalues are 𝜆1 = −1, 𝜆2 =
𝑒1𝑏1

𝑐1+1 
− 𝑐3,  𝜆3 =

−𝑐2 +
𝑎2

𝑎3
 

𝜆2 < 0 𝑖𝑓𝑐3 >
𝑒1𝑏1
𝑐1 + 1 

 , 𝜆3 < 0 𝑖𝑓𝑐2 >
𝑎2
𝑎3

 

 𝑖𝑓 𝑐2 >
𝑎2

𝑎3
 & 𝑐3 >

𝑒1𝑏1

𝑐1+1 
 𝑡ℎ𝑒𝑛 𝜆𝑖 < 0 ⇒ 𝐸1 is LAS. 

Around 𝐸3(�̅�, 0, �̅� ) 

𝐽3 = (

𝐻1,1 𝐻1,2 𝐻1,3
𝐻2,1 𝐻2,2 𝐻2,3
𝐻3,1 𝐻3,2 𝐻3,3

) 

𝐻1,1 = −(𝑐1(𝑒1𝑏1 + 𝑐3) − (𝑒1𝑏1 − 𝑐3))
𝑐3

(𝑏1𝑒1−𝑐3)𝑏1𝑒1
 if  0 < 𝑐1 <

𝑒1𝑏1−𝑐3

𝑒1𝑏1+𝑐3
…𝜌1 then 𝐻1,1 > 0 

if  𝑐1 >
𝑒1𝑏1−𝑐3

𝑒1𝑏1+𝑐3
…𝜌2 then 𝐻1,1 < 0 

if 𝑐1 =
𝑒1𝑏1−𝑐3

𝑒1𝑏1+𝑐3
…𝜌3 then 𝐻1,1 = 0 

𝐻1,2 = −𝑎2𝑐3
𝑐1

(𝑏1𝑒1−𝑐3)∗𝑎3
< 0  

𝐻1,3 = −
𝑐3

𝑒1
< 0  

𝐻2,2 =
𝑎2𝑐3(𝑏1𝑒1−𝑐3)−𝑎3𝑏2𝑒1(𝑏1𝑒1−𝑐3(𝑐1+1))

𝑎3(𝑏1𝑒1−𝑐3)2
− 𝑐2 if  

𝑎2𝑐3(𝑏1𝑒1−𝑐3)−𝑎3𝑏2𝑒1(𝑏1𝑒1−𝑐3(𝑐1+1))

𝑎3(𝑏1𝑒1−𝑐3)2
> 𝑐2…𝜌4 

then, 𝐻2,2 > 0 if 
𝑎2𝑐3(𝑏1𝑒1−𝑐3)−𝑎3𝑏2𝑒1(𝑏1𝑒1−𝑐3(𝑐1+1))

𝑎3(𝑏1𝑒1−𝑐3)2
< 𝑐2…𝜌5  then 𝐻2,2 < 0 
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𝐻3,1 =
𝑒1𝑏1−𝑐3(𝑐1+1)

𝑏1
> 0  

𝐻3,2 = 𝑒2𝑏2𝑐1𝑒1
𝑏1𝑒1−𝑐3(𝑐1+1)

(𝑏1𝑒1−𝑐3)2
> 0  

𝐻2,1 = 𝐻2,3 = 𝐻3,3 = 0  

And the characteristic equation is  

𝜆3 + 𝐿2𝜆
2 + 𝐿1𝜆 + 𝐿0 = 0  

𝐿2 = −(𝐻1,1 + 𝐻2,2 +𝐻3,3) = −(𝐻1,1 + 𝐻2,2) 

𝐿1 = 𝐻1,1𝐻2,2 + 𝐻1,1𝐻3,3 +𝐻2,2𝐻3,3 − 𝐻1,2𝐻2,1 − 𝐻2,3𝐻3,2 − 𝐻1,3𝐻3,1 = 𝐻1,1𝐻2,2 − 𝐻1,3𝐻3,1 

𝐿0 = 𝐻1,3𝐻3,1𝐻2,2 + 𝐻1,2𝐻2,1𝐻3,3 + 𝐻1,1𝐻2,3𝐻3,2 − 𝐻1,3𝐻2,1𝐻3,2 − 𝐻1,1𝐻2,2𝐻3,3 − 𝐻1,2𝐻3,1𝐻2,3

= 𝐻1,3𝐻3,1𝐻2,2 

According to Routh Hurwitz Stability Criteria 𝐸3 is LAS if 𝐿2, 𝐿0 > 0 and 𝐿1𝐿2 > 𝐿0 

If 𝐿0 > 0 then 𝐻1,3𝐻3,1𝐻2,2 > 0 

𝐻1,3 < 0 𝑎𝑛𝑑 𝐻3,1 > 0 𝑡ℎ𝑒𝑛 𝐻2,2 < 0…(𝜂1) which means that 𝜌5 should be satisfied. 

