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Abstract: Precisely forecasting the EI Nino-Southern Oscillation (ENSO) holds significant importance in predicting 

seasonal climate. The Recurrent Neural Network (RNN) has been demonstrated to be the most efficacious approach 

for ENSO prediction. The localized nature of the recurrent neuron poses a challenge in capturing distant antecedents 

of ENSO. The transformer architecture has been utilized in the domain of natural language processing (NLP) for a 

significant period of time due to its capacity to attend to global features. This study presents the introduction of the 

ENSO transformer with recurrent neuron to the ENSO research community. The current investigation demonstrates 

the efficacy of the ENSO Transformer model in accurately predicting the upcoming monthly mean Nino index. As the 

lead time increased, a temporal progression was observed in the activation map values. The study's results indicate 

that various climatic precursors of ENSO events have a significant impact, and each of them exhibits distinct temporal 

patterns. This suggests that the transformer with recurrent neuron model could be a useful tool for diagnosis. The 

present research suggests employing the ENSO Transformer RNN in tandem with the variant-based deep learning 

approach to achieve short-term prediction. The present investigation utilizes a comprehensive dataset that covers the 
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complete Nino region spanning from 1950 to 2019. In contrast to other frequently employed forecasting models, the 

model we put forth demonstrated superior performance in benchmark evaluations and exhibited greater accuracy in 

reproducing the variations in predictive precision.  

Keywords: ENSO prediction; transformer; LSTM; GRU; deep learning. 

2020 AMS Subject Classification: 68T05, 97R40, 97R30. 

 

1. INTRODUCTION 

The implementation of calendar months is a feasible strategy for distinguishing the behavior 

of El Nino-Southern Oscillation (ENSO) phenomena. ENSO occurrences usually initiate in the 

northern hemisphere spring, undergo a swift intensification in the summer and fall seasons, and 

reach their peak magnitude in the winter [1]. The phenomenon known as "seasonal phase-locking" 

of ENSO is ascribed to the yearly fluctuations in the atmospheric reaction to a specific the 

fundamental conditions of the oceans and sea surface temperature (SST) [2]. 

The primary determinant of the seasonal variability in the precision of ENSO prediction is the 

phenomenon of seasonal ENSO periodic. When El Niño-Southern Oscillation (ENSO) events 

reach maturity during the boreal winter and are predicted by a combination of dynamical and 

statistical models, the accuracy of forecasting generally remains high. Conversely, it experiences 

a swift decline in the boreal spring season as the ENSO phenomenon leads to escalate [3]. The 

term "spring predictability barrier" is a widely used nomenclature to refer to the characteristic 

feature of ENSO predictions [4]. 

The seasonal variability of the ENSO precursor holds substantial importance in determining 

the accuracy of ENSO prediction. The Indian Ocean Dipole (IOD) is a widely researched 

phenomenon that serves as a leading indicator of the El Niño-Southern Oscillation (ENSO). Its 

highest intensity is observed during the autumn season in the Northern Hemisphere, with minimal 

impact during other seasons [5]. Hence, it can be deduced that the Indian Ocean Dipole (IOD) is a 

highly dependable parameter for making predictions that initiate in the autumn season of the 

Northern Hemisphere [6], and North Tropical Atlantic SST [7], demonstrate notable seasonal 

fluctuations in their magnitudes, which restrict their predictive efficacy to specific seasons. To put 
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it in other words, a precursor of the El Niño-Southern Oscillation (ENSO) that signals an upcoming 

season may not necessarily be the most effective precursor for the following seasons. 

In their study, Ham et al. constructed an ENSO forecast model, named H19, that utilized deep 

learning techniques. The model was customized for each target season and forecast lead month to 

accommodate the seasonality of the predictors. This information was reported in reference [8]. The 

production of ENSO forecasts for all target seasons, which includes 23 lead months and 12 target 

seasons, necessitates the use of 276 H19 models. Subsequent studies utilized deep learning models 

such as variant of the Convolutional Neural Network (CNN) [9], LSTM [10], and the combination 

of the two that becomes a Convolutional Long Short-Term Memory Network (ConvLSTM) 

[11].The present deep learning models were found to be insufficient in reproducing the diverse 

seasonal characteristics of the ENSO, as they were created separately for each input season. 