If 𝐿2 > 0 and taking (𝜂1) into account then 𝐻1,1 + 𝐻2,2 < 0… (𝜂2) which means either 𝜌5 

and 𝜌2 are satisfied or 𝜌5, 𝜌1 and 𝐻1,1 < 𝐻2,2 

If 𝐿1𝐿2 > 𝐿0 then −(𝐻1,1𝐻2,2 − 𝐻1,3𝐻3,1)(𝐻1,1 + 𝐻2,2) > 𝐻1,3𝐻3,1𝐻2,2 ⇒  

−𝐻1,1𝐻2,2(𝐻1,1 + 𝐻2,2) + 𝐻1,3𝐻3,1𝐻1,1 > 0 ⇒ 𝐻1,1 (𝐻1,3𝐻3,1 − 𝐻2,2(𝐻1,1 + 𝐻2,2)) > 0… (𝜂3)  

Using the conditions (𝜂1), (𝜂2) in  (𝜂3) we get that (𝜂3) is satisfied only when 𝐻1,1 < 0 

which means if 𝜌5 and 𝜌2 are satisfied then 𝐸3 is LAS 

Around 𝐸4(𝑠
∗, 𝑖∗, 0) 

𝐽4 = (

𝑊1,1 𝑊1,2 𝑊1,3
𝑊2,1 𝑊2,2 𝑊2,3
𝑊3,1 𝑊3,2 𝑊3,3

) 

𝑊1,1 = 1 − 2𝑠
∗ −

𝑎2𝑖
∗

𝑎3+𝑖∗
  

𝑊1,2 = −
𝑎2𝑠

∗

𝑎3+𝑖∗
+

𝑎2𝑠
∗𝑖∗

(𝑎3+𝑖∗)2
< 0 , 𝑊1,3 = −

𝑏1𝑠
∗

𝑐1+𝑠∗
< 0 𝑊2,1 =

𝑎2𝑖
∗

𝑎3+𝑖∗
> 0  

𝑊2,2 =
𝑎2𝑠

∗

𝑎3+𝑖∗
−

𝑎2𝑠
∗𝑖∗

(𝑎3+𝑖∗)2
− 𝑐2, 𝑊2,3 = −𝑏2𝑖

∗ < 0  

𝑊3,1 = 0, 𝑊3,2 = 0, 𝑊3,3 =
𝑒1𝑏1𝑠

∗

𝑐1+𝑠∗
+ 𝑒2𝑏2𝑖

∗ − 𝑐3  

𝐿2 = −(𝑊1,1 +𝑊2,2 +𝑊3,3)  
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𝐿1 = 𝑊1,1𝑊2,2 +𝑊1,1𝑊3,3 +𝑊2,2𝑊3,3 − 𝑊1,2𝑊2,1 − 𝑊2,3𝑊3,2 −𝑊1,3𝑊3,1 = 𝑊1,1𝑊2,2 +

𝑊1,1𝑊3,3 +𝑊2,2𝑊3,3 − 𝑊1,2𝑊2,1  

𝐿0 = 𝑊1,3𝑊3,1𝑊2,2 +𝑊1,2𝑊2,1𝑊3,3 +𝑊1,1𝑊2,3𝑊3,2 − 𝑊1,3𝑊2,1𝑊3,2 −𝑊1,1𝑊2,2𝑊3,3 −

𝑊1,2𝑊3,1𝑊2,3 = 𝑊1,2𝑊2,1𝑊3,3 −𝑊1,1𝑊2,2𝑊3,3  

According to Routh Hurwitz Stability Criteria 𝐸4 is LAS if 𝐿2, 𝐿0 > 0 and 𝐿1𝐿2 > 𝐿0 

If 𝐿2 > 0 then 𝑊1,1 +𝑊2,2 +𝑊3,3 < 0… (𝜌1)  

If 𝐿0 > 0 then 𝑊1,2𝑊2,1𝑊3,3 −𝑊1,1𝑊2,2𝑊3,3 > 0… (𝜌2) 

If 𝐿1𝐿2 > 𝐿0 then −(𝑊1,1 +𝑊2,2 +𝑊3,3)(𝑊1,1𝑊2,2 +𝑊1,1𝑊3,3 +𝑊2,2𝑊3,3 − 𝑊1,2𝑊2,1) >

𝑊1,2𝑊2,1𝑊3,3 −𝑊1,1𝑊2,2𝑊3,3…(𝜌3)  

𝐸4 is LAS with the conditions (𝜌1), (𝜌2), (𝜌3 ). 

Around �̃�(�̃�, 𝑖̃, 𝑝) 

𝐽 = (

𝑇1,1 𝑇1,2 𝑇1,3
𝑇2,1 𝑇2,2 𝑇2,3
𝑇3,1 𝑇3,2 𝑇3,3

) 

𝑇1,1 = 1 − 2�̃� −
𝑎2�̃�

𝑎3+�̃�
−

𝑏1�̃�

𝑐1+�̃�
+

𝑏1�̃��̃�

(𝑐1+�̃�)2
  

𝑇1,2 = −
𝑎2�̃�

𝑎3+𝑖∗
+

𝑎2�̃��̃�

(𝑎3+�̃�)2
< 0, 𝑇1,3 = −

𝑏1�̃�

𝑐1+�̃�
< 0   

𝑇2,1 =
𝑎2�̃�

𝑎3+�̃�
> 0  

𝑇2,2 =
𝑎2�̃�

𝑎3+�̃�
−

𝑎2�̃��̃�

(𝑎3+�̃�)2
− 𝑏2𝑝 − 𝑐2 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝 𝑓𝑟𝑜𝑚 (𝑟2) 𝑤𝑒 𝑔𝑒𝑡 𝑇2,2 =

−
𝑎2�̃��̃�

(𝑎3+�̃�)2
< 0 , 𝑇2,3 = −𝑏2𝑖̃ < 0  

𝑇3,1 =
𝑒1𝑏1�̃�

𝑐1 + �̃�
(1 −

�̃�

𝑐1 + �̃�
) > 0, 𝑇3,2 = 𝑒2𝑏2𝑝 > 0 

𝑇3,3 =
𝑒1𝑏1�̃�

𝑐1+�̃�
+ 𝑒2𝑏2𝑖̃ − 𝑐3  

𝐿2 = −(𝑇1,1 + 𝑇2,2 + 𝑇3,3)  

𝐿1 = 𝑇1,1𝑇2,2 + 𝑇1,1𝑇3,3 + 𝑇2,2𝑇3,3 − 𝑇1,2𝑇2,1 − 𝑇2,3𝑇3,2 − 𝑇1,3𝑇3,1  

𝐿0 = 𝑇1,3𝑇3,1𝑇2,2 + 𝑇1,2𝑇2,1𝑇3,3 + 𝑇1,1𝑇2,3𝑇3,2 − 𝑇1,3𝑇2,1𝑇3,2 − 𝑇1,1𝑇2,2𝑇3,3 − 𝑇1,2𝑇3,1𝑇2,3  

According to Routh Hurwitz Stability Criteria 𝐸4 is LAS if 𝐿2, 𝐿0 > 0 𝑎𝑛𝑑 𝐿1𝐿2 > 𝐿0. 
 

7. BIFURCATION ANALYSIS 

In this section we aim to explore some of the bifurcations that might occur in our system (6) using 

two theories 1) Sotomayor’s theorem [19] and 2) the Hopf Bifurcation Theorem [1]. To apply 
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Sotomayor's theorem, we must first verify that one of the eigenvalues associated with the Jacobian 

matrix evaluated at a bifurcation equilibrium point is equal to zero. 

Let 𝑉 = (𝑣1, 𝑣2, 𝑣3)
𝑇 𝑎𝑛𝑑 𝑈 = (𝑢1, 𝑢2, 𝑢3)

𝑇 represent the eigenvectors of the Jacobian 𝐽 and 

its transpose 𝐽𝑇, respectively, calculated at the equilibrium point under examination. 

Let 𝑓 = (𝑓1, 𝑓2, 𝑓3)
𝑇 where,  

𝑓1 = 𝑠(1 − 𝑠) −
𝑎2𝑠𝑖

𝑎3+𝑖
−
𝑏1𝑠𝑝

𝑐1+𝑠
                       

𝑓2 =
𝑎2𝑠𝑖

𝑎3+𝑖
− 𝑏2𝑖𝑝 − 𝑐2𝑖                   

𝑓3 =
𝑒1𝑏1𝑠𝑝

𝑐1+𝑠
+ 𝑒2𝑏2𝑖𝑝 − 𝑐3𝑝                  

Theorem 7.1. System (6) experience a transcritical bifurcation with respect to the bifurcation 

parameter 𝑏1 around 𝐸1(1,0,0)  if, 𝑏1 =
𝑐3(𝑐1+1)

𝑒1
= 𝑏1[𝑇𝐶1]  keeping the following condition, 

𝑐2 >
𝑎2

𝑎3
   

Proof. 