Furthermore, the temporal sequence of predictions exhibits a diminishing degree of coherence 

over time due to the utilization of distinct H19 models for each lead month. The H19 model 

postulates a monthly variation in the ENSO index that lacks empirical evidence. The most effective 

solution to this issue is to develop a comprehensive H19 model that encompasses all the relevant 

seasons and projected lead months. The act of consolidating monthly training samples into a 

unified dataset significantly reduces the predictive ability for ENSO events. 

The current investigation presents a new methodology that combines the Empirical Mode 

Decomposition (EMD) technique with the convolutional Long Short-Term Memory (LSTM) 

Encoder-Decoder model, resulting in a hybrid approach. The proposed methodology exhibits the 

capacity to provide accurate predictions of Oceanic Niño Index (ONI) values pertaining to El Niño 

for a duration of 12 months. Furthermore, it has the capability to forecast the onset of El Nino 

phenomena with a 12-month lead time. The objective of incorporating Empirical Mode 

Decomposition (EMD) is to streamline the process of breaking down past Oceanic Niño Index 

(ONI) data points into a collection of Intrinsic Mode Functions (IMFs) and a remaining residual 

component. Efficient training of sequence prediction using the convolutional LSTM Encoder-

Decoder model is made possible by the local stationarity exhibited by each decomposed 
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component. The Convolutional LSTM Encoder-Decoder architecture comprises distinct 

submodels for encoding and decoding, specifically the encoder and decoder submodels. The 

submodel responsible for encoding integrates Long Short-Term Memory (LSTM) units with 

convolutional reading. The Convolutional Long Short-Term Memory (LSTM) model 

demonstrates proficiency in assimilating information from input that changes over time and 

consolidating sequential data into an underlying representation. The decoder submodel utilizes a 

series of stacked LSTM layers to decode the latent state and produce subsequent sequences. In the 

end, the sequential data generated by individual components are reconstructed to produce the 

anticipated results. The proposed approach is evaluated through the application of several metrics, 

including the Absolute Error (AE), Mean Absolute Percent Error (MAPE), Mean Absolute Error 

(MAE), and Root Mean Squared Error (RMSE). The results of the analysis indicate that the 

proposed approach is superior to the existing models cited in academic literature for forecasting 

ONI and El Nino events. The approach put forth exhibits precise forecasting of El Nino events 

during the periods of 2009-2010, 2015-2016, and 2018-2019, with a lead time of 12 months, within 

the time span of 2008 to 2019. 

The subsequent sections are structured in the following manner. The second section of the 

document elucidates the fundamental principles underlying the Transformer with recurrent 

architecture. The third section elucidates the methodologies employed for scrutinizing and 

predicting time series information utilizing the suggested approach. The fourth section of the 

document delineates the outcomes of the experiment, provides a comparison of the results, and 

offers an evaluation of the findings. The findings of the investigation are expounded upon in 

Section 5. 

 

2. RELATED WORKS 

Over the past few years, a number of machine learning approaches have surfaced as substitutes 

for traditional analysis and prediction methods in addressing concerns related to time series. As 

per the citation provided in reference [12], non-linear models are commonly afflicted by the issue 

of complexity and over-parameterization. According to the authors cited in reference [13], a feed-
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forward neural network that incorporates a solitary hidden layer can function as a flexible 

substitute for linear models that possess predetermined specifications, particularly for prediction 

timeframes that surpass a solitary step into the future. The techniques mentioned above have been 

widely employed in the discipline of oceanography to provide forecasts regarding oceanic 

variables, such as ignificant events like El Nino, waves, sea surface temperature (SST), monsoon 

models, and sea level,  [14]. This study emphasizes the effectiveness of Self-Organizing Map 

(SOM), Genetic Programming (GP), and Artificial Neural Network (ANN) in predicting sea level. 

The investigation described in citation [15] utilizes a Self-Organizing Map (SOM) neural network 

to forecast the water level in Hamburg. The outcomes derived from this methodology are 

juxtaposed with those of six alternative models, alongside empirical observations. The GA model 

employed in reference [16] underwent training and validation protocols using tide gauge 

measurements. The application of the GA algorithm is utilized to forecast variations in sea level, 

with a forecast horizon of three time intervals ahead, over a specified time span of 12 hours, 24 

hours, 5 days, and 10 days. The methodology employed involves conducting a comparative 

analysis of the results obtained from an Artificial Neural Network (ANN) model and an Emotional 

Artificial Neural Network (EANN) model. 

The researchers duplicated their prior methodology at an alternate location situated in the 

Cocos (Keeling) Islands, which are positioned in the Indian Ocean [17]. The Regional Neural 

Network for Water Level (RNN WL), a feed-forward neural network (FFNN), was utilized in a 

study conducted by [18]. The training data for the RNN WL was obtained from a remote station 

located on Long Island, specifically on the South Shore of New York. The objective of the 

aforementioned training was to forecast the water levels in a coastal inlet for an extended duration. 

In a previous investigation [19] the authors employed diverse methodologies, including multilinear 

regression (MLR), feed-forward backpropagation (FFBP), radial basis function (RBF), and 

generalized regression neural network (GRNN), to approximate the daily average sea level 

elevations. The aforementioned methods were utilized to conduct a least squares estimation on the 

model of sea level. The results of the statistical analysis indicated that the employment of neural 
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network-based techniques yielded higher levels of accuracy in comparison to the conventional 

least squares method in the determination of daily mean sea levels. The methodology under 

consideration entails the modification of connection weights within a feedforward neural network 

(FFNN) to tackle intricacy and predict river levels with a lead time of up to five hours. In their 

study, Pashova and Popova conducted a comparison of various artificial neural network (ANN) 

models with the aim of predicting sea levels [20]. The research assessed various neural network 

techniques, including multilayer feed-forward (FF), cascade-feed-forward (CFF), feed-forward 

time delay (FFTD), RBF, and generalized regression (GR), as well as multiple linear regression 

(MLR). The utilization of Artificial Neural Networks (ANNs) has been discovered to surpass 

conventional harmonic analysis methodologies in effectively capturing temporal 

interdependencies in time series data [21]. In a previous study, the authors cited as reference [22] 

employed hourly time series data of atmospheric pressure, wind, and harmonically calculated tides 

as predictors, and the observed tides as the response variable, to train an artificial neural network 

(ANN). The implementation of the network yielded a 50% decrease in the margin of error. The 

present study utilized two distinct data-driven approaches, namely the adaptive neuro-fuzzy 

inference system (ANFIS) and artificial neural network (ANN), to estimate hourly sea level.  

The study employed the MLR methodology to ascertain the most favorable amalgamations of 

hourly sea level inputs, predicated on lag times. The performance of the Artificial Neural Network 

(ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Auto-Regressive Moving Average 

(ARMA) models were compared, revealing that the ANN and ANFIS models demonstrated 

comparable or superior performance. The scholars utilized the Extreme Learning Machine (ELM) 

methodology, which is grounded on Artificial Neural Networks (ANN), to predict alterations in 

sea level in Chiayi, Taiwan [23]. Additional methodologies employed encompassed the Relevance 

Vector Machine (RVM), Support Vector Machine (SVM), and Radial Basis Function (RBF) 

models. The findings indicate that the ELM and RVM models exhibited superior performance 

compared to the other methodologies. The article cited as [24] outlines several techniques for 

handling missing values in time series data. The predominant approach involves utilizing the 
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Empirical Orthogonal Function (EOF) reconstruction method in conjunction with either a 

prediction network (FCnet) or a comparable backcast network (BCnet). The study employed a 

neural network architecture to forecast regional mean sea level anomalies (MSLA) by leveraging 

a particular set of tide gauges following the restoration of the time series. Reference [25] presented 

a methodology for predicting tide levels in the event of typhoon-induced storm surges. The present 

methodology employs typhoon parameters as input and utilizes a cubic B-spline curve with a knot 

insertion mechanism in conjunction with the forecasts. Although conventional artificial neural 

network architectures are purported to be capable of conducting time series analysis and prediction, 

comprehending long-term correlations within an extended time series remains a difficult task. 