For 𝐸1(1,0,0) we have the following eigenvalues, are 𝜆1 = −1, 𝜆2 =
𝑎2

𝑎3
−𝑐2,  𝜆3 =

𝑒1𝑏1

𝑐1+1
− 𝑐3  

𝐽1 =

(

 
 
 
 
−1 −

𝑎2
𝑎3

−
𝑏1

𝑐1 + 1

0
𝑎2
𝑎3
−𝑐2 0

0 0
𝑒1𝑏1
𝑐1 + 1

− 𝑐3
)

 
 
 
 

 

If we take 𝑏1 =
𝑐3(𝑐1+1)

𝑒1
 the eigenvalues can be written as, are 𝜆1 = −1, 𝜆2 =

𝑎2

𝑎3
−𝑐2,  𝜆3 = 0 

and the Jacobean matrix can be written as, 

𝐽1 =

(

 
 
−1 −

𝑎2
𝑎3

−
𝑏1

𝑐1 + 1

0
𝑎2
𝑎3
−𝑐2 0

0 0 0 )

 
 

 

Now the eigenvector corresponding to 𝜆 = 0 for 𝐽1; 𝜆 ∗ 𝑉 = 𝐽 ∗ 𝑉 

𝑉 = (1,0, −
(𝑐1 + 1)

𝑏1
)

𝑇

 

the eigenvector corresponding to 𝜆 = 0 for 𝐽1
𝑇; 𝜆 ∗ 𝑈 = 𝐽𝑇 ∗ 𝑈 
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𝑈 = (0,0,1)𝑇 

Let’s calculate 𝑓𝑏1; 

𝑓𝑏1 (𝐸1, 𝑏1[𝑇𝐶1]) = {
0
0
0
} 

And then we can write, 

(33) Ω1 = 𝑊
𝑇 ∗ 𝑓𝑏1 (𝐸1, 𝑏1[𝑇𝐶1]) = 0 

 

(34) Ω2 = 𝑊
𝑇 ∗ [𝐷𝑓𝑏1 (𝐸1, 𝑏1[𝑇𝐶1]

) 𝑉] =
−𝑒1
𝑏1

≠ 0  

(35) Ω3 = 𝑊
𝑇 ∗ [𝐷𝑓𝑏1 (𝐸1, 𝑏1[𝑇𝐶1])

(𝑉, 𝑉)] = −2
𝑐1𝑒1

(𝑐1 + 1)
≠ 0  

From (33), (34) and (35) and according to Sotomayor’s theory a transactional bifurcation occurs 

at 𝐸1(1,0,0)  for 𝑏1 = 𝑏1[𝑇𝐶1]. 

Hopf Bifurcation at 𝑬𝟑 

To study the Hopf bifurcation at 𝐸3 we will first assume that 𝐷  is a bifurcation parameter for 

some system with the following characteristic equation corresponding to some equilibrium point 

say 𝐸(𝑠, 𝑖, 𝑝) of the system (6) is 

(36) 𝜆3  +  𝐺1(𝐷) 𝜆
2   +  𝐺2(𝐷)𝜆 + 𝐺3  =  0…  

We can now state the Hopf Bifurcation Theorem as it applies to our analysis: 

Theorem 7.2 (Hopf Bifurcation Theorem) [1]. Suppose functions 𝐶1(𝐵), 𝐶2(𝐵), 𝐶3(𝐵)  are 

continuous with respect to parameter 𝐵 within a neighborhood 𝑁𝑞(𝐷0) 𝑜𝑓 𝐷0  ∈  𝑅, where 𝐷 >

 0. If the characteristic equation (36) exhibits: 

i)  A complex-conjugate pair of eigenvalues 𝜆 =  𝑘(𝐷) +  𝑖𝑙(𝐷)(𝑤𝑖𝑡ℎ 𝑘(𝐷), 𝑙(𝐷) ∈ 𝑅) such 

that they turn into purely imaginary eigenvalues at 𝐷 =  𝐷0 and 
𝑑𝑘

𝑑𝐷
|𝐷=𝐷0 =  0 

ii) the remaining eigenvalue is negative at 𝐷 = 𝐷0, will occur around equilibrium point 𝐸 at 

𝐷 =  𝐷0. 

Theorem 7.3. Provided the disease-free equilibrium point 𝐸3(�̅�, 0, �̅� ) satisfies the biological 

constraints of positivity, a simple Hopf bifurcation will emerge around around the equilibrium 

point  𝐸3 at 𝑐1 = 𝑐𝐻1 =
𝑒1∗𝑏1−𝑐3

(𝑒1∗𝑏1+𝑐3)
= 1 −

2𝑐3

(𝑒1∗𝑏1+𝑐3)
 on the condition that 𝑐𝐻1 is positive. 

Proof.  

One of  𝐽3 eigenvalue is represented as 
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𝑎2𝑐3(𝑏1𝑒1−𝑐3)−𝑎3𝑏2𝑒1(𝑏1𝑒1−𝑐3(𝑐1+1))

𝑎3(𝑏1𝑒1−𝑐3)2
− 𝑐2 < 0 according to the local stability condition (𝜂1) 

 While the remaining two eigenvalues are the solutions of a quadratic equation of the form: 

(37) (𝜆2 − 𝐻1,1𝜆 − 𝐻1,3𝐻3,1) = 0 
 

Consider: 

𝐽3 = (
𝐻1,1 𝐻1,3
𝐻3,1 0

) 

1) 𝑡𝑟(𝐽3|𝑐1=𝑐𝐻1) = 0 

2) 𝑑𝑒𝑡(𝐽3|𝑐1=𝑐𝐻1) =
𝑐3

𝑒1

𝑒1∗𝑏1−𝑐3∗(𝑐1+1)

𝑏1
> 0 

3) When (𝑐1 = 𝑐𝐻1) the characteristic equation (37) becomes 𝜆2 + 𝑑𝑒𝑡(𝐽3|𝑐1=𝑐𝐻1) = 0 

with purely imaginary roots. 

4) 
𝑑

𝑑𝑐1
𝑡𝑟(𝐽3)|𝑐1=𝑐𝐻1 = (𝑒1 ∗ 𝑏1 + 𝑐3) ∗

𝑐3

(𝑏1∗𝑒1−𝑐3)∗𝑏1∗𝑒1
≠ 0  

Therefore, we can say that the Hopf bifurcation theorem conditions are all satisfied. Hence the 

Theorem 7.3 is proved. 

8. GLOBAL STABILITY  

Through this section we will discuss the global asymptotically stability (GAS) of the equilibrium 

points which we proved their locally asymptotically stability in section (5). 

Theorem 8.1. If 𝐸1(1,0,0) is LAS then it is Globally asymptotically stable (GAS) in  Π1: 

Π1 = {(𝑠, 𝑖, 𝑝) ∈ 𝑅+
3 , 𝑤ℎ𝑒𝑟𝑒 𝑐3 >

𝑏1
𝑐1 + 1

} 

Proof.  

We took a Lyapunov function used by many other researchers such as [20], [21] to analyse the 

global stability of  various forms predator-prey models, and modified it to fit our model as the 

following: 

𝐿1(𝑠, 𝑖, 𝑝) = (𝑠 − 1 − ln 𝑠) + 𝑖 +  𝑝 

Here 𝐿1(𝑠, 𝑖, 𝑝), is a positive definite function for all (𝑠, 𝑖, 𝑝) other than (1,0,0)  

Computing the time derivative of L along the solutions of the system (6) will give us; 

𝑑𝐿1

𝑑𝑡
=
𝑠−1

𝑠
(𝑠(1 − 𝑠) −

𝑎2𝑠𝑖

𝑎3+𝑖
−
𝑏1𝑠𝑝

𝑐1+𝑠
) +

𝑎2𝑠𝑖

𝑎3+𝑖
− 𝑏2𝑖𝑝 − 𝑐2𝑖 +

𝑒1𝑏1𝑠𝑝

𝑐1+𝑠
+ 𝑒2𝑏2𝑖𝑝 − 𝑐3𝑝 =  

 𝑠(1 − 𝑠) −
𝑎2𝑠𝑖

𝑎3+𝑖
−
𝑏1𝑠𝑝

𝑐1+𝑠
− (1 − 𝑠) +

𝑎2𝑖

𝑎3+𝑖
+

𝑏1𝑝

𝑐1+𝑠
+
𝑎2𝑠𝑖

𝑎3+𝑖
− 𝑏2𝑖𝑝 − 𝑐2𝑖 +

𝑒1𝑏1𝑠𝑝

𝑐1+𝑠
+ 𝑒2𝑏2𝑖𝑝 − 𝑐3𝑝 =  
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−(1 − 𝑠)2 + (
𝑎2

𝑎3+𝑖
− 𝑐2) 𝑖 +

𝑏1𝑠𝑝

𝑐1+𝑠
(𝑒1 − 1) + 𝑏2𝑖𝑝(𝑒2 − 1) + (

𝑏1

𝑐1+𝑠
− 𝑐3) 𝑝  

in Π1 we have 𝑐3 >
𝑏1

𝑐1+1
 

And from the local stability conditions we have 𝑐2 >
𝑎2

𝑎3
>

𝑎2

𝑎3+𝑖
   

We get 
𝑑𝐿1

𝑑𝑡
< 0 

Also 𝐿1(1,0,0) = 0. As this equilibrium point 𝐸1 = (1, 0, 0) is the lone solution to model (6) 

satisfying the condition 𝑠 = 1, LaSalle's invariance principle [22] entails GAS. 

Theorem 8.2. If 𝐸3(�̅�, 0, �̅� ) exists and is LAS then it is Globally asymptotically stable (GAS) 

in  Π3: 

Π3 = {(𝑠, 𝑖, 𝑝) ∈ 𝑅+
3 : 0 < 𝑠 <

𝑐1𝑐3

(𝑏1𝑒1−𝑐3)
, 𝑝 <

𝑐1𝑒1(𝑒1𝑏1−𝑐3(1+𝑐1))

(𝑏1𝑒1−𝑐3)2
 , 𝐴

𝑎2�̅�

𝑎3
< 𝑐2}  

Proof.  