The convolutional neural networks (CNNs) possess the ability to process multidimensional 

data and capture spatial correlations, while the recurrent neural networks (RNNs) are intrinsically 

suitable for managing time series data owing to their efficiency in capturing long-term spatial 

and/or temporal relationships. The amalgamation of Recurrent Neural Network (RNN) and 

Convolutional Neural Network (CNN) architectures results in a composite model that exhibits 

proficiency in processing spatio-temporal data. The integration of Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) has been suggested as a method for exploring the 

spatial and temporal progression of sea level and predicting interannual sea level anomalies [26]. 

The Long Short-Term Memory (LSTM) model effectively addresses numerical obstacles that arise 

from the vanishing or exploding gradient problem during the training phase. Moreover, it 

eliminates the need for explicitly choosing a primary time for the sliding window approach as 

discussed in reference [27], which concerns the number of time steps for moving the sliding 

window in the time series. Long Short-Term Memory (LSTM) models have exhibited 

effectiveness in diverse investigations focused on forecasting occurrences in time series data 

distinguished by significant intervals and lags. In a particular investigation [28], a speaker 

verification model that is not reliant on specific texts was created by combining Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. Likewise, a separate 

investigation [29] utilized a Long Short-Term Memory (LSTM) framework incorporating an 
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architectural refinement strategy referred to as Enhanced Forget Gate (EFG) for the purpose of 

forecasting wind power. The aforementioned methodology yielded a significant enhancement of 

18.3% in contrast to alternative prognostication techniques. 

 

3. STUDY AREA AND DATASET 

The ENSO phenomenon is a notable climatic variation that occurs on an annual basis, with its 

source being traced to the tropical Pacific Ocean. Its effects are far-reaching and have a significant 

negative impact on the global climate system. A cyclical pattern of events is observed in the 

expansive Pacific Ocean, spanning from the shores of Peru and Ecuador to its central region in 

proximity to the International Date Line. These events are characterized by alternating El Nino 

and La Nina occurrences. The area known as Nino3.4, which is defined by the geographical 

coordinates of 5°S-5°N and 170°W-120°W as illustrated in Figure 1, displays a sequence of five 

consecutive 3-month moving averages of sea surface temperature (SST) anomalies that exceed or 

fall below the threshold of + 0.5 °C or 0.5 °C, respectively. The Oceanic Nino Index (ONI) is 

utilized as a standardized metric for the purpose of monitoring the El Nino-Southern Oscillation 

(ENSO) phenomenon [30]. 

The Oceanic Niño Index (ONI) is derived from the anomalous sea surface temperature (SST) 

values relative to the long-term mean in predetermined areas of the tropical Pacific. The Oceanic 

Niño Index (ONI) concentrates its attention on the Niño 3.4 area, which encompasses a 

geographical range of roughly 5°N to 5°S latitude and 120°W to 170°W longitude. The anomalies 

in sea surface temperature (SST) within this particular area are utilized for the purpose of 

ascertaining the magnitude and duration of El Niño or La Niña occurrences. 

A positive ONI value is indicative of the existence of El Niño conditions, which implies that 

the sea surface temperatures in the Niño 3.4 region are higher than the average. The conditions 

that are warmer than the norm usually have an impact on weather patterns worldwide, resulting 

in alterations in the distribution of temperature, atmospheric circulation, and precipitation. 

On the other hand, a negative Oceanic Niño Index (ONI) value indicates the presence of La 

Niña conditions, which are distinguished by lower-than-average sea surface temperatures in the 
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Niño 3.4 area. La Niña phenomena have distinct implications on worldwide weather patterns, 

frequently resulting in cooler and wetter climatic conditions in certain areas. 

 

FIGURE 1. The El Nino area in the Pacific Ocean is divided into several regions along the 

equator starting from the Asian continent to the American continent. 

 

FIGURE 2. Graph can represent the length of the data in a time series where changes in sea 

surface temperature can be observed and form a temporal pattern. 