Let us consider a suitable Lyapunov function 

𝐿3(𝑠, 𝑖, 𝑝) = 𝐴 (𝑠 − �̅� − �̅� ln
𝑠

�̅�
) + 𝑖 + 𝐵 (𝑝 − �̅� − �̅� ln

𝑝

�̅�
), Where 𝐴 > 1, 𝐵 =

1

𝑒2�̅�
 

𝐿3 is obviously positive definite and continuous on Π3 

Furthermore, 
𝑑𝐿3

𝑑𝑡
= 𝐴 (1 −

�̅�

𝑠
) (𝑠(1 − 𝑠) −

𝑎2𝑠𝑖

𝑎3+𝑖
−
𝑏1𝑠𝑝

𝑐1+𝑠
) +

𝑎2𝑠𝑖

𝑎3+𝑖
− 𝑏2𝑖𝑝 − 𝑐2𝑖 +

𝐵 (1 −
�̅�

𝑝
) (

𝑒1𝑏1𝑠𝑝

𝑐1+𝑠
+ 𝑒2𝑏2𝑖𝑝 − 𝑐3𝑝) =  

𝐴(𝑠 − �̅�)(1 − 𝑠) − 𝐴
𝑎2𝑠𝑖

𝑎3+𝑖
− 𝐴

𝑏1𝑝𝑠

𝑐1+𝑠
+ 𝐴

𝑎2�̅�𝑖

𝑎3+𝑖
+ 𝐴�̅�

𝑏1𝑝

𝑐1+𝑠
+
𝑎2𝑠𝑖

𝑎3+𝑖
− 𝑏2𝑖𝑝 − 𝑐2𝑖 + 𝐵(𝑝 − �̅�)𝑒2𝑏2𝑖 +

𝐵(𝑝 − �̅�) (
(𝑒1𝑏1−𝑐3)𝑠−𝑐3𝑐1

𝑐1+𝑠
 ) =  

𝐴(𝑠 − �̅�)(1 − 𝑠) +
𝑎2𝑠𝑖

𝑎3+𝑖
(1 − 𝐴) +

𝑏1𝑝

𝑐1+𝑠
(�̅� − 𝑠) + 𝑖 (𝐴

𝑎2�̅�

𝑎3+𝑖
− 𝑐2) + 𝑏2𝑖(𝐵(𝑝 − �̅�)𝑒2 − 𝑝) +

𝐵(𝑝 − �̅�) (
(𝑒1𝑏1−𝑐3)𝑠−𝑐3𝑐1

𝑐1+𝑠
 ) < 𝐴(𝑠 − �̅�)(1 − 𝑠) +

𝑎2𝑠𝑖

𝑎3+𝑖
(1 − 𝐴) +

𝑏1𝑝

𝑐1+𝑠
(�̅� − 𝑠) +

𝑖 (𝐴
𝑎2�̅�

𝑎3+𝑖
− 𝑐2) + 𝑏2𝑖 (

𝑝(1−�̅�)

�̅�
− 1) + 𝐵𝑠(𝑝 − �̅�) (

𝑒1𝑏1−𝑐3(1+𝑐1)

𝑐1+𝑠
 )  

In Π3 we have 𝑝 < �̅�, 𝑠 < �̅�, 𝐴
𝑎2�̅�

𝑎3
< 𝑐2 

Since 𝑝 < �̅� ⇒
𝑝

�̅�
< 1 and 1 − �̅� < 1 then 

𝑝(1−�̅�)

�̅�
< 1 

And from the feasibility conditions we have 𝑐3(1 + 𝑐1) < 𝑏1𝑒1 
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We get 
𝑑𝐿1

𝑑𝑡
< 0 

Also 𝐿3(�̅�, 0, �̅�) = 0. As this equilibrium point 𝐸3(�̅�, 0, �̅� ) is the lone solution to model (6) 

satisfying the condition 𝑠 = �̅� and 𝑝 = �̅�, LaSalle's invariance principle [22] entails GAS. 

 

9. NUMERICAL SIMULATION 

We carried the numerical simulation using fourth-order Runge-Kutta subjected to the positive 

initial conditions 𝑠(0) = 𝑠0, 𝑖(0) = 𝑖0, 𝑝(0) = 𝑝0 using MATLAB R2022a. we executed 

numerical simulations to verify our analytic theoretical findings with a hypothetical, biologically 

set of parameters: 

(𝑎2 = 0.02, 𝑎3 = 0.002, 𝑏1 = 1.1, 𝑏2 = 500, 𝑐1 = 0.1, 𝑐2 = 11, 𝑐3 = 0.4, 𝑒1 = 0.35, 𝑒2 = 0.5), 

with the initial conditions (𝑠0 =  0.65, 𝑖0 = 0.4, 𝑝0 = 0.2), and then varying some of the 

parameters’ value according to the feasibility, LAS and GAS conditions of each feasible 

equilibrium point we have. 