The present study selected the Nino 3.4 region, which extends from 5S to 5N latitude and 

170W to 120W longitude, as the primary site for investigating El Nino events through SST analysis, 

owing to its frequent usage in previous research. A variety of quantitative climatic measures can 
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be employed to characterize the incidence of El Nino and La Nina phenomena, utilizing the sea 

surface temperature (SST) data obtained from the Nino 3.4 region. The Nino 3.4 index and the 

Oceanic Nino Index (ONI) are commonly employed indices for the purpose of monitoring El Nino 

and La Nina phenomena. The computation of these indices is predicated on the anomalies in sea 

surface temperature (SST) within the Nino 3.4 region. The Oceanic Niño Index (ONI) is utilized 

by the National Oceanic and Atmospheric Administration (NOAA) as the principal metric to detect 

the occurrence of El Niño and La Niña events. The Oceanic Niño Index (ONI) is computed by 

utilizing the Extended Reconstructed Sea Surface Temperature (ERSST.v5) anomalies within the 

Nino 3.4 region, with a reference period of 30 years. As per the National Oceanic and Atmospheric 

Administration (NOAA), the Oceanic Niño Index (ONI) exceeding the +0.5 °C threshold for a 

consistent duration of five months is suggestive of an El Niño year in the subsequent year. Similarly, 

La Nina phenomena are characterized by a consecutive series of five three-month intervals during 

which the temperature remains at or below 0.5 °C. In addition, according to the Oceanic Niño 

Index (ONI), El Niño events can be classified into four tiers based on their intensity levels: weak 

(0.5-0.9 C), moderate (1.0-1.4 C), strong (1.5-1.9 C), and very strong (2.0 C). On the other hand, 

the magnitude of La Niña occurrences is categorized based on the corresponding negative 

numerical values.   

The National Oceanic and Atmospheric Administration (NOAA) website offers access to 

archived data on the Oceanic Niño Index (ONI). The Oceanic Niño Index (ONI) is a metric utilized 

to observe and forecast El Niño and La Niña occurrences by gauging the deviations in sea surface 

temperature in the equatorial Pacific Ocean. The data may be retrieved from the website 

https://origin.cpc.ncep.noaa.gov. The present study employs a dataset consisting of ONI data that 

covers a time frame of 70 years, starting from January 1950 and ending in December 2019. The 

dataset consists of 840 data points that were gathered on a monthly basis. Each data point's date 

represents the third month of the corresponding three-month interval. The Oceanic Niño Index 

(ONI) is computed by averaging the sea surface temperature (SST) anomaly measurements 

collected during a consecutive three-month interval. For instance, the JFM timeframe is utilized to 
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indicate the month of February, while the ONI measure for February is derived by averaging the 

ONI readings that cover the months of January through March. 

  

FIGURE 3. Pearson correlation calculations on the data to show the relationship between data. 

 

As shown in Figure 3, in the aforementioned research by Jebli et al. [31] utilized the Pearson 

Correlation Coefficient (PCC) to quantify the level of dependence or association among variables, 

specifically in relation to El Nino regions, as illustrated in Figure 3. The PCC was employed to 

examine the correlation between different El Nino regions through their comparison. The objective 

of our study was to identify the interconnections or links among the aforementioned zones, with 

the aim of obtaining valuable information that could be utilized for analysis and prediction 

purposes. 

The statistical measurement of the linear correlation between two variables is accomplished 

through the use of the Pearson correlation coefficient (PCC). The numerical value of correlation 

coefficient ranges from -1 to 1, where a value of -1 indicates a strong negative correlation, a value 

of 0 indicates no correlation, and a value of 1 indicates a strong positive correlation. In this study, 

the Pearson correlation coefficient (PCC) was employed to assess the magnitude and direction of 

the associations among different El Nino zones. This valuable information can aid in the 

understanding of the dynamics and interactions between these geographical areas. Our objective 

was to enhance their understanding of the complex dynamics of El Nino events through the 

utilization of the Pearson Correlation Coefficient (PCC) to examine the interrelationships among 

El Nino regions. 
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4. PROPOSED METHOD  

4.1 Preprocessing Data 

The dataset was used in this research was relatively good because there was no missing value, 

so that there was no need to perform data cleaning. This study split the dataset into two parts: train 

and test data, where 80 percent of the dataset was used for the train process and 20 percent was 

used for the test process, as shown in Figures 4, 5, 6, and 7. This research also split the training 

data into two parts, with 80 percent of the training data allocated for training the models and the 

rest for validating the models.  

 

 

FIGURE 4. Split Nino 12 anomaly data.  

 

 

FIGURE 5. Split Nino 3 anomaly data. 
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FIGURE 6. Split Nino 34 anomaly data. 

 

 

FIGURE 7. Split Nino 4 anomaly data. 

 

This research did not implement any normalization or standardization because the data was 

relatively in small range(−3,5). This research designed all predictive models that can predict data 

one month in the future based on previous twenty-four month as in figure 8.  

 

FIGURE 8. Prediction scenario with models. 
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4.2 Nino Transformer with Recurrent Neuron 

To mitigate the issues associated with the transformer, we incorporated a specialized recurrent 

neuron into its architecture, specifically tailored for the purpose of predicting ENSO. The proposed 

model integrates Recurrent Neural Network (RNN) and Transformer architectures, as illustrated 

in Figure 10. Utilizing a method of progressive abstraction from superficial to profound, Recurrent 

Neural Networks (RNNs), a hierarchical approach to data representation, extract characteristics 

imbued with high-level semantic information. The lower-level feature representation serves as a 

fundamental basis for the higher-level feature representation. The enhanced transformer model 

depicted in Figure 9 was derived by means of a comparative analysis with the transformer baseline. 

Extracting the underlying properties, such as critical locations, lines, and Nino zones, is 

deemed more advantageous. One approach to achieve this is through the utilization of a common 

neuron for feature extraction, resulting in a potential reduction in the necessary parameters to 

prevent redundant processing. However, the incorporation of encoder operation can furnish the 

network with a specific degree of translation invariance. The transformer employs a self-attentive 

mechanism to obtain comprehensive contextual information and establish distant relationships 

with the target, thereby enhancing its efficacy in governing high-level features such as connecting 

Nino regions with other regions. In order to achieve a harmonious integration of benefits, a 

combination of Recurrent Neural Networks (RNN) and Transformers is employed, with the former 

being utilized for the foundational features and the latter for the more advanced attributes. The 

subsequent passage delineates the complete computational process of the model. 

 

 𝑎0 = [𝑋𝑝𝑟𝑒, 𝑃𝐷(𝐷𝑆(𝑥))] + 𝑋𝑝𝑜𝑠, 𝑋𝑝𝑜𝑠 ∈ 𝑅(𝑁+1)×𝐶2 

𝑎ℓ = 𝑀𝐻𝐴(𝐿𝑁(𝑎1−1)) + 𝑎1−1, ℓ = 1, … , 𝐿 

𝑎𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(𝑎𝑙)) + 𝑎𝑙, ℓ = 1, … , 𝐿 

𝑦 = 𝐹𝐶(𝑎𝐿
0) 

(1) 
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To produce the feature map 𝑓1 ∈ 𝑅𝐶×𝐻×𝑊, downsampling (DS) is first performed on the input 

data 𝑥 ∈ 𝑅𝐶×𝐻×𝑊, the dataset comprises of anomalies in sea surface temperature (SST) and heat 

content for a period of three consecutive months. The feature map 𝑓1 is divided into 𝑁 feature 

maps with the same dimension, 𝑓2 ∈ 𝑅𝐶2×𝑝1×𝑝2, and then these vectors are turned into 1-D vectors 

with 𝐶2 as their dimension. After patch division (PD), the semantic feature data's dimension is 

(𝑁, 𝐶2). 

It is noteworthy that the learnable embedding token 𝑎0
0 = 𝑋𝑝𝑟𝑒is pre-set on the embedded 

sequence. Incorporating position embedding coding is necessary to obtain position features 𝑋𝑝𝑜𝑠. 

The absence of positional information in the input data is deemed critical for meteorological data. 

The semantic and location features are provided as inputs to the transformer structure. The 

transformer architecture comprises of Multilayer Perceptron (MLP) and Multi Head Attention 

(MHA) blocks. Layer normalization (LN) is applied prior to each block, and a residual connection 

is applied after each block. The outcome of the prediction, denoted as 𝑦, is obtained through a 

series of coding layers, whereby the embedding feature of the final layer is propagated into the 

fully connected (FC) layer. 