For the mentioned set of parameters, we notice that the trajectories start from (0.65,0.4,0.2) and 

converges to the equilibrium point in which only the susceptible prey survives while the infected 

prey and the predator wash out of the system, demonstrating a stable equilibrium.   

 We can notice that while the infected prey is still in the system the predator population increases 

but, as soon as the infected prey population is about to wash out of the system the predator 

Fig. 1. Globally stable behaviour of 𝐸1 

  (𝑎2 = 0.02, 𝑎3 = 0.002, 𝑏1 = 1.1, 𝑏2 = 500, 𝑐1 = 0.1, 𝑐2 = 11, 𝑐3 = 0.4, 𝑒1 = 0.35, 𝑒2 = 0.5) 



  21 

DYNAMICAL ANALYSIS OF AN ECO-EPIDEMIOLOGICAL MODEL 

population number starts dropping until it washes out of the system as well a while after the 

extinction of the infected prey. Furthermore, the susceptible prey grows and reaches its stable state 

a while before the extinction of the predator (see Fig 1). When the predation rate of the susceptible 

prey 𝑏1  crosses the value (𝑏1 = 1.257142857142857)  where 𝐸1  loses its stability and 

undergoes a transcritical bifurcation (see Fig 2) 

 

As a result of the transcritical bifurcation that the system undergoes 𝐸1, 𝐸3 change their stability 

statues for 𝑏1 = 1.257142857142857 where the system converges toward a stable state 

around 𝐸3 for 𝑏1 > 𝑏1𝑇𝐶 where both the predator and the susceptible prey survives and the 

infected prey is washed out of the system (see Fig. 3). When we raise the value of 𝑏1 for a 

certain value say 𝑏1 > 1.4 the system goes into unstable state and a limit cycle is born as we 

can see in fig.4. 

 

Fig. 2. 𝐸1, 𝐸3 changing stability for 𝑏1 = 1.257142857142857  

Fig. 3. 𝐸3 Gaining stability for 𝑏1 = 1.35 > 𝑏1𝑇𝐶  
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Figure 5, show that the equilibrium point 𝐸3 is stable with parameters’ values of 

(𝑎2 = 0.02, 𝑎3 = 0.002, 𝑏1 = 0.35, 𝑏2 = 500, 𝑐1 = 0.102, 𝑐2 = 0.3, 𝑐3 = 0.1, 𝑒1 = 0.35, 𝑒2 =

0.5), with the initial conditions (𝑠0 =  0.65, 𝑖0 = 0.4, 𝑝0 = 0.2). The previous parameters’ 

values satisfy the stability conditions of 𝐸3. In the absences of the infected prey, the system 

experiences a Hopf bifurcation as the parameter 𝑐1 crosses the critical value 𝑐1 = 𝑐𝐻1 =

0.101123595 (see Figure 6) and a limit cycle is born around 𝐸3, (see Figure 7). 

 

 

 

Fig. 4. Unstable behaviour for Gaining stability for 𝑏1 = 1.4  

Fig. 5. Globally stable behaviour of 𝐸3  

(𝑎2 = 0.02, 𝑎3 = 0.002, 𝑏1 = 0.35, 𝑏2 = 500, 𝑐1 = 0.102, 𝑐2 = 0.3, 𝑐3 = 0.1, 𝑒1 = 0.35, 𝑒2 = 0.5)  
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Figure 8, show that the equilibrium point 𝐸4  is stable with parameters’ values of 

(𝑎2 = 1, 𝑎3 = 0.002, 𝑏1 = 0.35, 𝑏2 = 3.5, 𝑐1 = 0.1, 𝑐2 = 0.2, 𝑐3 = 0.4, 𝑒1 = 0.35, 𝑒2 = 0.5), 

with the initial conditions (𝑠0 =  0.65, 𝑖0 = 0.4, 𝑝0 = 0.2).  

The previous parameters’ values satisfy the stability conditions of 𝐸4 . The susceptible prey 

survives the system for the previous parameters’ values and achieve a stable state at 𝑠 ≅ 0.2 for 

𝑡 = 125, shortly before the predator washes out (See Figure. 9) 

Fig. 6. Hopf bifurcation in 𝐸3  for 𝑐1 = 𝑐𝐻1 = 0.101123595 

 

Fig. 7. limit cycle around 𝐸3  for 𝑐1 = 0.101 
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Figure 10, show that the equilibrium point 𝐸5  is stable with parameters’ values of 

(𝑎2 = 0.5, 𝑎3 = 0.002, 𝑏1 = 0.35, 𝑏2 = 25, 𝑐1 = 0.1, 𝑐2 = 0.025, 𝑐3 = 0.4, 𝑒1 = 0.35, 𝑒2 =

0.35), with the initial conditions. The previous parameters’ values satisfy the stability conditions 

of 𝐸5. For the previous parameters’ values, we can see how the system experience a stable co-