 [𝑞, 𝑘, 𝑣] = 𝑧 ∗ 𝑈𝑞𝑘𝑣, 𝑈𝑞𝑘, ∈ 𝑅𝐶2×3𝐶ℎ 

𝑆(𝓏) = 𝑠𝑜𝑓𝑚𝑎𝑥 (
𝑞𝑘𝑇

√𝐶ℎ

) ∗ 𝑣 

𝑀𝐻𝐴(𝓏) = [𝑆1(𝓏), … , 𝑆𝑘(𝓏)] ∗ 𝑈𝑚ℎ𝑎 , 𝑈𝑚ℎ𝑎 ∈ 𝑅ℎ𝐶ℎ×𝐶2 

(2) 

A common transformer architecture building component is self-attention (S) [32]. For each 

element in the input sequence 𝓏 ∈ 𝑅(𝑁+1)×𝐶2, we calculate a weighted total of all values 𝑣.The 

attention weights are determined by how closely two items in the sequence and their corresponding 

query, 𝑞 and key, 𝑘, match up pairwise. In MHA, an extension of S, we perform ℎ self-attentive 

processes (also known as "heads") concurrently and forecast their results. It is typical to set 𝐶ℎ to 

𝐶2

ℎ
 in order to maintain the computation and the amount of parameters while adjusting ℎ. 
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FIGURE 9. Transformer Baseline Model (left), Transformer LSTM Model (middle), and 

Transformer GRU Model(right)   
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FIGURE 10. Transformer BiLSTM Model (left), and Transformer BiGRU Model(right)   

In this research, the transformer baseline model for time series was built based on Keras 

documentation as shown in Figure 4, while the other proposed transformer model was modified 

from the baseline model by implementing RNN layers such as LSTM, BiLSTM, GRU, and BiGRU 

and making some model adjustments as in Figure 4 and 5. 

To ensure a fair comparison, this research implemented the same settings for each of the 

compared models, such as the number of units in each RNN layer, such as LSTM, Bi-LSTM, GRU, 

and Bi-GRU, being set to four, the learning rate was set to with the Adam optimizer, and the batch 

size and the number of epochs were 256 and 100, respectively. As can be seen in Figures 4 and 5, 
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the green area was the transformer block. That number of transformer blocks was set to four, so 

that the models would perform a four-time loop. 

4.3 Evaluation Metrics 

To Evaluate the performance of predictions that is so crucial during Nino events, the primary 

accuracy measure for a deterministic forecast is the root-mean-square error (RMSE) in equation 

(8): 

 

𝑅𝑀𝑆𝐸 =  √
∑(𝑦𝑖 − 𝑞𝑖)2

𝑛
 (3) 

Where i = 1, 2, ..., 24, n is the length of samples, 𝐺  and 𝑌  denote the observation and 

prediction values, 𝐺 and 𝑌 are observation mean value and prediction mean value, respectively. 

MAE can be formulated as [33] in equation (9). 

 
𝑀𝐴𝐸 =  

1

𝑛
∑ |𝑦𝑖 − 𝑞𝑖|

𝑛

𝑗=1

 (4) 

 

5. RESULT AND DISCUSSION 

Five models have been built to forecast El Nino in Pacific Ocean leading by 12 months’ time 

step to predict one month. Those models are: 

• Transformer baseline: Transformer baseline refers to a basic or standard implementation of 

the transformer architecture in natural language processing tasks. 

• Transformer LSTM: a hybrid model that combines elements of both the transformer 

architecture and the LSTM (Long Short-Term Memory) model. 

• Transformer GRU: the transformer architecture and the GRU (Gated Recurrent Unit) model 

are combined to create a hybrid model. 

• Transformer BiLSTM: Similarly with transformer LSTM but we utilize LSTM as a back 

propagation algorithm. 

• Transformer BiGRU: Combination of Transformer and GRU with back propagation use 

GRU. 
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TABLE 1. Testing Results for each model. 