Fig. 8. Stable behaviour of 𝐸4  

(𝑎2 = 1, 𝑎3 = 0.002, 𝑏1 = 0.35, 𝑏2 = 3.5, 𝑐1 = 0.1, 𝑐2 = 0.2, 𝑐3 = 0.4, 𝑒1 = 0.35, 𝑒2 = 0.5)  

Fig. 9. Stable state of the susceptible prey (s=0.2) around 𝐸4  for (𝑎2 = 1, 𝑎3 =

0.002, 𝑏1 = 0.35, 𝑏2 = 3.5, 𝑐1 = 0.1, 𝑐2 = 0.2, 𝑐3 = 0.4, 𝑒1 = 0.35, 𝑒2 = 0.5) 

 



  25 

DYNAMICAL ANALYSIS OF AN ECO-EPIDEMIOLOGICAL MODEL 

existence equilibrium with the infected prey population number dropping down to a stable state of 

𝑖 ≈ 0.0345, it can be noticed that the system reaches equilibria very fast around (𝑡 ≈ 13) . 

 

 

10. RESULTS  

In this study, we analysed an eco-epidemiological model characterizing the interaction between a 

predator population and prey afflicted by disease. Rather than assume infection transmission 

followed a simple mass action formulation proportional to susceptible and infected prey 

populations, we adopted a nonlinear incidence rate of the form 
𝛽𝑆𝐼

1+𝐼
 rooted in density dependence 

effects. We also accounted for infection potentially rendering prey more vulnerable by stipulating 

predators consumed infected prey according to mass action dynamics, while predation upon 

uninfected prey obeyed a Holling Type II functional response. Overall, this work aimed to generate 

a more nuanced understanding of predator-prey interactions complicated by disease spread 

according to the nonlinear incidence rate. 

We proved that our model is ecologically well-posed as we showed the positiveness and boundness 

of the proposed model, determined the equilibrium points where we found:  

1- one equilibrium at the origin 𝐸0 which is feasible but unstable  

2- one axial equilibrium 𝐸1  which is feasible and globally asymptotically stable we also 

established the conditions for the trancritical bifurcation which occur at 𝐸1  

Fig. 10. Stable behaviour of 𝐸5  

(𝑎2 = 0.5, 𝑎3 = 0.002, 𝑏1 = 0.35, 𝑏2 = 25, 𝑐1 = 0.1, 𝑐2 = 0.025, 𝑐3 = 0.4, 𝑒1 = 0.35, 𝑒2 = 0.35)  
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3- three planar equilibria 𝐸2, 𝐸3, 𝐸4 where 𝐸2 is not feasible while 𝐸3 and 𝐸4 are feasible 

and GAS for some conditions which we established. We also established the conditions at which 

the 𝐸3 go through a Hopf bifurcation resulting in a limit cycle around 𝐸3 

4- Finally, one interior equilibrium point at least which is feasible and stable for some parameters’ 

values as it was shown through the numerical analysis 

Our findings align with the findings of [16], [23], as we have shown the impact of infection and 

predation rates on our model. We also conducted thoroughly analysis to our proposed model 

exploring interesting bifurcations occurring around 𝐸1 and 𝐸3. 

 

11. DISCUSSION  

We found that the predation rate highly affects our proposed model as it could to a different type 

of bifurcations as we showed that for high enough predation rate a transcritical bifurcation occurs 

where 𝐸1  and 𝐸3  change stability and the solution converges into a state where both the 

susceptible prey and the predator survives instead of only the susceptible prey surviving the system. 

While raising the predation rate for a value higher than a certain limit destabilize the system leading 

to the born of a limit cycle. We can also notice the direct relation between the Hopf bifurcation 

constant and the predation rate, showing the important role of the predation rate in creating a limit 

cycle and presenting a Hopf bifurcation to the proposed model highlighting the important role of 

the predation rate. 

The infection rate on the other hand plays an important role in the dynamic of the system where 

for different values of the infection rate 𝛽 and for some set of the parameters’ values as we seen 

in the numeric simulations the system can converge into one of three states, i.e. If we decreased 

the value of the infection rate less than a certain value say 𝛽1 it can lead to the extinction of the 

infected prey and two stability cases one where only the susceptible prey survives the system and 

the second where both the susceptible prey and the predator survives; When the infection rate 

reaches the value 𝛽1 and in the period 𝛽1 < 𝛽 < 𝛽2 the infected prey survives the extinction 

leading to state of co-existence stability between the three species; Finally, when the infection rate 

hits a certain value 𝛽2  and in period say 𝛽2 < 𝛽 < 𝛽3  it leads to a high decrease in the 

susceptible prey numbers causing the predator to extinct and stabilizing the system. Furthermore, 

when the predation parameter goes higher than a 𝛽3 it destabilizes the system creating a limit 

cycle. 
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Moreover, this model can be better improved by studying different factors and the way they affect 

this model (such as harvesting, immigration, Allee effect, refugee effect, etc.). 
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