  Metrics 
Transformer 

Baseline 

Transformer 

LSTM 

Transformer 

GRU 

Transformer 

BiLSTM 

Transformer 

BiGRU 

NINO 12 
MAE 0.695619 0.709542 0.842349 0.688110 0.698858 

RMSE 1.020399 1.066383 1.128625 0.988143 0.978457 

NINO 3 
MAE 0.624594 0.705692 0.592944 0.641332 0.718975 

RMSE 0.882535 0.986601 0.835614 0.885487 0.957922 

NINO 34 
MAE 0.657151 0.725354 0.657338 0.657001 0.646685 

RMSE 0.856256 0.947293 0.837290 0.854008 0.843343 

NINO 4 
MAE 0.573183 0.725275 0.563845 0.526472 0.702675 

RMSE 0.681316 0.865769 0.678396 0.637363 0.859172 

 

All models were evaluated with the test dataset (orange-colored data in Figures 4, 5, 6, and 7). 

Table 1 is the evaluation summarization of every compared model, where the best result is colored 

in green. From the table, it can be seen that transformer baseline and transformer LSTM did not 

perform superiorly in this research comparison in predicting Nino data. Transformer GRU, 

Transformer BiLSTM, and Transformer BiGRU were very competitive. 

All the deep learning models built in this research can predict all four NINO data sets, such as 

Nino 12, Nino 3, Nino 34, and Nino 4, in a single time process, as depicted in Figure 8. Based on 

testing results, the best model for predicting Nino 3 data was Transformer GRU, and the best 

model for predicting Nino 4 data was Transformer BiLSTM. Meanwhile, Transformer BiLSTM 

and Transformer BiGRU were competing to be the best at predicting Nino 12 data, and 

Transformer GRU and Transformer BiGRU were competing against each other to be the best at 

predicting Nino 34 data. Table 1 was to show the competition between each model in predicting 

Nino data. It seems that the transformer LSTM seems to be worse than the transformer baseline, 

but the transformer LSTM was actually better than the baseline model in the next analysis in the 

next discussion based on Figures 11 and 12. 
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FIGURE 11. Nino 12 and Nino 3 prediction results visualization for each model with testing 

data. 

A quick glance at Figures 11 and 12, it seems that Nino 12 and Nino 3 ground truth data have 

similar patterns, as do Nino 34 and Nino 4. It was because Nino 12 and Nino 3 have an extremely 

high correlation of 0.84 in Pearson correlation, whereas Nino 34 and Nino 4 have an extremely 

high correlation of 0.91 in Pearson correlation. 
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FIGURE 12. Nino 34 and Nino 4 prediction results visualization for each model with testing 

data. 

To see how good our models were at predicting Nino data, this research visualized the test 

prediction results in Figures 11 and 12, where the orange line is the ground truth data and the 

blue line is the prediction result. In our opinion, the transformer baseline model seems to have 

failed to predict the Nino data, where its prediction result looks like a flat line, while the other 

line fluctuated while trying to predict the future data. 
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It seems that the implementation of RNN layers such as LSTM, BiLSTM, GRU, and BiGRU 

in transformer models gives significant improvement, so for future research there is still a chance 

to modify the transformer model to be a robust model for forecasting time series data. This 

research faced the obstacle that the number of neuron units in the RNN layer cannot be changed 

other than to only four units. In our opinion, the alteration in unit number in the RNN layer may 

bring significant improvement in the prediction of time series data because the RNN layer is very 

suitable for sequence data. 

Beside the fact that modification of deep learning models can improve the prediction, there is 

a belief that time series forecasting is a complex task, so involving new variables such as 

atmospheric data such as wind pattern and atmospheric pressure, oceanic variables such as sea-

level height level, ocean current, and subsurface ocean temperature, and precipitation pattern data 

may improve the prediction results. The collaboration with oceanographers is needed for our 

future research with the intention of learning about our earth and saving it from the damage that 

will harm future humanity. 

 

6. CONCLUSION 

This research result show that the implementation of RNN layers in transformer model can 

improve the prediction results of Nino data, where the transformer GRU, Bi-LSTM, and Bi-GRU 

were compete each other overcome the transformer baseline. From testing prediction result 

visualization, it seems that the baseline model failed to predict timeseries data with Nino data, 

meanwhile the modified transformer with RNN layer can predict better.  

Based on this research challenge in modifying the RNN layer in the transformer architecture 

model, the changing of neuron units in the RNN layer that is suitable for the Nino dataset may still 

have more potential to be investigated further for future research. Involving new variables that 

have a correlation value with NINO data may help improve models for predicting precisely in 

future research. 
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